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Abstract

In the search for new antibacterial agents from natural sources, we revealed that a crude

methanol extract of Sapium baccatum was highly active against Ralstonia solanacearum, a

causal agent of a serious disease called bacterial wilt of tomato. The bioassay-guided frac-

tionation of this extract resulted in the isolation of seven known active compounds, including

gallic acid, methyl gallate, corilagin, tercatain, chebulagic acid, chebulinic acid, and querce-

tin 3-O-α-L-arabinopyranoside. Their chemical structures were determined by electrospray

ionization mass spectrometry and nuclear magnetic resonance spectroscopy. An in vitro

antibacterial bioassay using a broth microdilution method revealed that, except for quercetin

3-O-α-L-arabinopyranoside (MIC = 250 μg/mL), the isolated compounds exhibited strong

antibacterial activity against R. solanacearum (MIC = 26–52 μg/mL). Among the seven com-

pounds, methyl gallate exhibited the strongest broad-spectrum activity against most of the

plant pathogenic bacteria tested (MIC = 26–250 μg/mL). In the in vivo experiments, the

crude extract of S. baccatum at 2000 and 1000 μg/mL reduced the development of tomato

bacterial wilt by 83 and 63%, respectively, under greenhouse conditions after 14 days of

infection. The results suggested that the extracts of S. baccatum or isolated tannins could

be used as natural bactericides for the control of bacterial wilt of tomato.

Introduction

Phytopathogenic bacteria cause serious economic losses by reducing the yield of marketable

quality crops [1]. Ralstonia solanacearum, which causes vascular wilt disease, is one of the

most destructive pathogens [2]. This soil-born pathogen is found worldwide and has a large

range of hosts, comprising more than 200 plant species, including tomato, potato, pepper, pea-

nut, tobacco, and banana [2–4]. The direct yield losses caused by R. solanacearum differ widely
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according to the host, cultivar, climate, soil type, cropping pattern, and strain; the losses were

up to 90% for tomato, potato, and banana [2].

The control of bacterial wilt has been considered difficult owing to the complex nature of

the pathogen: endophytic growth patterns, survival in soil, transport in water, and a wide host

range and biological diversity [2, 5]. The investigation into various methods for the control

of bacterial wilt disease has spanned several decades. Yuliar [2] reported that studies of these

methods conducted between 1984 and 2014 predominantly described the biological methods

(54%), followed by cultural practices (21%), chemical methods (8%), and physical methods

(6%). Plant disease control has been largely dependent on the use of chemical pesticides.

Unfortunately, the use of chemical pesticides has been strongly limited owing to their associa-

tion with environmental pollution, poisonous effects, and antibiotic resistance [2, 6, 7]. As the

demand for environmentally acceptable pesticides is increasing, the development of safe and

effective antimicrobial agents is essential for the treatment of plant disease.

Plants contain chemically diverse compounds that can be used directly as pesticides with

reduced harmful effects [8]. Globally, the use of botanicals as alternatives to synthetic pesticides

has increased annually. In particular, the growing demand for botanical pesticides has been

much higher in developed or industrialized countries because of the increase in organic food

production [9]. Botanicals have many advantages over synthetic chemicals, such as less or no res-

idues on food because of rapid degradation, little or no harmful effect in humans or on the envi-

ronment, and cost effectiveness [9]. However, botanical pesticides have some limitations, such as

slow and lower efficacy compared with chemical pesticides and less efficacy when applied to

fields; thus, the development of novel formulations with enhanced efficacy and longer shelf life is

required [10–12]. Nowadays, nanotechnology has been applied in formulating, thus plant parts

such as fruit, leaf, bark, seed, and stem extracts have been used for synthesis of nanoparticles, as

effective formulations for the phytopathogens control [12]. There are many botanical pesticides

such as plant extracts and their compounds possess antibacterial activities against phytopatho-

genic bacteria including R. solanacearum [12]. Most current studies that have focused on botani-

cals for the control of R. solanacearum utilized in vitro assays or potted plants [13–16]. To the

best of our knowledge, there are no commercialized botanical products currently available for

the control of bacterial wilt of tomato. Therefore, the search and development of highly active

botanical pesticides for the control of tomato bacterial wilt are quite necessary.

In the search for antibacterial agents from Vietnamese plants, we found that the methanol

extract of aerial parts of Sapium baccatum was highly active against R. solanacearum. S. bacca-
tum is widespread across South Asia and has been used as a traditional medicine in Malaysia

[17, 18]. Although several compounds, including bukittingine, lupeol, betulin, β-taraxerol, tar-

axerone, aleuritolic acid, 3-acetoxy-aleuritolic acid, 1-hexacosanol, β-sitosterol, stigmasterol,

docosyl trans-isoferulate, and docosanoic acid 2’,3’-dihydroxypropyl ester have been extracted

from S. baccatum [17–19], limited information is available about the antimicrobial activities of

these components or whether S. baccatum has additional active compounds. The aims of this

study were: 1) to isolate and identify antibacterial compounds from S. baccatum; 2) to examine

the antibacterial spectra of the isolated compounds against plant pathogenic bacteria; and 3) to

evaluate the disease control efficacies of the methanol extract of S. baccatum on bacterial wilt

of tomato under greenhouse conditions.

Materials and methods

Bacterial strains and culture conditions

The following strains of plant pathogenic bacteria were used for antibacterial activity assays:

Acidovorax avenae subsp. cattleyae SL4351, the causal agent of bacterial brown spot in
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Phalaenopsis (Phalaenopsis sp.); Agrobacterium tumefaciens SL2434, the causal agent of crown

gall in apple (Malus domestica); Burkholderia glumae SL4269, the causal agent of bacterial pani-

cle blight in rice (Oryza sativa); Clavibacter michiganensis subsp. michiganensis SL4135, the

causal agent of bacterial wilt and canker in tomato (Solanum lycopersicum); Pectobacterium
carotovorum subsp. carotovorum SL290, the causal agent of bacterial soft rot in potato (Sola-
num tuberosum); Pectobacterium chrysanthemi SL3218, the causal agent of bacterial leaf rot in

aloe (Aloe vera); Pseudomonas syringae pv. actinidiae CJW7, the causal agent of bacterial can-

ker in kiwifruit (Actinidia deliciosa); Pseudomonas syringae pv. lachrymans SL308, the causal

agent of cucumber angular leaf spot (Cucumis sativus); R. solanacearum SL1944, the causal

agent of bacterial wilt in tomato (S. lycopersicum); and Xanthomonas arboricola pv. pruni
SL4370, the causal agent of bacterial spot of peach (Prunus persica). All of these bacteria were

isolated from the infected tissues by Dr SD Lee of the National Academy of Agricultural Sci-

ences [4], except for P. syringae pv. actinidiae CJW7, which was isolated by Prof. YJ Koh of

Sunchon National University [20] and R. solanacearum, which was isolated by Prof. SW Lee of

Dong-A University [4, 21]. All strains were grown on tryptic soy agar (TSA; Becton, Dickinson

and Co., Sparks, MD, USA) or tryptic soy broth (TSB). P. syringae pv. actinidiae and X. arbori-
cola pv. pruni were grown at 25˚C for 18–36 h and all other strains were cultured at 30˚C for

18–36 h.

Plant material

The aerial parts of S. baccatum were collected by the Department of Phytochemistry, Vietnam

Institute of Industrial Chemistry (Hanoi, Vietnam). Plant species were identified by Dr The

Bach Tran from the Institute of Ecology and Biological Resources (Hanoi, Vietnam) and

voucher specimens were deposited in the laboratory.

Extraction and isolation of antibacterial compounds

The dry powdered material of S. baccatum (200 g) was extracted twice with 90% methanol

(2 × 3 L) for 48 h at room temperature. The extracts were filtered through Whatman No. 1 fil-

ter paper and the filtrates were concentrated by using a rotary evaporator under vacuum to

yield a crude extract (24.5 g). A portion of the methanol extract (15 g) was suspended in

500 mL distilled water and then successively partitioned twice with n-hexane, ethyl acetate

(EtOAc), and n-butanol (BuOH). Of the four layers, the EtOAc and BuOH layers showed

strong antibacterial activity against R. solanacearum as determined by the broth microdilution

method [4]. Therefore, further isolation of active compounds was conducted from these two

layers.

The EtOAc layer (1.55 g) was successively eluted on a silica gel column (2.5 × 60.0 cm, Kie-

sel gel 60, 100 g, 230–400 mesh, E. Merck) with mixtures of dichloromethane (DCM)/metha-

nol (MeOH) (90:10, v/v, 200 mL; 85:15, v/v, 200 mL; 80:20, v/v, 500 mL; 70:30, v/v, 500 mL),

yielding five fractions, E1–E5. The fractions were monitored with thin-layer chromatography

(TLC, Silica gel 60 F254, 0.25 mm layer thickness; E. Merck) with the developing solvent

DCM/MeOH (85:15, v/v). Fraction E2 (233 mg) was separated on a Sephadex LH20 column

(2.5 × 60.0 cm, 60 g, 70–100 μm, Sigma-Aldrich) via successive elution with mixtures of DCM/

MeOH (9:1, v/v, 100 mL; 8:2, v/v, 200 mL; 7:3, v/v, 300 mL), to obtain seven fractions desig-

nated E21–E27. Fraction E25 (21 mg) containing compound 2 was successfully separated on a

Sephadex LH20 column (1.0 × 30.0 cm, 10 g, 70–100 μm) by using DCM/MeOH (7:3, v/v, 100

mL). Compound 2 was further purified on a silica gel column (1.0 × 30.0 cm, Kiesel gel 60, 10

g, 230–400 mesh) and eluted with DCM/MeOH (9:1, v/v, 50 mL), yielding a pure compound

(5 mg).
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Fraction E3 (900 mg) was separated on a Sephadex column (3.0 × 60.0 cm, 100 g, 70–

100 μm; Sigma-Aldrich) and successively eluted with DCM/MeOH (8:2, v/v, 200 mL; 7:3, v/v,

500 mL; 5:5, v/v, 500 mL; 3:7, v/v, 700 mL), which yielded 10 fractions designated E31–E310.

The fractions were monitored by using reversed-phase TLC (Silica gel 60 RP-18 F254, 0.25-mm

layer thickness; E. Merck) with the developing solvent MeOH/water (W) (4:6, v/v). To obtain

compound 7 (4.3 mg), fraction E35 (40 mg) was separated with a LiChroprep RP-18 column

(1.0 × 30.0 cm, 10 g, 40–63 μm; E. Merck) and eluted with MeOH/W (2:8, v/v; 3:7, v/v; 4:6, v/v,

50 mL of each).

Fraction E38 (120 mg) was first purified with a LiChroprep RP-18 column (1.5 × 30.0 cm,

15 g, 40–63 μm) eluted with a mixture of MeOH/W (2:8, v/v, 50 mL; 3:7, v/v, 100 mL; 4:6, v/v,

50 mL), further purified with the Sephadex LH20 column (1.0 × 30.0 cm, 10 g, 70–100 μm)

and eluted with 100% MeOH to afford compound 1 (43 mg). Fraction E310 (250 mg) was also

separated with the LiChroprep RP-18 column (1.5 × 30.0 cm, 15 g, 40–63 μm) and eluted with

MeOH/W (2:8, v/v, 30 mL; 3:7, v/v, 30 mL; 4:6, v/v, 100 mL), yielding compound 5 (41 mg),

compound 4 (5 mg), and compound 6 (5 mg).

The BuOH layer (7 g) was loaded on a silica gel column (6.0 × 60.0 cm, Kiesel gel 60, 480 g,

230–400 mesh) and successively eluted with DCM/MeOH/W (70:25:5, v/v/v, 1.5 L; 65:30:5, v/

v/v, 1.5 L; 50:45:7, v/v/v, 1 L; 30:60:10, v/v/v, 1 L), which yielded nine fractions, B1–B9. Because

the active fractions B6–B8 exhibited patterns similar to those of the main components based

on TLC analysis with the developing solvent DCM/MeOH/W (70:25:5, v/v/v), they were

pooled and further purified. A portion (600 mg) of the combined fraction (2.3 g) was first sepa-

rated on a Sephadex LH20 column (2.5 × 60.0 cm, 100 g, 70–100 μm) and successively eluted

with DCM/MeOH (3:7, v/v; 2:8, v/v; 1:9, v/v; 100% MeOH; 200 mL of each) and then further

purified with a Sep-Pak C18 cartridge (Sep-Pak Vac 35cc, 10 g, Waters) and eluted with

MeOH/W (1:9, 2:8, 3:7, 4:6, 5:5, v/v, 100 mL of each) to yield compound 3 (50 mg).

Structure determination of antibacterial compounds

The chemical structures of the active components were determined by using mass spectrome-

try, nuclear magnetic resonance (NMR) spectroscopy, and comparison with values reported in

the literature. The electrospray ionization mass spectra (ESI-MS) of the isolated compounds

were recorded on an MSD1100 single-quadruple mass spectrometer equipped with an electro-

spray ionizer (Hewlett-Packard Co., Palo Alto, CA, USA). 1H and 13C NMR spectra were mea-

sured using methanol-d4, dimethyl sulfoxide (DMSO)-d6 or acetone-d6 (E. Merck) with a

Bruker AMX-500 spectrometer (Bruker, Analytische Messtechnik Gmbh, Rheinstetten, Ger-

many). Chemical shifts were calculated using tetramethylsilane as the internal standard.

In vitro antibacterial activity

The antibacterial activities of the isolated compounds (compounds 1–7) were measured with

the broth microdilution method against various plant pathogenic bacteria, including R. solana-
cearum. Briefly, suspensions of plant pathogenic bacteria in TSB media (100 μL) with inocula

of 106 CFU/mL were added to the wells of sterile 96-well plates. The stock solutions of the iso-

lated compounds (25 mg/mL) were diluted 100-fold in the first wells and then subjected to

two-fold serial dilutions in the growth media. The final concentrations of the isolated com-

pounds were in the range 7.8–250 μg/mL. DMSO (1%), which corresponded to the highest

concentration and did not affect the bacterial growth, was used as the negative control. Strep-

tomycin sulfate was used as the positive control.

The inoculated plates were incubated at 30˚C (except for P. syringae pv. actinidiae and X.

arboricola pv. pruni, which were incubated at 25˚C) for 18–36 h after shaking at 300 rpm for
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10 min on a microplate shaker. The minimum inhibitory concentration (MIC) was defined as

the lowest concentration that completely inhibited the growth of the bacteria. The assay was

performed three times with three replicates for each extract at all concentrations tested.

Disease control efficacy of the methanol extract of S. baccatum against

bacterial wilt of tomato

To evaluate the efficacy of the methanol extract of S. baccatum in controlling tomato bacterial

wilt caused by R. solanacearum SL1944 (race 1, biovar 4) [4, 21], we used 3-week-old ‘Seok-

wang’ tomato plants at the four- to five-true-leaf stage. The plants were grown in vinyl pots

with a volume of 90 mL in a greenhouse and were then transplanted into vinyl pots with a vol-

ume of 180 mL (one plant per pot). Two different amounts of starting material (100 and 200

mg) of the methanol plant extract were dissolved in 2 mL MeOH and then diluted in 98 mL

distilled water containing 250 μg/mL Tween-20 to obtain test concentrations of 1000 and

2000 μg/mL. R. solanacearum was grown in TSA Petri dishes at 30˚C for 48 h, harvested with

distilled water, and adjusted to an optical density at 600 nm of 0.1 (approximately 1.5 × 108

CFU/mL). The two methanol extract solutions were applied to the soil of each pot (20 mL per

pot). After 3 h of treatment, a cell suspension (20 mL) of R. solanacearum was inoculated into

the soil of each pot. Streptomycin sulfate (200 μg/mL) was used as the positive control and dis-

tilled water solutions containing Tween-20 (250 μg/mL) and MeOH (2%) were used as nega-

tive controls. The plants were maintained in a controlled climate at 30 ± 2˚C and a relative

humidity of 70–80%. The pots were arranged as a randomized complete block with five repli-

cates per treatment. The experiment was repeated three times [4, 22].

The disease severity was ranked daily for 14 days and recorded on a scale of 0–4 as

described by He et al. (1983): 0, no symptoms; 1, one leaf wilted; 2, two or three leaves wilted;

3, four or more leaves wilted; and 4, plant dead [4, 23]. The control value was calculated by

using following formula [22]:

Control value ð%Þ ¼ 100� ðdisease severity of control
� disease severity of treatmentÞ=disease severity of control

Statistical analysis

The data were assessed by one-way analysis of variance (ANOVA) and the significance of the

treatments was determined by Tukey’s honest significant difference (HSD) for multiple com-

parisons (p = 0.05). Statistical analyses were performed by using SAS software (version 12.0,

SAS Institute, Cary, NC). Differences were considered statistically significant for p values less

than 0.05.

Results and discussion

Structure determination of antibacterial compounds

The bioassay-guided fractionation of S. baccatum crude extract (15 g) led to the isolation of

seven compounds. The chemical structures of these compounds were determined based on 1H

NMR, 13C NMR, and ESI-MS data and through comparison with the previously reported liter-

ature values. The compounds were identified as gallic acid (compound 1) [24–26], methyl gal-

late (compound 2) [24–26], corilagin (compound 3) [25–27], tercatain (compound 4) [28, 29],

chebulagic acid (compound 5) [25, 26, 30, 31], chebulinic acid (compound 6) [26, 30, 31], and

quercetin 3-O-α-L-arabinopyranoside or guaijaverin (compound 7) [32–34] (Fig 1). The 1H,
13C NMR, and ESI-MS data of these compounds are shown in S1–S5 Tables.
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These compounds have previously been isolated from plant extracts, most of them belong

to tannins group which possess various bioactivities including antibacterial activity [35]:

gallic acid and methyl gallate from extracts of Sedum takesimense aerial parts [4]; Euphorbia
helioscopia whole plants [24]; Dimocarpus longan seeds [25] and Terminalia spp. fruits,

including T. bellerica, T. chebula, and T. horrida [26]; corilagin from extracts of the D. lon-
gan seeds [25] and Terminalia spp. fruits [26], Punica granatum leaves [27], and E. fischeri-
ana roots [29]; tercatain from extracts of leaves of T. catappa [28] and E. fischeriana roots

[29]; chebulagic and chebulinic acids from extracts of the D. longan seeds and the Termina-
lia spp. fruits [25, 26, 30, 31]; and quercetin 3-O-α-L-arabinopyranoside from extracts of

Fig 1. Chemical structures of seven antibacterial compounds isolated from the aerial parts of Sapium baccatum. Compound

1, gallic acid; compound 2, methyl gallate; compound 3, corilagin; compound 4, tercatain; compound 5, chebulagic acid; compound 6,

chebulinic acid; compound 7, quercetin 3-O-α-L-arabinopyranoside.

https://doi.org/10.1371/journal.pone.0181499.g001
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Woodfordia fruticosa [32] and Psidium guajava leaves [36], and Vaccinium macrocarpon
powder [34]. To the best of our knowledge, we have reported the first isolation of these

seven compounds from S. baccatum.

In vitro antibacterial activity

The antibacterial activity of the compounds isolated from S. baccatum is presented in Table 1.

Among the seven compounds, methyl gallate (compound 2) exhibited the strongest broad-

spectrum activity against most of the plant pathogenic bacteria tested, with MIC values

between 26.0 and 250 μg/mL (except against A. avenae subsp. cattleyae). Of the glucoside gal-

lates (compounds 3–6), corilagin (compound 3) and chebulagic acid (compound 5) showed a

slightly stronger activity than that of tercatain (compound 4) and chebulinic acid (compound

6), respectively. Gallic acid was less active than other hydrolysable tannins (compounds 2–6)

and quercetin 3-O-α-L-arabinopyranoside (compound 7) was the least active compound

(Table 1).

Of plant pathogenic bacteria tested, R. solanacearum was the most susceptible to all the iso-

lated compounds, followed by X. arboricola pv. pruni, P. syringae pv. actinidiae, B. glume and

A. avenae subsp. cattleyae. With the exception of compound 7 (MIC = 250 μg/mL), the isolated

compounds showed impressive antibacterial activity against R. solanacearum, with very low

MICs (26.0–52.1 μg/mL). Compounds 2–6 also exhibited strong antibacterial activities against

X. arboricola pv. pruni (MIC = 52.1–88.3 μg/mL) (Table 1).

Methyl gallate (compound 2) was much more active than gallic acid (compound 1). The

measurements of antibacterial activity in our study agreed with those of previous reports [4,

37, 38]. Compounds with similar structures, such as 3 and 4, and 5 and 6, had similar antibac-

terial activity and spectra (Table 1). Corilagin (compound 3) has been reported against Acine-
tobacter baumannii [39], methicillin-resistant Staphylococcus aureus [40, 41], and Escherichia

Table 1. Minimum inhibitory concentration (MIC) values of isolated compounds against plant pathogenic bacteria.

Bacterium MIC (μg/mL)

1 2 3 4 5 6 7

Acidovorax avenae subsp. cattleyae 104.2 ± 31.3

b

>250 104.2 ± 31.3

b

250 a 208.3 ± 62.5

a

>250 >250

Agrobacterium tumefaciens >250 250 >250 >250 >250 >250 >250

Burkholderia glumae >250 62.5 c 104.2 ± 31.3

c

208.3 ± 62.5

ab

166.7 ± 62.5

b

250 a >250

Clavibacter michiganensis subsp.

michiganensis

>250 88.3 ± 31.3 >250 >250 >250 >250 >250

Pectobacterium carotovorum subsp.

carotovorum

>250 250 >250 >250 >250 >250 >250

Pectobacterium chrysanthemi >250 104.2 ± 31.3 >250 >250 >250 >250 >250

Pseudomonas syringae pv. actinidiae >250 166.7 ± 62.5

b

250 a 166.7 ± 62.5 b 104.2 ± 31.3

c

104.2 ± 31.3

c

>250

Pseudomonas syringae pv. lachrymans >250 208.3 ± 62.5 >250 >250 >250 >250 >250

Ralstonia solanacearum 41.7 ± 15.6

bc

26.0 ± 7.8 c 31.3 bc 52.1 ± 15.6 b 52.1 ± 15.6 b 52.1 ± 15.6 b 250

a

Xanthomonas arboricola pv. pruni >250 62.5 a 88.3 ± 31.3 a 88.3 ± 31.3 a 52.1 ± 15.6 a 52.1 ± 15.6 a >250

Compound 1, gallic acid; compound 2, methyl gallate; compound 3, corilagin; compound 4, tercatain; compound 5, chebulagic acid; compound 6, chebulinic

acid; compound 7, quercetin 3-O-α-L-arabinopyranoside.

Means within the same row followed by the same letter are not significantly different (p = 0.05) as determined by Tukey’s HSD test.

https://doi.org/10.1371/journal.pone.0181499.t001
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coli [41]. Chebulagic acid (compound 5) and chebulinic acid (compound 6) showed moderate

antibacterial activity against A. baumannii [39]. The antibacterial activity of quercetin-3-O-α-

L- arabinopyranoside or guaijaverin (compound 7) against Streptococcus mutans has been

reported [36]. To the best of our knowledge, information on the antibacterial activities of ter-

catain (compound 4) is unavailable. In addition, this is the first report of the antibacterial

activities of the isolated compounds (with the exception of compounds 1 and 2) against plant

pathogenic bacteria [4, 42].

Effect of the methanol extract on tomato bacterial wilt

In the in vivo experiment, wilt symptoms were observed 5 days after inoculation. The extracts

efficiently suppressed the development of tomato bacterial wilt in a dose-dependent manner.

At concentrations of 1000 and 2000 μg/mL, the methanol extract showed control efficacies of

100 and 100% after 7 days of inoculation, and 63 and 83% after 14 days of inoculation, respec-

tively. The disease control efficacies of the extract at 1000 μg/mL were higher than those of

200 μg/mL streptomycin sulfate after 7 and 14 days of inoculation (Fig 2 and S6 Table). No

phytotoxic symptoms appeared on the treated plants.

Recent studies revealed that several plant-derived products also exhibited potential antibac-

terial activity against R. solanacearum in in vivo tests. Allium fistulosum extract at concentra-

tions of 50 and 100% significantly reduced the incidence of bacterial wilt of tomato: only 6 and

14% of the plants were affected, respectively, whereas the disease affected 61% of the plants in

the untreated control [43]. The leaf extract of Eichhorina crassipes reduced the severity index

of the bacterial wilt by more than 91% [44]. Several essential oils, such as cinnamon and clove

oils [13], lemongrass and palmarosa oils and their components such as thymol [45, 46], were

found to effectively reduce the R. solanacearum populations and incidence of bacterial wilt of

tomato grown in infested soil. Methyl gallate at a concentration of 500 μg/mL showed a control

efficacy of 65.2% in greenhouse conditions [42]. It is difficult to compare the results of our

study with those of previous studies owing to a number of factors, such as different experimen-

tal design conditions, plants species, and bacterial species. In this study, the control efficacy of

S. baccatum at a concentration of 2000 μg/mL was similar to that of the wettable powder for-

mulation of the ethyl acetate layer of S. takesimense at a 200-fold dilution, as described in our

previous study [4].

Conclusions

In this study, seven antibacterial compounds were isolated from the methanol extracts of S.

baccatum. The compounds showed potent in vitro antibacterial activities against R. solana-
cearum, except for quercetin 3-O-α-L-arabinopyranoside. In addition, most compounds

exhibited strong antibacterial activities against X. arboricola pv. pruni and B. glumae. Methyl

gallate and corilagin showed the strongest activities. These results suggested that the extracts

from S. baccatum or their isolated compounds were promising antibacterial agents for the con-

trol of bacterial wilt of tomato.

Botanical pesticides are a promising alternative to reduce the harmful effects caused by use

of synthetic pesticides. They have become more attractive after the increase in demand for

organic food. Further research into production, formulation, and delivery may greatly assist

and promote the development of botanical pesticides. Therefore, further studies are necessary

to examine the toxicity of the S. baccatum extract, evaluate the disease control efficacy of the

extract in various fields, and develop optimum formulations of the crude extracts for the con-

trol of tomato bacterial wilt.
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Fig 2. Effect of the methanol extract of Sapium baccatum on tomato bacterial wilt under greenhouse

conditions (A) and the treated plants 14 days after inoculation (B). SB1000 and SB2000, 1000 and

2000 μg/mL methanol extract of S. baccatum, respectively; SS200, 200 μg/mL streptomycin sulfate. Each

value represents the mean ± standard deviation of three experiments with five replicates. Means with the

same number days after inoculation followed by the same letter above the bars are not significantly different

(p = 0.05) as determined by Tukey’s HSD test.

https://doi.org/10.1371/journal.pone.0181499.g002
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