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Abstract: Protein homeostasis (proteostasis) is essential for the cell and is maintained by a highly
conserved protein quality control (PQC) system, which triages newly synthesized, mislocalized
and misfolded proteins. The ubiquitin-proteasome system (UPS), molecular chaperones, and
co-chaperones are vital PQC elements that work together to facilitate degradation of misfolded
and toxic protein species through the 26S proteasome. However, the underlying mechanisms are
complex and remain partly unclear. Here, we provide an overview of the current knowledge on the
co-chaperones that directly take part in targeting and delivery of PQC substrates for degradation.
While J-domain proteins (JDPs) target substrates for the heat shock protein 70 (HSP70) chaperones,
nucleotide-exchange factors (NEFs) deliver HSP70-bound substrates to the proteasome. So far, three
NEFs have been established in proteasomal delivery: HSP110 and the ubiquitin-like (UBL) domain
proteins BAG-1 and BAG-6, the latter acting as a chaperone itself and carrying its substrates directly
to the proteasome. A better understanding of the individual delivery pathways will improve our
ability to regulate the triage, and thus regulate the fate of aberrant proteins involved in cell stress
and disease, examples of which are given throughout the review.

Keywords: ubiquitin; proteasome; chaperone; co-chaperone; misfolding; protein quality control;
protein stability

1. Introduction

Protein degradation is a fundamental part of the cellular machinery. An intricate set of protein
networks known as the protein quality control (PQC) system coordinates the fate of non-native protein
species. Since degradation of proteins is involved in a range of detrimental diseases [1–3], a need
for a better comprehension of protein degradation has driven the field far. While our understanding
of the degradation routes of misfolded proteins has improved, the exact mechanisms by which
misfolded proteins are recognized and transferred to the proteasome remain elusive. Well-defined
proteasomal shuttle factors are known to mediate interaction between the 26S proteasome and a
large range of proteins involved in fundamental cellular processes [4,5]. However, in the case of the
misfolded protein species that are handled by the PQC system, and likely constantly associate with
molecular chaperones, our understanding of proteasomal delivery is more limited. In recent years,
several studies have contributed important results and revealed an emerging role of co-chaperones.
In this review, we summarize the current knowledge on how misfolded proteins are directed to the
proteasome for degradation, and more specifically how molecular chaperones and their co-chaperones
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are involved in this process. Importantly, some misfolded proteins are refractory to degradation and
the proteostasis system is known to decline during ageing, giving rise to accumulation of insoluble
and aggregation-prone proteins that may be toxic and lead to disease. This has been reviewed in a
number of excellent papers [6–8] and we will not discuss it further here.

2. Protein Misfolding

Proteins perform countless cellular functions that are essential to sustain proper cell function and
organismal health. Therefore, the cell has evolved a complex molecular network of integrated processes
to balance protein concentration, conformation, and subcellular localization in order to maintain
protein homeostasis (proteostasis). The state of proteostasis is dynamically regulated by components
of the proteostasis network, which facilitate fine-tuned control of the stability and functionality of the
cellular proteome [9–11].

Most proteins must fold into a well-defined and specific three-dimensional structure, the native
conformation, to achieve activity. Thus, protein function directly depends on the protein’s ability to
reach this structure. Protein folding is a thermodynamically favorable process that is largely driven by
intraprotein interactions, which must compensate for the tremendous conformational entropic penalty
associated with the native conformation [12–14]. While many smaller proteins fold spontaneously,
the great majority of newly synthesized proteins depend on the action of molecular chaperones to
efficiently fold into their native conformation in the cellular environment [15]. Accordingly, chaperones
are found in all domains of life and while the proteomes have expanded and become complex
during evolution the molecular chaperones and co-chaperones have also expanded and become more
abundant [16].

Most native conformations are only marginally stable with ∆Gfolding of about −5 to −10 kcal/mol
under physiological conditions [17]. Consequently, proteins are extremely sensitive to translation errors,
mutations, and chemical or physical stress conditions, which increase the risk of failure in reaching
or preserving the native conformation. Such non-native conformations are susceptible to generating
misfolded protein species [18].

Misfolded proteins often display reduced steady-state levels due to increased degradation rates,
which in turn may result in loss-of-function phenotypes and protein misfolding diseases. Studies show
that deletion of a single amino acid in the CFTR protein causes cystic fibrosis, due to misfolding
and proteasomal degradation of the CFTR protein, even though the abnormal protein still retains
some function [19–21]. We and others have found additional examples of protein misfolding diseases
caused by an overzealous degradation system including Lynch syndrome, phenylketonuria and
marble brain syndrome [1–3,22,23]. Intriguingly, it has been demonstrated that misfolded variants
of the α1-antitrypsin protease inhibitor results in improper subcellular localization, which causes a
loss-of-function phenotype. Consequently, the absence of the protease inhibitor in the correct subcellular
compartment causes overactive proteases, which have severe effects [24–26]. Misfolded proteins can
also have deleterious gain-of-function effects by forming toxic aggregates, which are often associated
with neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease [27]. Although the
precise pathogenic mechanism remains unclear, the common hallmark of these neurodegenerative
diseases is intra- and extracellular accumulation and deposition of insoluble aggregates in the brain,
which correlate with progressive cellular dysfunction [28–30].

Thus, the extent and diversity of misfolded proteins and the numerous underlying mechanisms
of protein misfolding diseases highlight the cellular demand for a highly coordinated, comprehensive
and specific degradation system to fend against misfolded proteins. Accordingly, the cell has evolved
an elaborate PQC system to monitor and maintain proteostasis [10,31].

3. Protein Quality Control

Two major elements of the cellular PQC are the ubiquitin-proteasome system (UPS) and the
molecular chaperones and co-chaperones, which collaborate to decide the fate of aberrant protein species.
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In the following, we will briefly summarize these systems and highlight some examples showing that
the UPS and the molecular chaperones are highly interconnected.

3.1. The Ubiquitin-Proteasome System (UPS)

The UPS manages the vast majority of cellular protein degradation [32]. The substrates of this
system are diverse and include misfolded proteins [33], many short-lived proteins [34], but also
long-lived proteins [32], as well as a large fraction of newly synthesized proteins that never reach
their native conformation [35,36]. The broad yet specific degradation by the UPS is essential to avoid
inadvertent degradation of cytosolic proteins, and relies on the regulatory protein ubiquitin and the
elegant architecture of the 26S proteasome—a large multi-subunit protease complex.

Proteins are targeted to the proteasome through covalent linkage to the stable and conserved
76-residue protein ubiquitin [37–40], through lysine residues in target proteins [41]. Often, a chain
of four or more ubiquitin molecules linked through internal lysine-48 residues is needed to direct a
protein to the proteasome [42–46].

Ubiquitin conjugation requires three enzymes: an E1 ubiquitin-activating enzyme, an E2
ubiquitin-conjugating enzyme, and an E3 ubiquitin-protein ligase [44,47]. Following activation
by the E1 and conjugation to the E2, the E3 transfers ubiquitin to a substrate protein, and thus provides
the main substrate specificity of the ubiquitination cascade. Accordingly, the human genome is
predicted to encode over 600 E3 ubiquitin-protein ligases [48]. A number of E3s have been connected
with the PQC in both yeast and mammalian cells. For example, in yeast, Ubr1 and San1 have a
well-characterized role in proteasomal degradation of misfolded proteins [49–51], while in mammals,
carboxyl terminus of HSC70-interacting protein (CHIP) cooperates with the chaperone-system to
ubiquitinate aberrant proteins [19,52–54].

Degradation of ubiquitinated proteins is mediated by the 26S proteasome, which is made up
of a 20S core particle capped by one or two 19S regulatory particles. The regulatory particles
further consist of two subcomplexes—the base and the lid. The lid partially covers the base,
which connects to the core particle to gate the entry of substrate proteins [55–57]. Multiple intrinsic
ubiquitin receptors on the regulatory particles mediate the recognition of ubiquitinated substrate
proteins [58–60]. In addition, shuttle factors such as Rad23, Dsk2, and Ddi1 contain ubiquitin-like
(UBL) and ubiquitin-associated (UBA) domains through which they mediate interaction between the
proteasome [61–65] and ubiquitinated substrates [66–68] thus promoting substrate recognition and
degradation [35].

Once bound by the proteasome, deubiquitinating enzymes, like the 19S subunit Rpn11 [69,70]
or proteasome-associated Ubp6 [60,71] and Uch37 [59,72], remove the ubiquitin moiety to allow
recycling of ubiquitin before degradation of the substrate. The complexity of the ubiquitin-chain
determines the protein’s affinity for the proteasome and the rate of deubiquitination [73]. Following
substrate recognition and removal of ubiquitin chains, the ATPase subunits of the base subcomplex
promote protein unfolding and translocation into the cylinder-shaped core particle [74], which contains
proteolytically active subunits. Access to the core-particle lumen is limited by α-subunits that form
narrow openings at each end of the core particle [75,76]. This restricted access prevents inadvertent
degradation of cytosolic proteins and allows for highly specific degradation. Through interaction with
the α-subunits, the 19S particle ATPases mediate opening of the 20S gate, thereby allowing substrate
entry to the proteolytic sites of the core particle [76,77]. Here, the proteolytically active subunits
cleave the unfolded protein into short peptides [78,79], which diffuse to the cytosol for further cellular
processing [32,80].

3.2. Chaperones as Substrate Recognition Factors in Protein Quality Control

Prior to ubiquitination and degradation, proteasomal substrates first need to be recognized.
As misfolded proteins interact with molecular chaperones, these are often involved in the targeting
of proteins to the UPS. Thus, the diverse classes of molecular chaperones are essential components
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in maintaining cellular proteostasis and interact with non-native proteins to promote, e.g., protein
folding, compartmentalization, and degradation of their substrates. The focus in this review will
be the heat shock protein 70 (HSP70) and HSP90 chaperone families due to their established roles
in proteasomal degradation. However, other chaperones have also been linked to proteasomal
degradation of misfolded proteins, including prefoldin [81] and the ubiquitin-specific ATPase complex
known as Cdc48 in yeast or as p97 in humans [82].

3.2.1. HSP70-Type Chaperones

The eukaryotic HSP70 chaperone family consists of multiple homologues that are either
stress-induced (HSP70s) or constitutively expressed (HSC70s). These HSP70 homologues function
in different cellular compartments, although the majority operate in the cytosol and nucleus, where
the ubiquitin-proteasome system is localized. The HSP70 family members show functional diversity
mediated by different substrate specificities, cooperation with co-chaperones and other chaperone
systems, and subcellular localization [83–86]. However, it is important to point out that the binding
cavity of HSP70 is conserved across family members and that differences between them are minor.
In general HSP70-type chaperones have a similar structure and allosteric cycle, and thus show wide
functional redundancy [87]. In contrast, a recent proteome-wide study by Ryu, et al. shows that there
is essentially no substrate specificity overlap between the HSP70 and HSC70 families, except that they
share newly synthesized proteins as common substrates [88].

HSP70 consists of two major domains: an N-terminal nucleotide-binding domain (NBD), which is
highly conserved between species, and a more variable C-terminal substrate-binding domain (SBD),
which confers specificity (Figure 1A) [89,90]. The SBD comprises two subdomains; a compact
β-sandwich that binds the substrate, which during the HSP70 cycle is encapsulated by an α-helical
lid [91].

The foundation of HSP70 function is cycles of substrate binding and release (Figure 1B). These cycles
are regulated by ATP binding and hydrolysis as well as substrate binding, and depend on the allosteric
coupling of the NBD and SBD. When HSP70 is bound to ATP, the SBD is docked to the NBD [92], and the
SBD is in an open conformation permitting substrate interaction. A J-domain protein (JDP), a family
of HSP70 co-chaperones also known as HSP40s, promotes substrate binding to the SBD, resulting in
disruption of the NBD-SBD interaction and stimulation of the NBD ATPase activity [92]. ATP hydrolysis
induces a conformational change in the NBD, which is transmitted to the SBD and leads to stabilization
of the HSP70-substrate complex [93,94]. At this stage, a member of the nucleotide exchange factor
(NEF) family of co-chaperones can stimulate dissociation of ADP leading to a nucleotide-free state in
which the NBD and SBD, like in the ADP-bound state, have limited interaction [92]. Binding of a new
molecule of ATP to the NBD induces conformational changes resulting in extensive contacts between
the SBD and NBD, opening of the SBD and subsequent substrate release [94–96]. To promote folding
of substrates, this cycle of substrate binding and release is often repeated [97].

HSP70 is able to bind a wide variety of substrates with binding sites found on average once every
36 residues in a given protein [98]. HSP70 preferentially binds to extended protein conformations with
sequences enriched in stretches of hydrophobic residues flanked by positively charged residues [98–100].
Hydrophobic residues are often buried in the core of folded proteins, and hence the specificity of HSP70
for these residues might promote recognition of unfolded or newly synthesized proteins, enabling
HSP70 to shield intermolecular interactions that might result in aggregation [100]. A recent study
proposed that HSP70 prefers basic over acidic residues because basic residues are more compatible with
globular structure, but make the protein depend on HSP70 to suppress aggregation [101]. In addition,
others have suggested that the binding mechanism of HSP70 is flexible, allowing it to accommodate
partially folded regions of proteins [102]. HSP70-bound substrates have been shown to be largely
unfolded and have an expanded conformation, potentially due to multiple HSP70s binding the same
substrate [103,104]. Meanwhile, others find that substrates can retain some secondary structure outside
the HSP70-binding region [105], or have partially-folded and near-native structures [106].
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which causes ATP hydrolysis and transfer of the substrate to HSP70 leading it to switch into its closed 
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and results in opening of HSP70 and subsequent substrate release. 
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Figure 1. The substrate binding/release cycle of HSP70. (A) Schematic overview of the HSP70 domain
structure. NBD: nucleotide-binding domain, SBD: substrate-binding domain, aa: amino acids. (B) The
ATP-bound open conformation of HSP70 engages with a substrate-bound J-domain protein (JDP),
which causes ATP hydrolysis and transfer of the substrate to HSP70 leading it to switch into its closed
conformation. A nucleotide exchange factor (NEF) mediates ADP release, which permits ATP binding
and results in opening of HSP70 and subsequent substrate release.

HSP70 is proposed to bias the substrate’s folding pathway by disrupting long-range interactions,
while allowing secondary structure to form [107] as the substrate samples the conformational space
while bound to HSP70 [105,108]. In this way, HSP70 enables local structures to form prior to the
establishment of long-range interactions that can form following release from HSP70 [107]. However,
association with HSP70 does not always lead to protein folding, and successive cycles on HSP70 can
instead lead to transfer of the substrate to downstream chaperone or degradation systems. The exact
mechanism for HSP70- and HSP90-promoted protein folding was addressed by Morán Luengo et al.,
saying that the hydrophobic binding by HSP70 blocks substrate folding, whereas subsequent binding
by HSP90 releases this blockage allowing the substrate to refold [109]. Consequently, inhibition of
HSP90 and thus substrate refolding leads to HSP70-linked proteasomal degradation of the substrate.

3.2.2. HSP90-Type Chaperones

HSP90 is a highly conserved molecular chaperone that cooperates with HSP70 in protein
folding [110–112]. HSP90 comprises three domains: an N-terminal domain, a middle domain,
and a C-terminal domain. Together these three domains enable HSP90 to bind and hydrolyze ATP,
associate with clients, and dimerize [113]. The HSP90 homodimer cycles between an open V-shaped
conformation and a closed state regulated by ATP [114]. In addition, the cycle is regulated by
HSP90 co-chaperones, that also to some degree mediate client specificity [115]. HSP90 clients are
predominantly metastable proteins such as kinases, transcription factors, and E3 ubiquitin ligases.
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In addition, the distinction between HSP90 clients and nonclients might partly be based on the stability
of the client protein, at least for protein kinases [116].

Compared to HSP70, HSP90 preferentially binds late folding intermediates containing a higher
degree of structure [117]. This client preference is facilitated by the large substrate-binding interface of
HSP90 [118]. Accordingly, HSP90 often operates downstream of HSP70 as a regulator of client activity
by facilitating the final steps of protein folding, assembly of multiprotein complexes, and binding of
ligands to substrates [114]. Moreover, like other molecular chaperones, HSP90 acts as a buffer upon
environmental stress conditions by supporting folding and activation of client proteins. Accordingly,
a recent study found that HSP90 has evolved to support growth in multiple stress conditions, and thus
to provide cellular robustness [119].

3.2.3. Chaperones in the Heat Shock Response

As previously mentioned, environmental or pathophysiological conditions can increase the
cellular abundance of non-native proteins and thus the demand for components of the PQC network.
Whilst the cells constitutively express various chaperones and co-chaperones to manage proteostasis
under normal conditions, many heat shock proteins are expressed further or exclusively under
conditions of proteotoxic stress such as during a heat shock [120]. At the heart of this response,
is the transcription factor heat shock factor 1 (HSF1). HSF1 is regulated by chaperone binding,
nucleo-cytoplasmic shuttling, numerous post-translational modifications and by the transition from
monomer to a transcriptionally active homotrimer [121]. In yeast, Hsf1 activation also appears to involve
cytosolic acidification [122]. Importantly, chaperone complexes of both HSP90 and HSP70-HSP40
associate with HSF1 [123–125] and upon proteotoxic stress, the need for chaperones to bind misfolded
and newly translated proteins will titrate them away from HSF1 allowing HSF1 to initiate transcription
of HSP genes [126,127]. The upregulation of HSP genes ensures a negative feedback loop, and once
the proteotoxic load is under control, HSPs will again be free to bind HSF1 and inactivate it [128].
Simultaneously, HSF1 acts as a repressor to reduce protein synthesis during heat shock [121,129,130],
explaining why activation of the HSF1 response results in growth arrest in several species [131].

3.2.4. Molecular Chaperones and Protein Degradation

The intrinsic ability of HSP70 and HSP90 to associate with non-native proteins makes them ideal
to serve as recognition factors for the UPS. Accordingly, both HSP70 and HSP90 mediate proteasomal
degradation of substrate/client proteins [132–136]. Indeed, the involvement of chaperones in protein
degradation is widespread [137]—e.g., chaperones mediate the degradation of the disease-causing
CFTR variants previously mentioned [138,139].

To facilitate degradation, molecular chaperones cooperate with E3 ubiquitin-protein ligases to
promote substrate ubiquitination [134,140–143]. Moreover, HSP70 and HSP90 interact with the 26S
proteasome and deliver ubiquitinated proteins destined for degradation [144,145], making them key
players in protein triage decisions and in maintaining the delicate balance between protein folding
and degradation [146,147]. Importantly, like all cellular roles of molecular chaperones their role in
degradation is heavily regulated by co-chaperones, as described in the following sections.

4. Co-Chaperones Decide the Fate of HSP70-Bound Substrates

4.1. Regulation of Chaperone Activity

In order to carry out the crucial role of detecting and directing substrates to the proteasome, the
HSP70 chaperone family depends on assistance from a vast network of co-chaperones. HSP70 function
relies on the action of regulatory JDPs or HSP40s, which both shuttle substrates to HSP70 and catalyze
the slow intrinsic ATP hydrolysis rate of HSP70, thereby facilitating trapping of bound substrates.

The JDP family is defined by the presence of a J-domain: a 70 residue alpha-helical hairpin
structure with a flexible loop, carrying a conserved and functionally crucial histidine-proline-aspartic
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acid motif [148]. Through the J-domain, DnaJ binds at the interfaces of the NBD, the SBD and the
interdomain linker of E. coli HSP70 DnaK, thus inducing ATP hydrolysis and transfer of the substrate
to DnaK [87,149,150].

Humans encode 34 classical JDPs and 7 with modified J-domains [151]. This diverse group of
proteins is traditionally divided into three classes (I, II and III) depending on their resemblance to the
canonical E. coli JDP, DnaJ [85]. DnaJ contains an N-terminal J-domain, a G/F-rich domain, a cysteine-rich
zinc finger domain and three C-terminal binding domains (CBDs) [152]. Through hydrophobic pockets
formed by the CBDs DnaJ binds hydrophobic and aromatic residues in the substrate. This is an
important step in substrate maturation, since binding of DnaJ partly unfolds the substrate and thus
increases the number of accessible HSP70 binding sites on the substrate [153]. Moreover, JDP binding
prevents substrates from aggregating. For example, the human JDP ERdj3 is essential in Ig assembly,
as it prevents aggregation of the light chain molecules, by binding unfolded Ig light chains before they
are handed over to the ER-localized HSP70 BiP for folding assistance [154].

Specific structural features determine the JDPs’ substrate preferences and functions. For example,
while the G/F-rich region is essential for substrate binding by DnaJ [155], a serine-rich region of human
DNAJB6 and DNAJB8 is necessary for binding of polyglutamine substrates [156]. Recently, a study
showed that the yeast Hsp40 Apj1 mediates disaggregation and turnover of proteins aggregated
within the nucleus [157]. Moreover, JDPs direct substrates to distinct E3 ligases for degradation, as in
yeast, where Ydj1 is involved in Ubr1/San1-linked degradation, and Sis1 is involved in degradation
through Doa10/Hrd1 [158]. In both yeast and mammalian cells, the main E3 responsible for the
increased ubiquitination of cytosolic proteins after heat shock appears to be Rsp5/NEDD4-L [159].
Interestingly, this ubiquitination was also found to be dependent on Ydj1, which interacts with Rsp5
upon heat shock. A two-step substrate recognition mechanism has been proposed, requiring Ydj1 for
initial recognition of the misfolded protein after which natively buried PY motifs bind to the WW
repeats of Rsp5 and allow it to ubiquitinate the substrate [159]. The subsequent degradation of the
ubiquitinated, misfolded proteins is dependent on the deubiquitinase Ubp2, presumably because it
removes ubiquitin chains allowing threading of the substrate into the proteasome [160].

Thus, the presence of specific JDPs determines the fate of specific target substrates. Accordingly,
a yeast-based study recently showed how the HSP70 homologue Ssa2 has significantly larger affinity
for Ydj1 than its paralogue Ssa4, which may be the reason for the pronounced ability of Ssa2 to assist
maturation of Hsp90 substrates [161]. Since JDPs regulate which substrates are presented to HSP70, they
are essential components of the chaperone network. For example, DNAJB6 and DNAJA1 were recently
shown to have opposing effects on the levels of cellular polyglutamine aggregates, meaning their
cellular abundances alone modulate aggregate formation [162]. Moreover, the levels of co-chaperones
DNAJA1 and DNAJA2 regulate CHIP/HSP70-mediated degradation of mutant CFTR: while both
co-chaperones are needed for CFTR folding, increased levels of DNAJA2 promote degradation of
CFTR [163]. Other studies show how inhibition of JDPs can regulate chaperone activities directly—a
mechanism that can be used to treat chaperone-related diseases. For example, in the attempt to treat
HSP90-related diseases such as prostate cancer, Alzheimer’s disease and cystic fibrosis, inhibition of the
HSP90 JDP, Aha1, was found to specifically inhibit a subset of disease-linked HSP90-activities [21,164].
Indeed, this observation fits with an extensive study of HSP90 co-chaperones that find that the
fate of specific clients depends on the presence of different co-chaperones [165]. Another study on
chaperone regulation found that the underlying mechanism of the inherited muscular dystrophy
disease LGMD1D is due to increased affinity between HSP70 and a mutated variant of the JDP DNAJB6,
thereby locking HSP70 to this complex, preventing it from completing its cellular tasks. By inhibiting
the interaction between HSP70 and DNAJB6, HSP70 molecules were released, relieving disease models
from symptoms of muscular dystrophy [166].

Once the substrate is bound to HSP70, the chaperone requires assistance from NEFs to facilitate
the release of ADP, thus allowing ATP-binding and subsequent substrate-release. Since NEFs have the
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ability to release misfolded proteins from the protective grip of chaperones, they play a critical role in
deciding the fate of the substrate.

There are four types of NEFs with completely distinct structures and modes of action [87].
In prokaryotes and mitochondria, the GrpE-type carry out the NEF activity, while eukaryotes express
Armadillo, HSP110 and BAG-type NEFs. Humans encode two mitochondrial GrpE, two Armadillo,
four HSP110 and six BAG-type NEFs [167].

In E. coli, GrpE dimerizes through an N-terminal domain and interacts with DnaK through a
β-sheet domain, which it inserts into the DnaK NBD. This forces the opening of the NBD and stimulates
ADP release. Moreover, GrpE performs substrate mimicking and inserts a disordered N-terminal
domain into the SBD of DnaK. It thereby competes with the HSP70-bound substrate and further
promotes substrate release [168–170]. The yeast Armadillo-type NEF, Fes1, and its human orthologue
HSPBP1 also use a disordered N-terminus to perform substrate mimicking [171]. Armadillo-type NEFs
stimulate ADP release with their C-terminal domain of four Armadillo repeats, which wraps around
the HSP70 NBD and forces it open [167,172]. Deletion of Fes1 has been found to inhibit degradation of
some HSP70-bound substrates [173], showing that NEFs have distinct cellular functions, and that their
individual cellular level can determine the fate of a given substrate.

The HSP110-type NEFs are a subfamily of heat shock proteins within the HSP70 superfamily, and thus
share structural similarities with HSP70 [174–176]. Once activated by ATP [177], the HSP110 NBD wraps
around the HSP70 NBD, which imposes the ADP-releasing conformational change [87,178,179]. The NEF
activity is the key cellular role of HSP110 [180]. However, as HSP110 is able to bind unfolded
proteins through its SBD [181], its presence prevents protein misfolding and aggregation. Accordingly,
HSP110 expression is induced upon stress signaling [120] and currently, an inhibitor of HSP110,
foldamer 33, is being tested as a potential anticancer drug that prevents HSP110-mediated stabilization
of the oncogenic protein STAT3 [175]. A recent study shows that HSPH2, a human HSP110 homologue,
is essential for the cellular role of the HSP70 HSPA1A [182]. The HSP70 homologues HSPA1L
and HSPA1A have opposing effects on the aggregation-prone substrate, (SOD1)-A4V, and promote
aggregation or dissolution, respectively. The differential affinities for two co-chaperones, HSPH2 or Hop,
seem to confer this difference, with HSPH2 mediating dissolution of aggregates through HSPA1A [182].

Lastly, the BAG-type NEFs are defined by a HSP70-binding Bcl2-associated athanogene (BAG)
domain in their structure [183]. A structural analysis of the BAG-HSC70 complex revealed that the BAG
domain forms a three-helix bundle and binds the HSP70 NBD, which induces a conformational change
similar to that induced by GrpE [184]. The six human BAG proteins contain different accessory domains,
which specify their cellular roles [185]. Of interest to this review, BAG-1 and BAG-6 have been linked
to UPS-mediated degradation of misfolded proteins. Importantly, they both contain N-terminal
UBL-domains that bind the 19S regulatory particle of the 26S proteasome (Figure 2A,B), while BAG-6
also contains a UBL-like domain related to substrate binding [185,186].

Alterations in the levels of certain co-chaperones can give rise to a heat shock/HSF1-mediated
stress response. For example, deletion of Fes1 induces a strong, constitutive heat shock response in
yeast [173]. Thus, the induction of multiple chaperones appears to compensate for the PQC defects
associated with the deletion of Fes1. Curiously, the deletion of HSP110-type NEFs Sse1 and Sse2 does
not give rise to a heat shock response. However, cells lacking Sse1 accumulate ubiquitin conjugates
both at 25 ◦C and under heat shock [173]. Deletions of the BAG-domain containing NEFs Bag101
and Bag102 in Schizosaccharomyces pombe display no obvious growth phenotypes [187]. However,
overexpression of Bag101, and perhaps other NEF-type co-chaperones, gives rise to a HSF1-mediated
stress response that results in a growth defect, and a transcriptional response similar to that observed
upon deletion of the HSP70 Ssa2 or the JDP Mas5 (orthologue of yeast Ydj1) [188]. Since, S. pombe Ssa2
and Mas5 are responsible for binding and inactivation of HSF1 under unstressed conditions [189],
Bag101 therefore likely releases HSF1 from the Ssa1-Mas5 chaperone and initiates the observed
transcriptional response [188].



Biomolecules 2020, 10, 1141 9 of 24

Biomolecules 2020, 10, x FOR PEER REVIEW 10 of 25 

 
Figure 2. Delivery pathways of misfolded proteins to the 26S proteasome. (a) The 26S proteasome 
with one catalytic 20S particle (green) and two regulatory 19S particles (blue) each containing a lid 
and a base subcomplex. (b) Schematic overviews of BAG-1, BAG-6 and HSP110 domain structures, 
which bind the regulatory 19S particles (arrows). UBL: ubiquitin-like, BAG: Bcl2-associated 
athanogene, NLS: nuclear localization signal, NBD: nucleotide-binding domain, SBD, substrate-
binding domain, aa: amino acids. (c) Delivery pathways to the 26S proteasome. Left: CHIP binds 
HSP70 through its C-terminal EEVD motif and ubiquitinates the bound substrate. The substrate-
HSP70-CHIP complex engages with BAG-1, which connects the complex to the proteasome through 
binding of the 19S particle through its UBL domain. The binding is strengthened by CHIP-mediated 
ubiquitination of the UBL-domain. Substrate release at the proteasome is mediated by BAG-1. Middle: 
HSP110 binds the 19S regulatory particle, where it associates with a substrate-HSP70 complex. NEF 
activity by HSP110 releases ADP from HSP70, which in turn mediates substrate release. Right: The 
substrate-bound JDP, SGTA, binds the BAG-6 complex consisting of BAG-6, UBL4A and TRC35. This 
promotes transfer of the substrate to BAG-6. Next, RNF126 binds the UBL-domain of BAG-6 and 
ubiquitinates the substrate. The BAG-6 complex binds the 19S particle of the proteasome, thus 
enabling substrate degradation. 

Alterations in the levels of certain co-chaperones can give rise to a heat shock/HSF1-mediated 
stress response. For example, deletion of Fes1 induces a strong, constitutive heat shock response in 
yeast [173]. Thus, the induction of multiple chaperones appears to compensate for the PQC defects 
associated with the deletion of Fes1. Curiously, the deletion of HSP110-type NEFs Sse1 and Sse2 does 
not give rise to a heat shock response. However, cells lacking Sse1 accumulate ubiquitin conjugates 

Figure 2. Delivery pathways of misfolded proteins to the 26S proteasome. (A) The 26S proteasome
with one catalytic 20S particle (green) and two regulatory 19S particles (blue) each containing a lid
and a base subcomplex. (B) Schematic overviews of BAG-1, BAG-6 and HSP110 domain structures,
which bind the regulatory 19S particles (arrows). UBL: ubiquitin-like, BAG: Bcl2-associated athanogene,
NLS: nuclear localization signal, NBD: nucleotide-binding domain, SBD, substrate-binding domain,
aa: amino acids. (C) Delivery pathways to the 26S proteasome. Left: CHIP binds HSP70 through its
C-terminal EEVD motif and ubiquitinates the bound substrate. The substrate-HSP70-CHIP complex
engages with BAG-1, which connects the complex to the proteasome through binding of the 19S
particle through its UBL domain. The binding is strengthened by CHIP-mediated ubiquitination of the
UBL-domain. Substrate release at the proteasome is mediated by BAG-1. Middle: HSP110 binds the
19S regulatory particle, where it associates with a substrate-HSP70 complex. NEF activity by HSP110
releases ADP from HSP70, which in turn mediates substrate release. Right: The substrate-bound JDP,
SGTA, binds the BAG-6 complex consisting of BAG-6, UBL4A and TRC35. This promotes transfer of
the substrate to BAG-6. Next, RNF126 binds the UBL-domain of BAG-6 and ubiquitinates the substrate.
The BAG-6 complex binds the 19S particle of the proteasome, thus enabling substrate degradation.
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4.2. Nucleotide Exchange Factors Direct Substrates to the Proteasome

4.2.1. Degradation through BAG-1

Delivery of some misfolded proteins to the proteasome occurs through BAG-1 in collaboration with
HSP70 and CHIP (Figure 2C). This pathway is well-established in human cells, and mediates degradation
of toxic and aggregation-prone mutant huntingtin [190], immature BCR-ABL oncoproteins [191] and
misfolded hERG potassium channels [192].

Notably, CHIP acts both as a co-chaperone and an E3 ubiquitin ligase [53]. First, CHIP binds the
C-terminal EEVD motif of HSP70 through a tetratricopeptide repeat (TPR) domain [193]. The high
conformational flexibility of the substrate-HSP70-CHIP complex permits substrate presentation to
CHIP [194]. Members of the UBCH5 E2 family carry ubiquitin molecules to CHIP, which ubiquitinates
the substrate [54]. In an unrelated binding event, BAG-1 binds the ternary complex at the HSP70 NBD
through its C-terminal BAG domain [184,195]. Then, BAG-1 acts as a shuttle factor and transports
the BAG-1-substrate-HSP70-CHIP complex to the proteasome, by binding the 19S regulatory particle
through its N-terminal UBL domain [53,195]. Specifically where on the proteasome BAG-1 binds is
currently unknown, however, it likely binds subunits also bound by other UBL-domain shuttle factors,
such as the Rpn1 (Elsasser et al., 2002) and Rpn2 subunits [196]. Accordingly, in S. pombe the BAG-1
orthologue Bag101 [187] competes with the Rad23 orthologue Rhp23 for proteasome binding [188].

Following proteasomal binding, CHIP strengthens the BAG-1/proteasome interaction by attaching
a lysine-11 ubiquitin chain to BAG-1 [197]. Simultaneously, BAG-1-binding leads to nucleotide
exchange within HSP70 and thus promotes substrate release [184,198,199]. Through this intricate
mechanism, the unfolded and ubiquitinated substrate is brought in close contact with the proteasome
leading to its degradation.

Regulation of the cellular ratios of chaperones and co-chaperones is important in order to
avoid substrates becoming trapped for an unfavorably long time, which would prevent refolding
and occupying the chaperone, or that they dissociate too quickly, which would increase the risk of
substrate aggregation [85,198,200]. In line with this, the BAG-1/HSP70/CHIP degradation pathway
strongly depends on the available concentrations of BAG-1 and CHIP. Accordingly, CHIP acts as a
switch on HSP70 since increased cellular concentration of CHIP amplifies proteasomal degradation
of HSP70-bound substrates [52]. Another important regulator of BAG-1 is the co-chaperone HSC70
interacting protein (Hip), which has antagonistic functions to BAG-1 [199,201,202], and indeed all
types of NEFs [203]. Competitively to BAG-1, Hip binds the ADP-bound NBD of HSP70 through
a TPR repeat, which stabilizes the ADP-bound state and thereby inhibits substrate release, directly
opposing the actions of NEFs. In addition, the human Armadillo-type NEF HSBP1 only inhibits the E3
activity of CHIP, by binding the CHIP-HSP70 complex. By interfering with the E3 activity of CHIP,
the degradation of misfolded CFTR protein species is inhibited [204,205].

An alternate CHIP-linked degradation pathway involves the E3 ubiquitin ligase parkin, which is a UBL
domain protein involved in regulated protein degradation of the membrane protein PaeI receptor (PaeI-R).
Unfolded PaeI-R binds to parkin, which further associates with HSP70 and CHIP [205,206]. In this complex,
parkin acts as a shuttle factor and binds directly to the Rpn13 subunit of the 19S particle of the
proteasome, thus mediating degradation of PaeI-R [207].

Notably, CHIP also binds HSP90 and thus targets HSP90-bound substrates for proteasomal
degradation in the same structurally flexible fashion seen for the substrate-HSP70-CHIP complex [194].
For example, the CHIP/HSP90 degradation pathway targets the hyper-phosphorylated tau protein,
which is known to cause Alzheimer’s Disease [132], however, no proteasomal delivery factor is known
for this pathway [194].

The degradation of several chaperone clients is not affected in CHIP-deficient mammalian
cells [208], indicating functional overlap between CHIP and other E3s. Accordingly, overlapping
substrate specificity between different E3s has also been observed in yeast cells [158,187,209],
and suggests that BAG-1 may collaborate with other E3s [187]. For example, BAG-1 plays a role
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in inherited cardiac arrhythmia as it targets misfolded variants of the hERG potassium channel
for ER-associated degradation (ERAD) in an indirect and UBL-domain independent manner [192].
While HSP70 assists folding of cytosolic domains of the hERG potassium channel, interaction with
BAG-1 releases hERG from HSP70, and thus prevents refolding. In this case, release from HSP70
was found to promote substrate binding to the ER-associated E3 TRC8, leading to its degradation
through ERAD. Thus, BAG-1 in this case indirectly switches the fate of misfolded hERG from
HSP70-dependent folding to degradation.

4.2.2. Degradation through BAG-6

The human BAG-6 protein, also known as Scythe or BAT3, plays an essential role in the quality
control of tail-anchored (TA) membrane proteins [210], cytosolic mislocalized proteins [211], misfolded
ERAD substrates [212], and newly synthesized defective proteins [213]. For example, BAG-6 contributes
to the degradation of the uncleaved human leukocyte antigen (HLA-A) protein [214] as well as the
aggregation prone prion protein (PrP) in the cytosol [215]. Consistent with the role of BAG-6 in the
degradation of mislocalized membrane proteins from the ER under native conditions, BAG-6 is also
crucial for the increased degradation that is induced upon ER stress [216].

BAG-6 does not act as a NEF in this pathway but as a chaperone itself. Like other chaperones,
it plays an important role in triaging its substrates. While its folding capability is minor, BAG-6 can act
as a holdase and prevent aggregation of TA transmembrane proteins [210], and keep ERAD-substrates
soluble before further processing by p97 [212,217].

Interestingly, analyses of the BAG-6 protein reveal that the structure of its BAG domain differs
substantially from other BAG proteins [218,219], causing a weak in vivo interaction with HSP70 [220].
Thus, BAG-6 probably largely operates in an HSP70-independent manner as part of a heterotrimeric
complex consisting of transmembrane domain recognition complex of 35 kDa (TRC35) and ubiquitin-like
protein 4A (UBL4A) [210] (Figure 2C). BAG-6 plays the key role in the BAG-6-TRC35-UBL4A complex
(BAG-6 complex below) and binds substrates through its N-terminus [213]. Meanwhile TRC35
retains the complex to the cytosol, by covering the nuclear localization signal within the BAG-6
sequence [212,221], as well as mediating interaction with the targeting factor TRC40, which facilitates
insertion of the substrate to the ER-membrane [222,223]. UBL4A binds the unconventional BAG domain
of BAG-6 with high affinity [218] and forms the link between the BAG-6 complex and the co-chaperone
small glutamine-rich tetratricopeptide repeat containing protein alpha (SGTA), which binds to the UBL
domain of UBL4A through its N-terminus [224].

In this pathway (Figure 2C), SGTA detects newly synthesized TA proteins or similar substrates
with long hydrophobic stretches in the cytosol [225]. BAG-6 has a similar substrate preference [210,215]
and the BAG-6 complex transfers the SGTA-bound substrates to TRC40 for membrane insertion [222].
If the substrate is for some reason unfit for membrane insertion, e.g., due to misfolding, the substrate
remains in the SGTA/BAG-6 cycle. This leads to ubiquitination of the substrate by the E3 ubiquitin
ligase RNF126, which binds the UBL-domain of BAG-6 through its N-terminus [211]. Moreover,
reubiquitination by the BAG6/RNF126 pathway was recently found to be an essential step in targeting
deubiquitinated membrane-proteins for proteasomal degradation [226]. Next, the BAG-6 complex
binds to the Rpn10 subunit of the proteasome’s regulatory 19S particle, thus promoting degradation of
the substrate [213,219,227]. Moreover, UBL4A was recently shown to facilitate peptide entry to the
proteasome [228], which is likely to enhance the degradation efficiency of substrates bound by the
BAG-6 complex.

The co-chaperone SGTA has been shown to bind Ydj1 in yeast [229] and also holds a TPR repeat,
with which it can bind HSP70 and the Rpn13 subunit of the 19S regulatory proteasome particle [230–232],
suggesting a more extensive role for SGTA in PQC. Indeed, binding of SGTA to Rpn13 has been found
to increase cellular levels of substrate proteins [230], indicating that SGTA could oppose the role of
BAG-6 in substrate degradation.
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4.2.3. Degradation through HSP110

In a recent study, the yeast HSP110 Sse1 and its paralogue Sse2 were found to be involved in delivery
of proteasome substrates in collaboration with yeast HSP70 orthologues Ssa1-4 [233]. The results show
that HSP110 interacts with the regulatory 19S particle of the proteasome and that inhibition of HSP110
causes accumulation of HSP70-bound proteasome substrates, which include both ubiquitin-modified
and unmodified substrates. The authors suggest a mechanism where HSP110 first binds the 19S particle
and then recruits the substrate-HSP70 complex (Figure 2C). At the proteasome, HSP110 promotes
HSP70 nucleotide exchange, which in turn mediates substrate release and degradation. The study
further supports a general role of HSP70-binding as being one of the first steps towards proteasomal
degradation of a misfolded protein, and that subsequent binding by HSP110 is the defining step leading
to degradation. However, this role for HSP110 has so far only been established in yeast, and the extent
to which the four human HSP110 proteins are involved in degradation is currently unknown.

Importantly, these observations fit well with previous studies showing that HSP110 contributes to
the triage of HSP70-bound substrates. To this end, ubiquitination of HSP70-bound substrates has been
found to depend on Sse1, and upon inhibition of HSP90, Sse1 seems to stimulate degradation [234].

4.3. Future Questions for Understanding the Role of Co-Chaperones as Shuttle-Factors for Misfolded Proteins

As reviewed in this paper, chaperones and co-chaperones are broadly involved in the degradation
of misfolded proteins. So far, BAG-1, BAG-6 and HSP110 have been identified as proteasome-interacting
co-chaperones and direct mediators of proteasomal degradation of misfolded proteins. However,
a line of questions remains unanswered. For instance, how do these factors differ in their substrate
selection? Do the co-chaperones contribute to the substrate specificity and are the E3s also directly
involved? Moreover, at which stage are the target proteins ubiquitinated? In case of the yeast E3 San1 it
is clear that this particular PQC E3 directly targets misfolded proteins [50,235], and although a number
of mammalian E3s display San1-like sequence properties [236] it is currently unclear to what extent
other PQC E3s are involved in target selection. However, even in the case of San1, it has been shown
that certain San1 substrates engage with chaperones prior to San1-catalyzed ubiquitination [142,237],
and perhaps after ubiquitination the targets may still be shuttled to the proteasome via chaperones and
released in a BAG and/or HSP110-dependent manner [187]. In addition, in most cases the structural
and/or sequence properties of the regions that are recognized by the PQC E3s are not well defined.
Although significant screening efforts have identified many of these so-called PQC degrons [238,239],
and a few have been characterized in more detail [238–241], no clear pattern has yet emerged.

In both BAG-1 and HSP110-linked degradation, substrate selection appears to depend largely
on the HSP70-substrate interaction, suggesting that BAG-1 and HSP110 functionally overlap and
trigger degradation of similar substrates. However, whether the NEFs themselves further regulate
substrate specificity is not yet clear. In addition, the NEFs may hold different nucleotide exchange
efficiencies and proteasome affinities or be subject to regulation by post-translational modification or
other mechanisms. Interestingly, a study recently found that binding of UBL-domain proteins to the
proteasome activates the proteasome and stimulates its proteolytic activity [228]. Potentially, this may
affect the efficiency by which the BAG domain proteins stimulate degradation compared to HSP110.

As for BAG-6, the substrate specificity depends on the binding preference of BAG-6 itself,
which favors longer hydrophobic stretches over the shorter regions that are typically recognized by
HSP70 [211]. Hence, the extent of substrate misfolding may ultimately decide which degradation route
is followed. In this regard, it is also noteworthy that the lid covering the substrate-binding region in
HSP70 is only slightly closed when bound to partially folded molten globule-like proteins and fully
closed when binding to a short hydrophobic peptide, and conceivably such differences might also
decide the fate of the bound substrate [87,242].

Finally, in addition to the co-chaperones, a number of studies have also connected the established
proteasomal substrate shuttles Rad23 and Dsk2 with the degradation of misfolded proteins [243].
Clearly, a ubiquitinated misfolded protein will likely require these shuttle proteins for efficient
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proteasomal degradation. However, early studies revealed that Rad23 and Dsk2 contain Sti1-like repeat
sequences similar to that found in Hip [244], suggesting a more direct link with PQC. More recently, it
was shown that upon heat shock, ubiquitinated substrates increase and coprecipitate with HSP70 and
Dsk2 [233], and that Dsk2 is important for shuttling nuclear misfolded and ubiquitinated substrates to
the proteasome [158].

Thus, clearly the many unanswered questions above warrant more research into how the PQC
machinery regulates the degradation of misfolded proteins, and the emerging role of co-chaperones as
key players in proteasomal delivery will likely develop in the coming years. As mentioned throughout
this review, the actions by the PQC are involved in many widespread and detrimental diseases caused
by genetic and environmental factors. Importantly, a deeper understanding of how the PQC triages
the fate of misfolded proteins and regulates their delivery at the 26S proteasome would surely increase
our chances of diminishing the consequences of these diseases.
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