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Abstract

Neurodegeneration is a major cause of human disease. Within the cerebellum, neuronal degeneration and/or dysfunction
has been associated with many diseases, including several forms of cerebellar ataxia, since normal cerebellar function is
paramount for proper motor coordination, balance, and motor learning. The cerebellum represents a well-established
neural circuit. Determining the effects of neuronal loss is of great importance for understanding the fundamental workings
of the cerebellum and disease-associated dysfunctions. This paper presents computational modeling of cerebellar function
in relation to neurodegeneration either affecting a specific cerebellar cell type, such as granule cells or Purkinje cells, or
more generally affecting cerebellar cells and the implications on effects in relation to performance degradation throughout
the progression of cell death. The results of the models show that the overall number of cells, as a percentage of the total
cell number in the model, of a particular type and, primarily, their proximity to the circuit output, and not the neuronal
convergence due to the relative number of cells of a particular type, is the main indicator of the gravity of the functional
deficit caused by the degradation of that cell type. Specifically, the greater the percentage loss of neurons of a specific type
and the closer proximity of those cells to the deep cerebellar neurons, the greater the deficit caused by the neuronal cell
loss. These findings contribute to the understanding of the functional consequences of neurodegeneration and the
functional importance of specific connectivity within a neuronal circuit.
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Introduction

Cognition and other mental processes are manifestations of

neuronal computation, and as such they are acutely amenable to

computational analysis [1,2]. A number of research groups have

conducted computational analyses of brain structures with varying

degrees of cellular detail or function outcome. O’Reilly et al.

[3,4,5,6,7] have modeled several brain regions, including hippo-

campus, neocortex, and basal ganglia, as well as a number of

cognitive processes. Their tool of analysis is a software program

called Emergent, which is unique in the world of computational

neuroscience through its use of LEABRA [3,8,9], a biologically

realistic learning algorithm. Howell et al. [10] conducted extensive

studies of the cerebellum using PGENESIS, a simulation

environment developed at Caltech that allows for analysis at

many layers including subcellular processes, individual neurons,

networks of neurons, and neuronal systems. Medina and Mauk

[11,12] conducted experiments aiming at modeling cerebellum

and its cognitive functions by building a model reflecting the

known cellular and synaptic components and a training pattern

based on rabbit eyelid conditioning. Rossant et al., using the Brian

neural simulator [13], have approximated the electrophysiological

recordings of neural responses to somatically injected currents of

cortical neurons [14].

However, few computational neuroscientific studies relating to

neural damage or neurodegeneration have been published. In one

of the earlier studies, Devlin et al. modeled both localized and wide

spread brain damage with the aim of understanding the

degeneration associated with the progression of Alzheimer’s

disease [15]. Their model was a high-level, semantic one consisting

of two layers, labeled Semantics and Phonology, each with their

own hidden layer called Semantic Clean-Up and Phonological

Clean-up, respectively. They verified that their model produced

results, vis-a-vis the degree of impairment over the course of

semantic deterioration, that were consistent with the existing

patient data. In another study, a mathematical model, based on

plasticity instantiated by an activity-dependent rewiring rule, was

constructed to study the interplay between synaptogenesis,

neuronal death, and neurogenesis on the resulting pattern of

neuronal connectivity [16]. The authors found that activity-

dependent plasticity yields a robust network, while target deletion

of central nodes leads to a drop in global efficiency. In yet another

investigation, Alstott et al., have constructed a computational

model to investigate the functional consequences of lesions placed

in different regions of the cerebral cortex [17]. They found that the
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magnitude of the impairment depends on the lesion location:

lesions along the cortical midline result in large and widely

distributed changes in functional connectivity, while the effects of

lesions of primary sensory or motor regions remain more localized.

Such sensitivity to the location within a sub-network of the brain is

precisely the focus of the present study.

The model implemented here represents a real neuronal circuit,

the cerebellum, as described by Ito [18] and Medina and Mauk

[11,12]. Our model represents a single microzone [18], explained

in more detail in the Cerebellum Architecture section, which is a

building block of the system being modeled. The research

presented in this paper concentrates on modeling the cerebellum

with the emphasis on cellular organization, connectivity, and

neural projection as well as a training task. The computational

model incorporates established neuronal components and features

such as relative numbers of individual cell types, their spatial and

influential relationship to one another, as well as input stimuli used

during training. The model was used to study the functional effects

of different patterns of neurodegeneration within the cerebellum

with the primary goal of understanding the importance of cellular

organization on the loss of skills during the progression of a

disease.

Certain diseases have a well-defined neurologic target primarily

affecting an individual cell type, while other diseases more

indiscriminately or generally affect brain regions. For instance,

the autosomal dominant episodic ataxias and spinocerebellar

ataxias (SCAs) are a group of human diseases that mainly affect

the Purkinje cells of the cerebellum [19]. In contrast, Creutzfeldt-

Jacob disease (CJD) in humans is a typical prion diseases that less

discriminately affects the cerebellum; however, the neurodegener-

ation is primarily of granule cells [20]. In addition, neurovascular

or traumatic insults to the cerebellum would affect cells by location

of the insult and not necessarily in a cell-type specific manner.

Cerebellar neurodegeneration is even observed after insult to more

distant brain regions (e.g., multiple sclerosis, brain trauma, and

stroke); thus, the resultant cerebellar cell death is considered

’’remote cell death’’ [21]. The relative ease of modeling certain

neurological diseases comes from the aforementioned fact that the

pattern of cell loss is fairly well documented and facilitates

modeling of those diseases by ‘‘loss’’ of cerebellar neurons.

Materials and Methods

This research was conducted using the EmergentTM software

platform. Emergent was originally developed at Carnegie Mellon

University circa 1995 under the name of PDP++. Currently, the

software is being maintained and developed by the O’Reilly group

at University of Colorado at Boulder [9]. The software was

developed for the purposes of modeling neural network architec-

tures with the ability to include biologically-inspired neural and

cognitive functions. While it provides conventional learning

algorithms, such as backpropagation or Kohonen Self Organizing

Map (KSOM), for biologically plausible analysis it provides a

unique learning algorithm with LEABRA, or Local Error-driven,

and Associative Biologically Realistic Algorithm [3,8,9]. LEABRA

is based on a balance between Hebbian and error-driven learning

with a point-neuron activation function. With LEABRA, Emer-

gent provides for biologically realistic simulations while allowing

the speciation of the input pattern in a convenient, numeric form

(for example ‘‘01’’ could be used for a cat, ‘‘10’’ used for a dog,

‘‘11’’ used for both cat and a dog, and ‘‘00’’ used for neither).

Computational Models
There are two general approaches when constructing a

simulation model; the top-down, and the bottom-up approach

[22]. In a top-down approach, an overview of the system is

formulated, concentrating on the relationship between individual

‘‘black boxes’’ that perform specific functions. According to

Medina and Mauk, the construction of this type of model is

characterized by first devising a real-time computational model

that describes the behavioral and physiological evidence followed

by devising an implementation that aligns the features of the

model with the neural circuit involved [11]. A model constructed

according to this approach benefits from the fact that the model is

constructed specifically to produce output in accordance to found

neurological evidence. However, the neurological plausibility of

such a model is often questioned.

A bottom-up model is based on smallest subsystems that are

connected together to form a larger system. This approach starts

from known properties of individual neurons and their intercon-

nections [22]. Such simulations are built by utilizing empirically

determined anatomical and physiological constraints. Because

neurons are too complex in their structure, variety, and operation,

only a fraction of the known properties are included in the models,

typically including numerical ratios, divergence and convergence

ratios, synaptic strengths, connection geometry, and inhibitory and

excitatory connection types [11]. An often cited drawback of this

approach is the lack of biological plausibility stemming from the

general lack of sufficiently detailed neuronal parameters being

included as well as often lumping separate cell types into

monolithic blocks. However, some processes being intrinsically

bottom-up processes, such as fast reaction of visual identification,

are better characterized using this modeling paradigm as they rely

on primarily on sensory information [23].

The model constructed for this study was formulated according

to the bottom-up approach. Undoubtedly, our model is not

entirely consistent to that observed in the real biological system

due to omission of some neural parameters. However, following

the guidelines outlined in [11] as well as neuronal details presented

in [4,5,11,18], further validated by the ability to successfully

simulate the Hull’s test (discussed later in text), we believe that the

biological plausibility of the simulation has been substantiated.

It should be noted that, in vivo neurons within the brain are

connected in a full, three-dimensional space. However, in a

computer simulation such a space is purely abstract. For the

purposes of visualization, the model is presented as a two-

dimensional environment.

Single Neuron Model
LEABRA implements a balance between Hebbian and error-

driven learning on top of a biologically-based point-neuron

activation function with inhibitory competition dynamics, either

via inhibitory interneurons or a fast k-Winners-Take-All approx-

imation [9]. The point-neuron activation function, with both

discrete spiking and continuous rate-code output, models the

electrophysiological properties of real neurons while simplifying

their geometries to single discrete units. The membrane potential

Vm is updated as a function of ionic conductances g (gc is a time-

varying component computed as a function of the dynamic state of

the network, while �ggc is a constant that controls the relative

influence of the different conductances) with reversal (driving)

potentials E and a calcium kinetics time constant t:

Monitoring Degradation of Cerebellar Functions
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DVm(t)~t S
c

gc(t)�ggc(Ec{Vm(t)) ð1Þ

Hebbian learning is performed using a Conditional Principal

Components Analysis (CPCA) algorithm with a correction factor

for sparse expected activity levels [3]. The error-driven learning is

achieved with GeneRec; the output is computed in two phases –

an expectation phase where the network’s actual output is

produced and an outcome phase where the target output is

experienced – as a difference of a pre- and postsynaptic activation

product across these two phases. Hebbian weights are adjusted

according to the following formula.

Dhebbwij~yz
j (xz

i zwij), ð2Þ

while error-driven learning uses the following equation.

Derrwij~(xz
i zyz

j ){(x{
i zy{

j ), ð3Þ

where xi is the input of neuron i, yj is the output of neuron j, and wij

is the connection weight between neurons i and j. The ‘‘+’’ and ‘‘–

superscripts refer to plus and minus phases of the GeneRec

algorithm.

Biological neurons encode information via frequency modula-

tion and as such can be directly simulated using spiking neural

networks. However, simulations commonly operate using ampli-

tude modulation (non-spiking neural networks) to simplify the

computational complexity without the loss of functionality or

generalizeability. The validity of using amplitude modulation as a

simplified mapping of frequency modulation is well established (see

for instance Aisa in [8]) and will not be addressed here.

Cerebellum Architecture
The cerebellum is known to contain over 50% of the neurons of

the brain even though its size comprises only about 10%. This

brain region is a good candidate for computational simulation

since cerebellar architecture is well mapped with distinct cell types

and connections. In addition, the cerebellar circuitry can be

divided into relatively self-contained microzones [18] that are

formed by a number of cell groups. In the current study, the model

represents an individual microzone. Our microzone was defined as

containing inputs from mossy fibers and climbing fibers, intrinsic

cell types of granule cells, Golgi cells, basket cells, and Purkinje

cells, and an output of deep cerebellar neurons. In this present

study, the characteristic of each cell type is determined by the

location of the neuron in the overall architecture, the strength of

connection between cell types, and the type of connection, either

inhibitory or excitatory. The individual cell groups were arranged

according to Figure 1(a). The numbers of individual cells

incorporated into our model, which was determined as a

percentage of cells found in a single microzone [11,12,18], are

as follows: mossy fibers 224, climbing fibers 23, granule cells

23300, Golgi cells 2300, basket cells 2130, Purkinje cells 215,

and deep cerebellar neurons- 2. See Table 1 for the numbers used.

Purkinje cells were arranged into three subgroups each containing

5 cells (see Figure 1(a)). Each subgroup received input from only

one climbing fiber cell. Figure 1(b) depicts a snapshot from the

simulation. The learning rate corresponds to how quickly a neuron

adapts to training. It influences the importance of connection

between particular cell types and thus can be correlated with the

strength of that connection. The strength of the connection

between climbing fibers and Purkinje cells was defined as

approximately 26,000 times as strong as the rest of the connections

in the cerebellum [7,11,24], with the exception of the connection

between mossy fibers and granule cells, which was modeled to be

four times as strong as the rest of the connections. In the model,

both types of synaptic connections, namely excitatory and

inhibitory, were incorporated. Only connections from Golgi cells

to granule cells, basket cells to Purkinje cells, and Purkinje cells to

deep cerebellar neurons are inhibitory, while the rest of the

connections are excitatory. In our model of cerebellar microzone,

as also found in vivo, mossy fibers and climbing fibers functioned as

input cells, and deep cerebellar neurons were considered to be the

output of the cerebellum.

Training
In order to reduce the simulation complexity and its runtime,

the simulation was constructed so that inputs and outputs were in a

simple numerical/vector form. The entire training set consisted of

140 samples and was constructed to resemble the eye puff and

buzz conditioning training of a rabbit [11,25,26]. Table 2 lists an

example of the training set. This particular problem provides a

well-understood functionality of the cerebellum on which to base

the network training and evaluation. Because information encoded

by mossy fibers changes frequently but varies over a small range,

the training set was constructed so that the numbers used for the

mossy fibers part of the input vectors, bounded by 0 and 1, were

evenly distributed in that range and changed slowly (variation

between individual numbers is small, i.e. 0.906 and 0.916).

Climbing fibers fire infrequently, however, their signals are strong

and long lasting [18]. Therefore, their training values were

encoded as either 0 or 1, and only one number was made to

change between individual training samples, analogous to

encoding by gray code (see Table 2, ‘‘Climbing fibers’’ column

for an example). In the model, deep cerebellar neurons consisted

of only two neurons. The set was constructed so that the neural

output corresponded to the response of the rabbit during the

training paradigm, where the rabbit learns to associate the eye puff

with the ear buzz. The error was defined as a decrease in ability to

associate the puff and buzz relation (see Cerebellum Architecture

Simulation section for performance verification of the model). The

training was terminated when the error (calculated to within 6

significant figures) reached 0%, which corresponded with the

rabbit completely mastering the associated learning skill. The

input to the network represents the electrical stimuli received by

individual neurons. The output, however, corresponds to a specific

skill learned. The error therefore corresponded to a divergence of

performance from a trained puff/buzz association and was defined

numerically (averaged sum squared error calculated over an

epoch, where a single epoch contained all of the training sample

patterns) and presented as a percentage of a loss of learned

association.

Cerebellum Architecture Simulation
In order to substantiate the validity of our cerebellar

microzone model, we subjected our model to Hull’s test [11].

Hull’s Stimulus Trace relates the ability to associate the

auditory buzz and eye puff with an eye blink. In this test, an

auditory buzz is followed by a puff to the rabbit’s eye. The eye

puff before the buzz is not associated with an eye blink;

increasing the time lag of puff in relation to the buzz (beyond

about 0.25 s) results in slowly decreased association. With the

use of algorithm-specific variables, Emergent’s error-driven

learning (see section Single Neuron Model, and Equation 3)

Monitoring Degradation of Cerebellar Functions
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provides for time-shifting of various stimuli, such as eye puff

and ear buzz, during training and testing phases. The validity of

our model was verified by observing its output when the

temporal separation of both stimuli was continuously increased

(from simultaneous stimuli to an inter-stimulus interval of 3

seconds). Figure 2 demonstrates the performance of our model

when compared to the Hull’s stimulus trace. The figure portrays

the behavior of the network throughout training, with three

distinct phases: at the start of the training, in the middle of the

training, and at the end of the training session. It can be seen

that, in our model, as the training progresses the performance

of the network becomes successively closer to the trace of the

Hull’s test, with the error for the start of the training, the

middle of the training, and the end of the training being 34%,

16%, and 7%, respectively. This, we believe, substantiates the

validity of our model.

Procedure
The model consisted of seven cell types. Two of those types,

climbing fibers and mossy fibers, were considered as inputs for the

model. Deep cerebellar neurons were considered to function as the

output (see Figure 1). This research concentrated on simulations of

neurogenerative diseases that affect the intrinsic cell types of the

cerebellum, namely basket cells, Golgi cells, granule cells, Purkinje

cells, as well as mossy fibers and climbing fibers. Simulations of

neurodegenerative diseases affecting individual cell types were

conducted as well as a simulation of degeneration indiscriminately

affecting all cell types.

In the simulation, the network was trained using the aforemen-

tioned training set prior to simulating progressive cell death. Cell

death was modeled by removal of a cell from the trained network

(to simulate the progression of a disease affecting an adult animal,

such as the rabbit that has undergone the puff/buzz conditional

training). The progression of disease was modeled by removal of

Figure 1. Organization of cells and connectivity of the model. (a) Number of cells is indicated in parenthesis. Arrows indicate connections
between individual cell types. The thick arrow (between climbing fibers and Purkinje cells) represents the strongest connection (about 26,000 the
strength of the rest of connections). The thick, dashed arrow (between mossy fibers and granule cells) represents a connection that is about four
times as strong as the rest of the connections. Black arrows indicate excitatory connections, while red indicate inhibitory connections (between Golgi
cells and granule cells, granule cells and basket cells, and basket cells and Purkinje cells). (b) Snapshot of the simulation with the emphasis on the
cerebellar topology. Different cell types, grouped into blocks, show separate cells, facilitated by the overall number of cells of a specific type. The
arrows between individual cell types indicate the neuronal connectivity. The colors of individual blocks within individual cell type indicate the
strength of a neuronal output of a specific cell with the color range being indicated in the figure; yellow block indicates strongest relative numerical
output, while orange and red blocks indicate decreasingly weaker outputs, respectively.
doi:10.1371/journal.pone.0045581.g001

Table 1. Comparison of the effect of cell death within each cell type.

Cell type Total number of cells Number of cells removed Number of cells left Resulting error

mossy fibers 24 8 (32%) 16 5.25%

climbing fibers 1 1 (33%) 2 6.94%

granule cells 3300 990 (30%) 2310 2.84%

granule cells (small) 330 99 (30%) 231 3.40%

Golgi cells 300 90 (30%) 210 4.91%

basket cells 130 29 (30%) 101 7.29%

Purkinje cells 15 5 (33%) 10 41.57%

Removal of 990 (or 30%) of granule cells resulted in the least performance degradation (2.63%) as compared to removal of 5 (or 32%) of Purkinje cells that resulted in
the worst performance degradation (41.60%).
doi:10.1371/journal.pone.0045581.t001

Monitoring Degradation of Cerebellar Functions
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an increment of 1% of cells from an individual cell group starting

at 0%, or no cell death, and continuing to 30% of cells removed.

The exception to this was for the case of mossy fibers, which had

one cell (4.0%) removed, climbing fibers, which had one cell

(33.3%) removed, and Purkinje cells, which also had one cell

(6.7%) removed. In these cases the simulation was terminated

when 32%, 33.3%, and 33.3% of cells were removed, respectively.

Figures 3(a) and 3(b) illustrate these procedures. Comparisons of

performance degradation of individual cell types were made on

equal percentage basis: 20% of Purkinje cells removed (or three

cells) were compared to 20% of Golgi cells removed (or 26 cells) –

see Figure 3 for graphical comparison. In the case of more

generalized cell death that affects all cell groups (excluding mossy

fibers, climbing fibers, and deep cerebellar neurons) in a random

fashion, 1% of individual cell types were incrementally removed in

a random fashion from different cell groups starting at 0% and

terminating at 30%. For instance, removal of 1% of granule cells

was followed by removal of 1% of basket cells. In the case of

Purkinje cells, 1 cell was removed per simulation. In the

generalized neurological model, the likelihood of a particular cell

type being affected was determined by a probability based upon

the ratio of the cell group to the total number of cells. For instance,

the model consisted of 3300 granule cells and the total number of

possible cells affected was 3745; hence, the likelihood of granule cells

being removed was 88%.

Since individual trials frequently contained noise spikes, a total

of 100 separate trials of each damage type were conducted and

averaged in order to better elicit the functional form of the

performance versus damage curves. Avoidance of local minima

was verified by monitoring the training error graph and

connection weights (local minimum occurs when no more weight

adjustments is performed between training epochs [2,27]). The

smoothing effect of averaging can be seen in Figure 4. Performing

100 trials was found sufficient to obtain primarily monotonically

increasing plots.

There is a wide body of evidence [28,29] suggesting that, for a

given size of training pattern, the number of neurons necessary to

effectively encode the information has an optimal range: too few

Table 2. Example of a training sample used for the simulation.

mossy fibers climbing fibers deep cerebellar neurons

MF_1 MF_2 MF_3 MF_4 MF_5 CF_1 CF_2 CF_3 DN_1 DN_2

0.96 0.24 0.83 0.57 0.47 0 0 0 1 0

0.55 0.93 0.59 0.08 0.01 0 0 1 1 0

0.14 0.35 0.55 0.05 0.34 0 1 0 1 0

0.26 0.25 0.29 0.78 0.79 0 1 1 1 0

0.84 0.62 0.76 0.93 0.31 1 0 0 0 1

0.25 0.47 0.75 0.13 0.53 1 0 1 0 1

0.81 0.35 0.38 0.57 0.17 1 1 0 0 1

0.54 0.01 0.37 0.52 0.92 1 1 1 0 1

Numbers are bounded in the [0,1] interval. Progression down the vertical columns corresponds to each iteration of training.
doi:10.1371/journal.pone.0045581.t002

Figure 2. Comparison of performance of cerebellar microzone model when subjected to modulation of puff-buzz interval as
compared to Hull’s Stimulus Trace. The figure illustrates the change in performance throughout the training.
doi:10.1371/journal.pone.0045581.g002
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neurons cannot reasonably learn the necessary information, while

too many neurons result in the network learning extraneous

information. Roughly, the total number of cells in a network

should equal the number of points in a training set (in our analysis

a total number of cells was 3745, while the number of training

points was 140627 or 3780). Removing excessive neurons often

results in increasing overall performance. For the purposes of our

analysis we were concerned with an explicitly defined number of

individual cell types. Hence, we decided that optimizing the

number of individual cell types would invalidate the relationship

between other cell types, and we did not perform any network size

optimization. Additionally, analyzing graphs of individual cell

death trials did not show significant variations (improvements of

performance upon removal of neurons), which we interpreted as

supporting that our training set was complex enough to deem most

neurons necessary. For the purpose of this present work, removal

of a given cell to simulate its death was permanent; no recovery or

simulated neuroplasticity was implemented.

Figure 3. Performance degradation of cerebellum. Comparison of damage to individual cell types. Removal of Purkinje cells (included in the
inset) results in the greatest performance degradation. Random cell removal corresponds to mossy fibers, basket, Golgi, granule, and Purkinje cells,
with the likelihood of a particular cell types being damaged determined by the number of cells in relation to the overall number of cells in the model
of cerebellum.
doi:10.1371/journal.pone.0045581.g003

Figure 4. Performance degradation of cerebellum with basket cells removed after 25, 50, and 100 trials. Smoothness of the curve
increases with the number of trials conducted (noise spikes are being removed).
doi:10.1371/journal.pone.0045581.g004

Monitoring Degradation of Cerebellar Functions
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Results

As discussed above, this model was used to study the functional

effects of neurodegeneration within the cerebellum with the

primary goal of understanding the importance of cellular

organization on the loss of skills during the progression of a

disease. In general, removal of cells from the simulation network,

representing ‘‘cell death’’ in the circuit, resulted in a progressive

increase of the error and hence loss of the trained association

between auditory buzz and the air puff, as would be expected.

A major and unexpected finding of this study is a relationship

between the proximity of the affected cells and the overall

performance degradation of the entire circuit. As indicated in

Figure 5 and Table 1, the closer the particular cell type is to the

circuit output, the greater the functional deficit associated with cell

death, compared on the same percentage basis. However, with the

exception of climbing fibers, the cells that are further away from

the output are also more plentiful than the cells located closer to

the deep cerebellar neurons. Therefore, to elucidate the proximal

relationship, we repeated the experiment with simulating death of

granule cells. However, we reduced their total number by 90% to

330 cells. The result can be seen in Figure 6 and Table 1 labeled

‘‘Granule cells (s)’’. The remarkable finding is that, even though

the total number or granule cells was reduced to only 10% of the

original size, the performance degradation of the entire network

due to removal of granule cells still resembles that of the original

network that contained significantly greater number of granule

cells (roughly 3% degradation after removal of 30% of the cells).

We believe that this is strong evidence that the importance of cell types

affected by cell death is very strongly related to the proximity of those cells to the

output at the deep cerebellar neurons. This finding is corroborated by

Alstott et al. conclusion that the magnitude of the lesion effect

depends on the lesion location [17]. From this we conclude that

the intuitive notion that an ‘‘upstream’’ cell loss would result in

greater damage than a ‘‘downstream’’ cell loss is incorrect. The

explanation is as follows: the parallel and redundant nature of the

network is able to some extent overcome neural damage further

away from the circuit output (i.e. granule cells). However, the

network has no mechanism for correcting the problem closer to

the output (i.e. Purkinje cells); the altered data is more immediately

sent to the circuit output and the circuit does not have enough

time to fix the problem. In other words, when the damage is

closest to the deep cerebellar neurons the percentage of

information affected will be greater than if the damage happened

further away. Cells that are adjacent to one another (i.e. Purkinje

cells and deep cerebellar neurons) exert a greater influence over

one another than cells separated by another cell (i.e. basket cells

and deep cerebellar neurons).

We also investigated the hypothesis that the high performance

degradation due to lesion of Purkinje cells was more influenced by

their relative smaller number coupled with the information

convergence rather than their proximity to the cerebellar output.

We conducted two series of experiments where the information

convergence was occurring at different proximity to the model’s

output (data not shown). In most of the cases, it was the location of

the affected cells with respect to the output that indicated the

gravity due to cell loss and not the location of the neural

convergence. This, we believe, further supports our hypothesis

regarding cell location being the main indicator of the gravity of

the functional deficit due to cell loss.

An additional finding of interest is that the performance

degradation of some cell types (mossy fibers, Golgi cells, and

basket cells) exhibit a linear trend when subjected to damage,

while others (granule cells and Purkinje cells) display sublinear

Figure 5. Comparison of a performance degradation of cerebellum vis-a-vis proximal relation of individual cell types to the deep
cerebellar neurons. Numbers listed in parenthesis correspond to the performance degradation of individual cell types when maximum number of
cells is removed. When the damage affects cell types the closest to cerebellar output (i.e. Purkinje cells), the performance degradation is significantly
greater when the affected cells are located much further away (i.e. Golgi cells). For granule cells, the number in parenthesis represents the
performance degradation when the total number of granule cells has been reduced by 90%.
doi:10.1371/journal.pone.0045581.g005
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behavior, which can be fit reasonably well by a logarithmic

function seen in Figure 6. We were not able to identify a particular

factor (i.e., linear progression being associated with excitatory or

inhibitory connections) that would explain this finding. However,

we suggest that this is a consequence of the particular network

topology and distribution of both excitatory and inhibitory

connections considered.

Analysis of the simulation of a more generalized neurodegen-

eration or cell death in which cells were removed at random needs

to consider that cell removal was influenced by the relative

likelihood of cells of a particular type (from a particular layer in a

computational model) being removed. The probability of remov-

ing a granule cell from the overall network was about 88% while

the likelihood of removing a Purkinje cell was 0.4%. Therefore,

the performance degradation due to removal of random cells is

more similar to that of granule cells than that of other cells.

However, it should be noted that this behavior is to be expected in

biological networks, namely a disease that less discriminately

affects cell types is more likely to affect cells that are more plentiful.

The last issue that needs to be addressed is that of inhibitory

connections. In a simulation environment, the output of a neuron

is computed by summing all of the input signals. The input from

the excitatory connection is positive while the input from the

inhibitory connection is negative. Removal of an inhibitory

connection, or individual cells from an inhibitory connection type

(layer), usually results in the numerical increase of the output,

while the removal of excitatory neurons is followed by the

numerical decrease of the output. Nevertheless, because it has the

immediate effect of modifying the computed (during training)

outcome, the cell death of inhibitory neurons results in error

increases similar to those due to cell death of excitatory neurons.

In biological systems, an excessive loss of inhibition could lead to

excitotoxicity in the downstream neuron (and additionally lead to

cell death of excitatory neurons).

Conclusions

This computational analysis focused on the effects of neurode-

generation of cerebellar neurons in patterns consistent with

different types of neurological diseases. The most significant result

was that the overall performance of the cerebellum may not be as

strongly influenced when a disease affects cells that are relatively

plentiful or that are more separated from the output of the

cerebellum. This indicates that with diseases that affect specific cell

types, the overall consequence on the affected animal could be

predicted in part based upon the relative proximity of targeted

cells to other cells that are implicated in specific functions.

Finally, the present research concentrated on the performance

degradation and functional effects of cell death within a well-

defined neuronal circuit. We suggest that it provides an early and

clear example of using computational analysis to study the effects

of biologically realistic neuronal network degradation. We note

that the simulation was done to mimic the architecture of the

cerebellum on a very gross scale. Details about physiological

differences between neurons in the different sub-circuits were not

included here. However, we do not expect such differences to

qualitatively change the results, since we modeled damage

corresponding to complete removal of individual neurons. In the

future, modeling of other types of neurological disease would

provide insight into performance degradation and the pathological

consequences of disease not resulting from cell death, but caused

by alterations of cellular excitability and/or firing patterns. Such a

change in cellular behavior can produce a cascade of effects on a

neuronal circuit and ultimately on nervous system function. We

further suggest that such computational analysis of specific sub-

circuits of the brain can provide progress toward a complete

understanding of the functional consequences of different patterns

of neurodegeneration and for assessing effective cellular targets for

potential treatments of human ataxias and neurodegenerative

diseases.

Figure 6. Comparison of a linear trend of basket cells and sub-linear trend of granule cells, when subjected to neural damage. It is
believed that the differences are facilitated by the network topology and/or the existence of both excitatory and inhibitory connections in the model.
doi:10.1371/journal.pone.0045581.g006
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