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Abstract: 
Several non-redundant ensembles of protein three-dimensional structures were analyzed in order to estimate their natural clustering tendency by 
means of the Cox-Lewis coefficient. It was observed that, despite proteins tend to aggregate into different and well separated groups, some 
overlap between different clusters occurs. This suggests that classifications bases only on structural data cannot allow a systematic classification 
of proteins. Additional information are in particular needed in order to monitor completely the complex evolutionary relationships between 
proteins. 
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Background: 
During the last few years, the common paradigm that protein folds 
tend to be mutually exclusive and to cluster into well separated groups 
started to be criticized. The expression "gregariousness" was used to 
indicate the number of close neighbors of each fold and such a concept 
was applied to examine weather the fold space is a continuum, where 
existing motifs are used to enlarge old folds and create new types of 
structures [1]. It was observed that high levels of gregariousness are 
observed when different folds contain the same motif [1]. The protein 
structure space was also analyzed by Kim and co-workers, by using 
several representative data sets and several computational approaches 
[2, 3]. It was observed that protein structures can be discriminated 
essentially by three features: the prevalence of residues that adopt a α 
or a β secondary structure and the presence of α-β-α motifs (two 
flanked parallel β strands separated by an antiparallel α helix) [2, 3]. 
However, significant overlaps were observed amongst different 
structural classes. Folds in the overlap regions contain features of both 
classes, and this was considered the main reason why structure-based 
function predictions are not very efficient [2]. A detailed review on the 
nature of the protein fold space showed both advantages and 
disadvantages of considering it a continuous and multidimensional 
object rather that an ensemble of discrete categories [4]. 
 
In the present paper, a robust statistical approach is adapted to the 
problem of the estimation of the degree of clustering within the fold 
space. The term "clustering tendency" refers to the problem of 
deciding weather the subjects have an intrinsic predisposition to 
cluster into distinct groups or they are randomly arranged. This is also 
referred to as the spatial randomness problem and while intrinsically 
aggregated subjects are characterized by mutual attraction, randomly 
arranged subjects show mutual repulsion [5]. The clustering tendency 
was estimated with the Cox-Lewis coefficient [5, 6] on different 
datasets and it was observed that protein folds are partially 
overlapping. 
 
Methodology:    
Data Selection: 
Four types of data sets were selected. Care was taken to avoid 
redundancies between the data. In fact, a purely random selection of a 
set of protein structures might produce results completely biased. The 
clustering tendency measured in a data set that contains several 
proteins nearly identical to each other would be considerably 
overestimated since many experimental points would be extremely 
close to each other.  
 
Scop_fold data set. A representative example of each protein fold was 
taken from the Scop database of protein domain structures [7]. Only 
the four most populated classes (α, β, α/ β, and α+β) were considered. 

Entries containing "unobserved" residues were disregarded. 624 files 
were retained. 
 
Scop_fold/X data sets. 10 subsets, each containing 62 structures, of the 
Scop_fold data set were randomly built (X = 1, 10). They do not 
overlap with each other. 
 
Pisces data set. Protein chains were taken from the Pisces database 
[8]. Their crystal structures were determined at resolution not worse 
than 2 Å and the maximal sequence identity between two of tem is 
25%. Entries containing residues "unobserved" in the electron density 
maps were removed. 2237 structures were retained. 
 
Pisces/X data sets. 10 non-overlapping subsets, each containing 223 
structures, of the Pisces data set were randomly built (X = 1, 10). 
 
Structural similarity between proteins 
A very wide variety of techniques were used to compare pairs of 
protein structures [9-11]. In the present manuscript, we used a 
technique that allows one to represent a structure with a geometrical 
point in a n-dimensional space and to select a random (geometrical) 
point in the fold space (this is necessary to evaluate to clustering 
tendency; see below). This task cannot be accomplished, in general, by 
using protein structure comparison techniques, since the similarity 
scores are nearly never metrics, in the mathematical sense. An 
exception is the program GI, in which the protein topology is 
described always by 30 numbers - its number of residues and its Gauss 
integrals - independently of the protein dimension [12]. Therefore, 
each protein, either large or small, is associated with a point in a space 
defined by 30 variables. The distance between two protein structures 
can be measured with the Euclidean distance between two points in 
this space. A further advantage of this method of protein structure 
comparison is its extreme velocity (thousands of comparisons can be 
made in few minutes). 
 
Cox-Lewis coefficient of clustering 
The Cox-Lewis coefficient is defined in the following way [5, 6]. 
Given m proteins, each characterized by 30 variables, k << m 
geometrical points are randomly selected in the 30-dimensional space. 
The smallest distance ui between the ith point and one of the m proteins 
is then recorded together with the minimal distance wi between such a 
protein and another protein (see Figure 1). The ratio R is given using 
equation 1 & 2 (supplementary material) is the Cox-Lewis 
coefficient. R values close to 1 are expected for uniformly distributed 
data, because wi ≈ ui. Values much larger than 1 are on the contrary 
expected to arise if the subjects tend to cluster into well defined 
groups. Given that the R values clearly depend on the procedure of 
selection of random points and on the treatment of the border 
conditions, this procedure is described in detail in the next paragraph. 
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Figure 1: Example of Cox-Lewis statistics. Filled circles represent subjects in a bi-dimensional space. Open circles represent geometrical points. 
ui is the minimal distance between a geometrical point (a) and a subject (b). wi is the minimal distance between the same subject (b) and another 
subject (c). The geometrical point (a) is randomly selected. The geometrical point (a) is randomly selected. The Cox-Lewis coefficient can be 
computed with equation (2) on the basis of a set of randomly selected points (a). 
 

 
Figure 2: Scheme of the computations performed to obtain the Cox-Lewis coefficient of clustering tendency. 

Details about the computations 
Computations were performed as schematized in Figure 2. The output 
file of program GI, f_gi.out, contains the 30 variables necessary to 
describe each protein. If there are np proteins, f_gi.out is a table of np 
lines and 30 columns. The program p_quartili determines, for each of 
the 30 variables, the first and the last quartile, outputted in the file 

f_quartili.out. Together with the file f_random.seed, which contains a 
randomly selected integer number, the file f_quartili.out is read by the 
program p_random that generates k random numbers ranging from 
the first to the last quartile of each of the 30 variables that represent a 
protein structure. The value of k was defined as np/10, where np is the 
number of proteins described in the file f_gi.out. It is essential to select 
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random numbers within the two quartiles in order to avoid insidious 
problems at the boundaries of the protein fold space. Eventually, the 
files f_gi.out and f_random.out are read by the program p_cox_lewis, 
which computes the Cox-Lewis coefficient of clustering tendency. 500 
different values of the seed (contained in the file f_random.seed) were 
randomly generated and 500 values of the Cox-Lewis coefficient were 
computed for each data set and averaged.  
 
Discussion: 
Table 1 (see supplementary material) shows the minimal, maximal, 
and average values (and the standard deviation of the mean) of the 
Cox-Lewis coefficient computed on 22 different data sets. The average 
values oscillate amongst different data sets. However, they are always 
significantly larger than one, the value that would indicate that protein 
fold structures are uniformly distributed. This first conclusion is 
therefore that protein structures tend to cluster into separate groups. 
Noteworthy, similar results were obtained also by using the Hopkins 
coefficient, another measure of clustering tendency. 
 
A second observation is interesting. The Cox-Lewis coefficients were 
computed on two types of data sets. Eleven of them (Scop and 
Scop/X) were based on the Scop database of protein domain 
structures, where the redundancy was reduced essentially on the basis 
of structural features [7]. In the other eleven of them (Pisces and 
Pisces/X), the redundancy was reduced only on he basis of the amino 
acid sequences [8]. Despite these approaches are different (structure- 
and sequences-based redundancy reduction), the Cox-Lewis 
coefficients are nearly the same. The fact that smaller values tend to be 
observed for the Pisces data sets is likely dependent on the fact that 
these data sets contain entire protein chains, sometime made by more 
than a single domain and sometime participating to permanent 
oligomeric assemblies. Consequently, and this is the second 

conclusion, coefficients close to 1.3-1.4 are likely to be rather reliable 
estimations of the clustering tendency of protein structures. 
 
Are these values really high? To answer this question, one would need 
to "see" the 30-dimensional fold space defined by the GI approach 
[12]. This is impossible. Human perception is limited to two or three 
dimensions. In principle, reductions of dimensionality are possible, for 
example by using principal component analysis [13]. However, this is 
impossible in our case, since the first three principal components, out 
of the original 30 variables, accounts for an insufficient fraction of the 
original, overall variance (less than 70%). The visualization in a 
reduced 3-dimensional space would be useless, since about one third 
of the overall variability amongst structures would be ignored. 
 
The only possibility to get a visual assessment is thus based on 
simulations, the simplest of which are in two dimensions. Four sets of 
bi-dimensional data, each containing 1000 points, were generated by 
using a pseudo random number generator. One contained 1000 points 
within distance = R from the point (-1, 0) (arbitrary units, a.u.); the 
second was centred on the point (1, 0); the third on the point (0, -1); 
and the fourth on the point (0, 1). By increasing R, it is possible to 
reduce arbitrarily the clustering tendency of the entire data set of 4,000 
points. It is thus possible to see, with a simple plot, how the clustering 
tendency changes and to relate is with the Cox-Lewis coefficient. This 
is shown in Figure 3. For small R values, the data are clearly 
segregated into four clusters and the Cox-Lewis coefficient is high 
(6.93). For large values of R, the four clusters are completely 
superposed to each other and the Cox-Lewis coefficient decreases to 
1.04 and approaches the value of one, expected for data uniformly 
distributed. If the Cox-Lewis coefficient is close to 1.3-1.5 (values 
close to those that are shown in Table 1 – supplementary material), 
the four clusters are partially superposed. About 6-7% of the members 
of a cluster tend to invade a neighbour group. 

 
Figure 3: Examples of various levels of clustering tendency in a bi-dimensional space. Four types of objects are plotted in each graph (white 
diamonds, black diamonds, plus symbols, and black triangles). The Cox-Lewis coefficient decreases from 6.927 to 1.037 if the separation 
between the four clusters decreases. Both axes are in arbitrary units (a.u.). 
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Conclusion: 
This implies that protein fold structures have a natural tendency to 
aggregate into different groups and that it is, as a consequence, 
infrequent that a structure of a certain type is observed into a cluster 
that groups other structure types. However, some overlap between 
different clusters is possible and seldom observed, with the 
consequence that false positives or negatives cannot be completely 
avoided in the various structure-based prediction methods that were 
designed. As expected and as already observed [2, 3], the 
superposition between different types of protein 3D structure clusters 
tends to occur for the cases that are known to be relatively similar. 
Typically, this mix up is observed for structures that are essentially α 
or β, on the one hand, and α+β, on the other, according to the SCOP 
classification. Obviously, this does not mean that the classification 
adopted in the Scop database is useless or inappropriate. This only 
means that a description of the fold space based only on structural 
features cannot produce well isolated islands. 
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Supplementary material: 
 
Equation 1: The ratio R is 
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Table 1: Cox-Lewis coefficients computed on various data sets. 500 values were computed on each data set. 

 

 
 
 
 
 

Dataset min max ave std 
Scop 1.356 1.544 1.445 0.065 
Scop/1 1.104 1.773 1.369 0.062 
Scop/2 1.195 1.561 1.400 0.063 
Scop/3 1.103 1.609 1.334 0.060 
Scop/4 1.312 1.818 1.559 0.070 
Scop/5 0.983 1.281 1.128 0.051 
Scop/6 0.934 1.465 1.163 0.052 
Scop/7 0.932 1.659 1.294 0.058 
Scop/8 0.964 1.285 1.120 0.050 
Scop/9 1.013 1.355 1.175 0.053 
Scop/10 0.935 1.555 1.258 0.056 
Pisces 1.320 1.422 1.373 0.061 
Pisces/1 1.073 1.691 1.364 0.061 
Pisces/2 1.086 1.356 1.215 0.054 
Pisces/3 1.117 1.435 1.262 0.057 
Pisces/4 1.290 1.978 1.537 0.069 
Pisces/5 1.051 1.344 1.193 0.053 
Pisces/6 1.152 1.434 1.282 0.057 
Pisces/7 1.147 1.497 1.332 0.060 
Pisces/8 1.077 1.417 1.193 0.053 
Pisces/9 1.133 1.418 1.280 0.057 
Pisces/10 1.035 2.120 1.288 0.058 


