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Diffuse traumatic brain injury induces
prolonged immune dysregulation and
potentiates hyperalgesia following a
peripheral immune challenge
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Abstract

Background: Nociceptive and neuropathic pain occurs as part of the disease process after traumatic brain injury (TBI) in

humans. Central and peripheral inflammation, a major secondary injury process initiated by the traumatic brain injury event,

has been implicated in the potentiation of peripheral nociceptive pain. We hypothesized that the inflammatory response to

diffuse traumatic brain injury potentiates persistent pain through prolonged immune dysregulation.

Results: To test this, adult, male C57BL/6 mice were subjected to midline fluid percussion brain injury or to sham proced-

ure. One cohort of mice was analyzed for inflammation-related cytokine levels in cortical biopsies and serum along an acute

time course. In a second cohort, peripheral inflammation was induced seven days after surgery/injury with an intraplantar

injection of carrageenan. This was followed by measurement of mechanical hyperalgesia, glial fibrillary acidic protein and Iba1

immunohistochemical analysis of neuroinflammation in the brain, and flow cytometric analysis of T-cell differentiation in

mucosal lymph. Traumatic brain injury increased interleukin-6 and chemokine ligand 1 levels in the cortex and serum that

peaked within 1–9 h and then resolved. Intraplantar carrageenan produced mechanical hyperalgesia that was potentiated by

traumatic brain injury. Further, mucosal T cells from brain-injured mice showed a distinct deficiency in the ability to differ-

entiate into inflammation-suppressing regulatory T cells (Tregs).

Conclusions: We conclude that traumatic brain injury increased the inflammatory pain associated with cutaneous inflam-

mation by contributing to systemic immune dysregulation. Regulatory T cells are immune suppressors and failure of T cells to

differentiate into regulatory T cells leads to unregulated cytokine production which may contribute to the potentiation of

peripheral pain through the excitation of peripheral sensory neurons. In addition, regulatory T cells are identified as a

potential target for therapeutic rebalancing of peripheral immune homeostasis to improve functional outcome and decrease

the incidence of peripheral inflammatory pain following traumatic brain injury.
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Background

Traumatic brain injury (TBI) is a major cause of death
and disability throughout the world, with few treatments
for those who suffer from subsequent lifelong
neurological symptoms. The somatic symptoms of TBI
include sensory hypersensitivity and persistent pain,
which encompasses headache, nociceptive pain, and
neuropathic pain, the latter of which is defined as pain
initiated or caused by a lesion or disease of the somato-
sensory system. Although epidemiological data support
the occurrence of pain as a secondary complication of
TBI,1–5 only a limited description of postinjury pain in
experimental models is available,6 with even fewer inves-
tigations of underlying mechanisms.7

For the intact nervous system, a stimulus of sufficient
magnitude to evoke the sensation of pain can directly
damage tissue and this serves an adaptive function;8 how-
ever, under pathological conditions, sensitization can
occur resulting in maladaptive pain states.9,10 In these
instances, tissue injury causes changes in neuronal activa-
tion of pain pathways, thus increasing the excitability of
central nervous system (CNS) neurons.9–11 Together,
these neuronal changes result in sensitization associated
with evoked hypersensitivity to typically painful (hyper-
algesia) and nonpainful (allodynia) stimuli.9,12,13

TBI results in neuronal cell death, ischemia, hemor-
rhage, and the disruption of the blood–brain barrier
(BBB). These primary insults initiate a secondary
injury response of cellular and molecular cascades
including central inflammation and the production of
cytokines.14 Furthermore, TBI-induced disruption of
the BBB allows passage of inflammatory cytokines out
of the injured brain, thereby initiating a systemic
immune response.15 Together, these central and periph-
eral immune responses contribute to microglia activa-
tion, astrocytosis, leukocytic infiltration,16 and the
secretion of immunological factors and pronociceptive
mediators (e.g. cytokines). The overall increase in inflam-
mation-mediating cytokines and chemokines establish
neuronal hypersensitivity,10,11,13,17 which we hypothesize
induces hyperalgesia.9–11,13,17,18 In addition, the persist-
ent inflammatory signaling maintain immune cells in an
activated state, such that they are primed for future chal-
lenges and insults. This primed profile may set the stage
for hyperactivity to challenges including a peripheral
immune response (for review, see Witcher et al.).19

The composition of cytokines and regulatory factors
in the surrounding environment determine the functional
lineage in mature T cells as either proinflammatory effec-
tor helper T cells (Th) or anti-inflammatory T-regulatory
cells (Tregs).20 Tregs contribute to maintaining immune
cell homeostasis21 by controlling not only the specificity
and intensity of effector T cell function but also the
proinflammatory reactivity of innate immune cells (see
Figure 1).22,23 For example, Tregs originating in the

thymus can prevent autoimmune reactions, while
adaptive (induced) Tregs have a more prominent anti-
inflammatory activity and are instrumental in the control
of inflammation-associated immune reactions.24–26 In
this context, previous studies suggested that Tregs
contribute to the resolution of brain-injury-induced
inflammation.12 Experimentally, mouse Tregs can be
identified by the expression of the forkhead family tran-
scription factor (Foxp3) in combination with the high
expression of the interleukin 2 (IL-2) receptor alpha
subunit, CD25.

Here, we hypothesize that TBI potentiates hyperalge-
sia by dysregulating the T cell response and increasing
the susceptibility (priming) of the systemic immune
system to respond to a secondary challenge or insult.
Following midline fluid percussion injury (FPI), inflam-
mation and hyperalgesia were tested after carrageenan
injection in the hind paw. The central immune response
to diffuse TBI was assessed by microglia and astrocyte0
morphology and inflammatory mediator levels in the
cortex. The peripheral immune response was assayed
by inflammatory mediator levels in the serum. Finally,
the response of mucosal lymph node T cells to all-trans
retinoic acid (ATRA), a potent inducer of Tregs, was
tested to evaluate T cell differentiation following TBI.
Results indicated that diffuse brain injury increased
inflammatory pain associated with cutaneous inflamma-
tion by priming the systemic immune system toward a
proinflammatory response. Furthermore, T cell dysfunc-
tion may have contributed to unresolved peripheral
inflammation which potentiated mechanical hyperalgesia
(see Figure 1).

Methods

Animals

Male C57BL/6 mice (Harlan Laboratories, Inc.,
Indianapolis, IN) were used for all experiments. The ani-
mals were housed at a constant temperature (23�C�
2�C) with food and water available ad libitum according
to the Association for Assessment and Accreditation of
Laboratory Animal Care International. Animals were
acclimated to their environment following shipment for
at least three days prior to any experiments. After sur-
gery, postoperative care included daily evaluation and
documentation of the health status of each animal with
a physical examination. Animal care and procedures
were approved by the University of Kentucky
Institutional Animal Care and Use Committee.

Midline fluid percussion injury

Adult male C57BL/6 mice (20–24 g) were subjected to
midline fluid percussion injury (mFPI) consistent with
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methods previously described.27 Mice were anesthetized
using 5% isoflurane in 100% oxygen for 5min and
the head of the animal was placed in a stereotaxic
frame with continuously delivered isoflurane at 2.5%
via nosecone. While anesthetized, body temperature
was maintained using a Deltaphase isothermal heating
pad (Braintree Scientific Inc., Braintree, MA). A midline
incision was made exposing bregma and lambda, and
fascia was removed from the surface of the skull. A
midline craniotomy was performed via trephination

(3mm outer diameter) between the bregma and lambda
joints where a modified Luer lock hub was affixed using
cyanoacrylate gel and methyl-methacrylate (Hygenic
Corp., Akron, OH) over the exposed dura. The injury
cap was closed using a Luer lock cap and animals were
placed in a heated recovery cage and monitored until
ambulatory before being returned to their cage.

For injury induction 24 hours postsurgery, animals
were reanesthetized with 5% isoflurane delivered for
5min. The cap was removed from the injury-hub

Figure 1. Proposed mechanistic link between unregulated peripheral inflammation and inflammatory hyperalgesia following TBI. (a) In

uninjured sham mice, carrageenan injection into the paw (1) initiates a pro-inflammatory immune response that is homeostatically

regulated (2). Anti-inflammatory actions of Tregs suppress inflammation and result in a normal response to painful stimuli in the von Frey

filament test (3). (b) Diffuse brain injury induces systemic immune dysregulation, specifically through deficiencies in T cell proliferation and

differentiation of Tregs (1). Carrageenan injection into the paw (2) initiates an inflammatory response that is unregulated in the absence of

Tregs (3). Resulting proinflammatory cytokines cause aberrant excitation of sensory neurons (4), potentiating hyperalgesia in the von Frey

filament test (5).

TBI: traumatic brain injury; Tregs: regulatory T cells.
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assembly and the craniotomy was visually inspected
through the hub. The hub was then filled with normal
saline and attached to the male end of the fluid percus-
sion device (Custom Design and Fabrication, Virginia
Commonwealth University, Richmond, VA). Pendulum
release resulted in a diffuse brain injury (average of
1.4 atm). Sham animals were attached to and removed
from the fluid percussion device without dropping the
pendulum. Animals were monitored for righting reflex
recovery time and for the presence of a forearm fen-
cing response as a metric of injury severity.28 The
righting reflex time is the total time from the initial
impact until the animal spontaneously rights itself. The
fencing response is a tonic posturing characterized by
extension and flexion of opposite arms that has been
validated as an overt indicator of injury severity.28

The injury hub was removed and the brain was
inspected for uniform herniation and integrity of the
dura. After spontaneously righting, animals were
placed in a heated recovery cage and monitored until
ambulatory before being returned to their cage
(approximately 5 to 15min).

Tissue preparation and cytokine measurement

At selected time points (1, 3, 9, 12, 24, 48, and 168 h)
postsurgery, mice were given an overdose of sodium
pentobarbital and transcardially perfused with
phosphate-buffered saline (PBS) after cardiac blood
draws. Mice were decapitated and the brains were dis-
sected on ice and samples were snap frozen in liquid
nitrogen then stored at �80�C until used. The protein
levels of a panel of inflammatory cytokines were mea-
sured in the cortex and serum by Meso Scale
Discovery (MSD) multiplex immunoassay (sector
imager 2400, Meso Scale Discovery; Gaithersburg,
MD) as previously described.29,30 A PBS soluble
brain homogenate was prepared from cortical tissue
using a high shear homogenizer (Omni TH115), in a
1:10 (w/v) of ice-cold, freshly prepared lysis buffer con-
sisting of 1 mg/ml leupeptin, 1mM phenylmethylsulfo-
nyl fluoride, and 1mM ethylenediaminetetraacetic acid.
The cortical homogenate was centrifuged at 12,000 x g
for 20min at 4�C, and supernatants were collected.
MSD custom multiplex high-sensitivity ELISA kits
were used according to the manufacturer’s instructions
with minor modifications. Briefly, 25ml of undiluted
serum or 100 mg of protein of the PBS soluble brain
supernatant was loaded per well of the MSD plate.
The sample was incubated at 4�C for �14 h. All incu-
bation steps were done using an Eppendorf MixMate
at 1000 rpm. Brain samples were normalized to the
total amount of protein in the sample loaded as deter-
mined by BCA Protein Assay (Thermo Scientific,
Waltham, MA, USA).

Mechanical hyperalgesia testing

All testing began between 10:00 am and 12:00 pm in a tem-
perature- and light-controlled room. Mice were accli-
mated for 30–60min in the testing environment within a
custom rectangular plastic box (15� 4� 4 cm; three white
opaque walls and one clear wall) on a raised metal mesh
platform. Baseline testing was conducted at seven days
after TBI, and then at 2 and 4 h after carrageenan injection
(see below for methods). To evaluate mechanical hyper-
sensitivity (hyperalgesia), we used a logarithmically
increasing set of eight von Frey filaments (Stoelting,
Illinois), ranging in gram force from 0.007 to 6.0 g, as pre-
viously described.31 These were applied perpendicular to
the ventral-medial hind paw surfacewith sufficient force to
cause a slight bending of the filament. A positive response
was characterized as a rapid withdrawal of the paw away
from the stimulus filament within 4 s. Using the up-down
statistical method (Chaplan et al., 1994), the 50% with-
drawal mechanical threshold scores were calculated for
each mouse. We then calculated the carrageenan-induced
change in mechanical threshold as the maximum possible
effect (MPE) for each individual mouse with the following
formula: MPE¼ ([50% threshold after carrageenan �
baseline 50% threshold]/baseline 50% threshold)� 100.

Carrageenan model of inflammatory pain

At seven days postinjury, a baseline assessment of mech-
anical sensitivity was obtained prior to mice being lightly
restrained and injected with low-dose carrageenan (0.2%
in 5 ml 0.9% saline) into the intraplantar surface (ventral-
medial) of the left hind paw.32 To control for needle
puncture and injectate volume, a mock procedure con-
sisted of an intraplantar injection of saline (5ml, 0.9%).

Tissue preparation for histology

At seven days postinjury or sham operation, mice used
for mechanical threshold testing were given an overdose
of sodium pentobarbital and transcardially perfused with
4% paraformaldehyde after a PBS flush. Brains were
removed and placed in 4% paraformaldehyde overnight
then immersed in serial dilutions (10%, 20%, and 30%)
of sucrose for 24 h each. The brains were removed from
sucrose and frozen at �20�C. After freezing, brains were
sectioned on a cryostat in the coronal plane at 20 mm,
mounted onto glass slides, and stored at �80�C.

Immunofluorescence

Slides with brain sections were removed from �80�C,
placed in an oven at 60�C for approximately 4 h
and then rinsed three times for 5min each in PBS.
Next, the slides were blocked in 4% v/v donkey serum
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in PBS. Primary antibodies were added to 1% blocking
solution, rabbit anti-ionized calcium binding adaptor
molecule 1 (Iba-1; 1:2000, WAKO, cat# 019919741) or
rabbit anti-glial fibrillary acidic protein (1:5000, DAKO,
cat# Z033429-2) and stored at 4�C overnight. Slides were
rinsed three times in PBS and the secondary antibody
(donkey anti-rabbit Alexa Fluor 488 or 594) was added
and slides were incubated on a rocker at room temperature
for 1 h. Finally, slides were rinsed in deionized water and
coverslipped with antifade medium (Fluoromount G;
Southern Biotech, Birmingham, AL). The cortex was
examined for microglia and astrocyte activation in
response to brain injury using a Zeiss LSM 710 laser scan-
ning confocal microscope with attached digital camera.

Induction of regulatory T cells

Mucosal lymph nodes were removed postmortem from
brain-injured (n¼ 4) and sham (n¼ 4) mice seven days
postinjury. Lymph node cells were then isolated via mech-
anical disruption and centrifugation. Cells were resus-
pended at a density of 2� 106/mL in iTreg medium:
RPMI-1640 GlutaMAX (Invitrogen) supplemented with
10% fetal bovine serum (Gibco), 50mM b-mercaptoethanol
(Sigma-Aldrich), 2 ng/mL TGF-b (eBioscience), and
1 ng/mL IL-2 (eBioscience). 500 mL (1� 106 cells) were
incubated in 48-well tissue culture plates precoated
with 500 ng/mL a-CD3 (clone: 145–2C11, Bio X Cell)
for six days at 37�C/5% CO2. Half of the medium was
replaced on day 3 of culture. When indicated, 1 mM
ATRA (Sigma-Aldrich, St. Louis, MO) or 0.5mg/mL
soluble a-CD28 (clone: 37.51, eBioscience, San Diego,
CA) was added to the culture medium.

Flow cytometric analysis of Treg development

Cells were stained using Foxp3 Staining Buffer Set and
the following antibodies from eBioscience: a-CD25-AF-
488, a-CTLA-4-PE, a-CD4-PE-Cy5, and a-CD62L-PE-
Cy5 or from Miltenyi: Foxp3-APC. Some lymphocytes
were labeled with 5 mM carboxyfluorescein succinimidyl
ester (CFSE; Invitrogen, Carlsbad, CA) per million cells
for 3min at room temperature. Fluorescent lymph node
cells were assessed on a LSRII (BD Biosciences, San
Jose, CA, USA) flow cytometer and analyzed with
FlowJo software (Tree Star Inc., Ashland, OR, USA).
Tregs (CD25hi/Foxp3hi) cells are reported as a percent-
age of the CD4þ cells with side and forward scatter pro-
files consistent with live lymphocytes (cells were collected
as described earlier; sham n¼ 4, injury sham¼ 4).

Statistical analysis

Data are shown as mean�SEM and analyzed using stat-
istical software (GraphPad-Prism 6). Differences in

mechanical threshold were determined using a repeated
measures analysis of variance (ANOVA) followed by a
Sidak’s multiple comparisons test. Cortical cytokine
levels were determined with a one-way ANOVA
followed by Dunnett’s multiple comparison test.
Statistical significance was assigned for p< .05.

Results

Diffuse TBI potentiated mechanical hyperalgesia

At seven days postinjury, mechanical pain thresholds in
the hind paws were tested to establish a baseline (prein-
jection) response for each animal. Baseline mechanical
sensory thresholds were comparable in uninjured
(n¼ 4) and brain-injured (n¼ 4) mice (t6¼ 0.1549,
p¼ 0.8820; data not shown). To test the hypothesis
that diffuse TBI potentiates inflammatory pain,
carrageenan was injected in the hind paw. At 2 and 4 h
postinjection, mechanical threshold was decreased
in brain-injured, compared to uninjured sham mice,
F(1, 6)¼ 11.90, p¼ 0.0136; Figure 2(a). Decreases were
also observed in the noninjected paw, but this failed to
reach significance, F(1, 6)¼ 2.927, p¼ .1380; Figure 2(b).

Diffuse TBI activated central and peripheral
immune responses

IBA-1 immunohistochemistry identified microglia in the
uninjured and brain-injured cortex. As previously
reported by our group in the mFPI model, microglia in
uninjured brain remain predominantly in a ramified
(unactivated) morphology33,34 (Figure 3a). In the diffuse
brain-injured cortex, microglia showed activated
(rounded cell body with thickened processes) and
amoeboid morphologies (Figure 3b), consistent with pre-
vious reports.33,34 In addition, activated astrocytes were
found in brain-injured cortex (Figure 3d), indicated by
hypertrophy, thickened processes, and enhanced expres-
sion of glial fibrillary acidic protein (GFAP), compared
to sham (Figure 3c).

With a multiplex high-sensitivity ELISA, we found
that diffuse brain injury led to rapid elevation in cortical
protein levels of inflammatory cytokines (Figure 4a–d).
Cortical IL-6 levels were significantly different between
the uninjured sham and the brain injury time points, F(7,
19)¼ 2.779, p¼ 0.0361; Figure 4a), where Dunnett’s mul-
tiple comparison test indicated a significant increase in
IL-6 at 9 h postinjury compared to uninjured sham.
Cortical chemokine ligand 1 (CXCL1) levels were signifi-
cantly different between uninjured sham and the brain
injury time points, F(7, 19)¼ 1.617, p< 0.0001;
Figure 4b), where Dunnett’s multiple comparison test
indicated a significant increase in CXCL1 at 1, 3, and
9 h postinjury compared to uninjured sham. While there
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were injury-induced, immediate increases in cortical
protein levels of TNF-a, F(7, 19)¼ 1.145, p¼ 0.3624;
Figure 4c, and IL-10, F(7, 19)¼ 1.043, p¼ 0.4351;
Figure 4d, relative to sham levels, the increases did not
reach statistical significance.

As the BBB is permeable after mFPI,35 the potential
exists for inflammatory molecules produced at the cen-
tral injury site to act at distal sites in the periphery. To
evaluate brain to blood transfer of signal, we repeated
and expanded the cytokine array using serum samples.

Figure 3. TBI activated microglia and astrocytes in the cortex. Seven days postinjury, cortical sections were immunostained for microglia

and astrocyte activation using antibodies against (a and b) Iba-1 and (c and d) GFAP, respectively. (a) Highly ramified microglia from sham

mice sharply contrasted with (b) activated microglia found following TBI. Increased process size was also noted among astrocytes from

brain-injured mice (d) compared with uninjured sham (c). (40�magnification, scale bars¼ 20mm).

TBI: traumatic brain injury; GFAP: glial fibrillary acidic protein.

Figure 2. TBI potentiated mechanical hyperalgesia in response to a peripheral immune challenge. (a and b) Mechanical hyperalgesia was

assessed at seven days post-TBI (baseline; dotted line) and then 2 h and 4 h following carrageenan injection in the paw. Graphs depict the

mechanical stimulation required to elicit a withdrawal response after carrageenan injection, as a percent of baseline, where values below 100%

indicate increased sensitivity. Measurements were taken for the (a) injected and (b) noninjected paw (n¼ 4 per group, mean� SEM, *p< 0.05).

TBI: traumatic brain injury.

6 Molecular Pain 0(0)



Serum levels of IL-6, F(7, 17)¼ 3.374, p¼ 0.019, were
significantly different over time postinjury (Figure 4e).
Dunnett’s multiple comparison test indicated significant
increases in serum IL-6 levels at 1 h postinjury compared
to uninjured sham. CXCL1 was significantly different
over time postinjury, F(7, 17)¼ 12.190, p< 0.0001,
Figure 4e). IL-4, F(7, 18)¼ 1.522, p¼ 0.2225, and
IL-10, F(7, 18)¼ 2.111, p¼ 0.0956, levels remained
increased in serum from brain-injured animals compared
to uninjured shams up to one week postinjury, however,
these increases did not reach statistical significance.

Diffuse TBI dysregulated induced Treg development

Mesenteric lymph node (MLN) T cells localized into the
mucosal immune system showed dysregulated Treg dif-
ferentiation and proliferation in response to ATRA, a
Treg stimulating factor, in brain-injured, but not sham
mice (Figure 5). As expected, MLN T cells from unin-
jured shams (top left, Figure 5a) and brain-injured
(bottom left, Figure 5a) mice cultured with dimethyl sulf-
oxide (DMSO) vehicle showed an activated phenotype
(primarily CD25hi/Foxp3lo), with minimal Treg differen-
tiation. MLN T cells from uninjured shams cultured with

ATRA, a factor which induces Treg differentiation and
mucosal homing, showed increased Treg differentiation
(primarily CD25hi/Foxp3hi; top right, Figure 5a). In con-
trast, MLN T cells from brain-injured mice cultured with
ATRA showed minimal T cell activation and less than
1% Treg differentiation (bottom right, Figure 5(a)).

T cells were labeled with CFSE, a fluorescent dye, to
ascertain the capacity for cell proliferation. The CFSE
proliferation assay indicated lymph cells from uninjured
shams demonstrated near maximal proliferation capacity
when cultured with either DMSO (97.6% proliferation)
or ATRA (96.7% proliferation; top, Figure 5b).
However, T cells from brain-injured mice showed a
diminished capacity for proliferation when cultured
with DMSO (64.9% proliferation) or ATRA (81.1%
proliferation; bottom, Figure 5b).

Discussion

TBI may potentiate peripheral inflammatory pain
through unregulated systemic inflammation

We show that TBI potentiated carrageenan-induced
mechanical hyperalgesia. Our results are the first to

Figure 4. TBI initiated a central and peripheral inflammatory response. Cortical cytokine and chemokine levels were measured by

multiplex ELISA following TBI (a-d). Acute increases in proinflammatory (a) IL-6 and (b) CXCL1 were significant in comparison to

uninjured sham levels (n¼ 3–5, mean� SEM). Serum cytokine and chemokine levels were measured for nine chemokine and cytokine

analytes at seven time points following diffuse TBI (e). Proinflammatory CXCL1 and IL-6 were significantly elevated compared to sham

during the acute phase following injury (n¼ 3–5). Although the levels for the remaining molecules changed with respect to sham, the

differences were not significant in comparison to sham. Color gradations indicate the protein levels compared to sham, where reds are

increased levels and blues are decreased levels.

TBI: traumatic brain injury; ELISA: enzyme-linked immunosorbent assay; IL6: interleukin 6; CXCL1: chemokine ligand 1.

Rowe et al. 7



advance the idea that TBI-associated increases in inflam-
mation and inflammatory mediators contribute to the
potentiation of hyperalgesia following a peripheral
immune challenge.13 TBI activates microglia and astro-
cytes.36,37 Microglia are resident immune cells of the
brain which respond to pathological insult and tissue
injury. Following TBI, microglia respond to insult by
proliferating and undergoing a phenotypic shift toward
‘‘activation.’’ Activated microglia synthesize and release
cytokines into the extracellular environment which
have a dual role as inflammation mediators and pro-
nociceptive mediators.9 Similarly, following a change
in the environment such as mechanical injury asso-
ciated with TBI, astrocytes shift to a reactive pheno-
type and undergo hypertrophy. In the current study,
we demonstrate brain injury-induced activation of both
cortical microglia and astrocytes at seven days postin-
jury. We have previously shown cortical glia activation
in the mouse as early as 6 h postinjury33 supporting
rapid glia activation that persists through seven days
postinjury. While this is not a novel finding, it is an
important confirmation of central inflammation at
seven days postinjury in the same animals presenting

with hyperalgesia following a peripheral immune
challenge.

In the context of experimental and clinical brain
injury, glial activation serves as a hallmark of the path-
ology. Glial activation may lead the injury and repair
processes or simply serve as a marker of pathology. In
fact, the peripheral increase in circulating GFAP is a
leading fluid-based biomarker for detecting brain
injury,38 further demonstrating glial activation and
transfer of molecules between central and peripheral
compartments. Days following TBI, immune cross talk
can likely augment central and peripheral inflammation,
which can further contribute to increased sensitivity to
secondary challenges including subsequent injuries, stres-
sors, and infections.39 Following diffuse TBI in mice,
microglia are primed, to a heightened state of activation,
and this brain-injury-induced inflammatory response has
been shown to result in an augmented response to a sub-
sequent peripheral immune challenge one month postin-
jury.39 These mice were subjected to mFPI and
lipopolysaccharide (LPS) injection (30 days post-FPI),
which demonstrated increased depression-like behavior
in comparison to mice subjected to either FPI or LPS

Figure 5. TBI alters regulatory T cell development. CD4þ T cells from mesenteric lymph nodes of brain-injured (n¼ 4) or sham mice

(n¼ 4) were cultured in media containing DMSO or ATRA, a Treg stimulating factor. (a) T cells were sorted by flow cytometry for

traditional markers of T cell activation (CD25) and Treg differentiation (Foxp3). DMSO-treated T cells exhibited a nominal percentage of

CD25hi/Foxp3hi Tregs (values displayed in upper right quadrant of each panel). In T cells from sham mice, ATRA stimulation elicited an

increase in Treg differentiation that was not observed in brain-injured mice. (b) T cell proliferation was assayed using CFSE assay indicating a

reduction in proliferation capacity among T cells from brain-injured mice regardless of media additive (percent of population composed of

proliferated cells indicated).

TBI: traumatic brain injury; DMSO: dimethyl sulfoxide; ATRA: all-trans retinoic acid; CFSE: carboxyfluorescein succinimidyl ester.
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alone.39 Similarly, in the current study, we show mFPI in
mice activated microglia which may prime them for a
secondary challenge (carrageenan injection).

Leakage of cytokines and chemokines from the CNS
to the periphery may contribute to TBI potentiation of
peripheral inflammatory pain

Under normal conditions, the pain pathway is activated
to induce an active and protective response to help pre-
vent further tissue damage.8 However, when injury and
inflammation are prolonged, the ongoing excitation of
primary nociceptive neurons can lead to chronic and
maladaptive pain.11 Previous studies have shown
in vivo injections of IL-1b, IL-6, or TNF-a induce an
active inflammatory event similar to a carrageenan chal-
lenge and result in hyperalgesia.40–42 More direct, intra-
plantar injection of IL-6 into naı̈ve animals has been
shown to induce mechanical hyperalgesia.43

Following brain injury, an inflammatory response is
generated by activated glia, which leads to a proinflam-
matory cytokine response. The resultant inflammatory
response is further amplified by migrating blood cells.13

Proinflammatory cytokines excite nociceptive fibers and
increase neural sensitivity.11,17,44–46 Thus, cytokines are
not merely inflammatory mediators, but are also neuro-
modulators, by having direct excitatory actions on per-
ipheral nociceptive neurons. In the current study, diffuse
TBI increased cortical and serum levels of cytokine IL-6
and chemokine CXCL1. Based on these observations, we
suggest that diffuse TBI induced a CNS inflammatory
response, which transitioned rapidly into secreted inflam-
matory cytokines found in serum, which could potentiate
inflammatory pain (Figure 1). Thus, TBI may lead to an
acute increase in proinflammatory molecules in the brain
that then leak to the periphery, thereby increasing levels
in the serum. The ensuing cytokine signaling then
potentiates hyperalgesia, as observed.

It is important to note that in the absence of the per-
ipheral inflammation induced by the carrageenan injec-
tion, we observed no change in sensory thresholds in
mFPI-injured mice compared with uninjured shams at
seven days postinjury. This differs from a recent study
where TBI induced by lateral fluid percussion (later fluid
percussion injury [lFPI]) led to sustained nociceptive sen-
sitization for four days postinjury, without provoca-
tion.47 lFPI is characterized by both focal and diffuse
injury in which mechanical damage results in cell death
and the development of a cavitation.48,49 It is possible the
disruption of the dura and formation of a cavitation
extensively disrupts the BBB and initiates a more pro-
found peripheral inflammatory response in the first week
postinjury compared with mFPI in the mouse.48 Further
investigation is necessary to compare peripheral

inflammation following experimental mFPI and lFPI.
In the present case of mFPI, a widespread diffuse brain
injury may prime the immune response; whereby, a
second inflammatory challenge may be needed to
potentiate peripheral inflammatory pain. In contrast,
focal injury may substantially increase peripheral inflam-
mation, thus potentiating peripheral inflammatory pain
in the absence of a second inflammatory challenge.

Suppressed proliferation and differentiation of Tregs
may contribute to pain and dysregulated inflammation
following TBI

Our results indicate that MLNs from brain-injured mice
cultured with the Treg stimulating factor ATRA failed to
differentiate into Tregs. Although ATRA enhances
the TGFb-dependent anti-inflammatory Treg cell differ-
entiation and stability,50,51 addition of ATRA in a proin-
flammatory context (e.g. IL-15-enriched intestinal
mucosa) may promote the inflammatory response
instead.52 Further studies will be necessary to elucidate
whether TBI may favor a particular immunological
environment in MLNs. Treg differentiation is vital for
controlling adaptive and innate immune responses and
may also attenuate neuropathic pain. Previous studies
have shown neuropathic pain induced by experimental
autoimmune neuritis can be attenuated by increasing
Tregs,12 thus the inability of T cells to differentiate into
Tregs could contribute to hyperalgesia following experi-
mental TBI.

Our results also indicated that CD4þ MLN T cells
from brain-injured mice had suppressed proliferation
compared to MLN T cells from sham mice. It has been
shown CD4þ T cells from postseptic mice isolated and
assayed for ex vivo proliferation following acute
inflammation demonstrated deficiencies in proliferative
capacity.53,54 Similarly, thermal injury resulted in
impaired T cell proliferation in mice.55 Clinically,
18–72 h after severe TBI, the number of circulating T
cells, T-helper cells, and Tregs were reduced.56,57

Hence, an inflammatory challenge, or injury, could
lead to cytokine dysregulation, which impairs lympho-
cyte proliferation, suppresses T cell activation, and alters
cell-mediated responses.53–55 In the current study, we
show increased cytokine production following diffuse
TBI. The resulting systemic proinflammatory environ-
ment post-TBI may prime immune cells for a rapid
and efficient response against any challenge that may
momentarily put a vulnerable, vital organ such as the
brain at high risk. Under these conditions, disruption
of the Treg cell homeostasis post-TBI, as seen in this
study, may support a strong immune response against
potential harmful agents. However, it may also prevent
the protective role of Tregs in controlling the
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exacerbated inflammatory reaction to an otherwise weak
secondary challenge. Further studies are necessary to
elucidate the contribution of brain injury on T cell acti-
vation and fate decisions.

Conclusion

In summary, diffuse brain injury led to hyperalgesia fol-
lowing a carrageenan injection in the paw, potentially
caused by increased glial activation, central and periph-
eral increases of inflammatory mediators, and dysregula-
tion of Treg induction. A potential limitation of the
current study is the number of animals used in each
group, thus, future experiments are needed to elucidate
directly the role of Tregs in chronic pain after TBI.
Further experiments investigating mechanical pain
thresholds post-TBI in other inflammatory pain models
such as formalin are of interest but beyond the scope of
this experiment. Future experiments are needed to com-
prehensively investigate inflammatory pain models fol-
lowing experimental diffuse brain injury. Targeting
posttraumatic inflammation may reduce secondary
injury and improve patient outcome, thus investigation
into Treg therapy may be a potential therapeutic target
for diffuse brain injury. Furthermore, research is needed
to reveal the impact of TBI-induced cytokines and che-
mokines in the brain on primary afferent nociceptors.
Although current studies focus on how glial activation
in the spinal cord modulate pain pathways, a lack of
studies evaluating how glial activation following brain
injury contributes to pain warrants further investigation.

Acknowledgments

The authors thank Greg Bauman and Jennifer Strange for tech-

nical assistance.

Authors’ contributions

RKR and JLH carried out the mouse surgeries and injuries,
tissue collection, immunohistochemical staining, and data ana-

lyses. GIE, RKR, BKT, JL, and FM made substantial contri-
butions to the conception and study design and GIE and FM
contributed to peripheral immune data collection and analyses.

GIE and GFC carried out the von Frey filament test. ADB and
LVE carried out the cytokine measurements in the cortex and
serum and analyzed these data. BKT made substantial contri-

butions to the interpretation of the data and made critical revi-
sions to the intellectual content of the manuscript. RKR, GIE,
and JL drafted the manuscript and all authors provided revi-
sions and approved the final version. RKR and GIE contrib-

uted equally to the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial sup-

port for the research, authorship, and/or publication of this
article: This work is supported by NIH grants K02 DA19656
and R01 DA037621 (BKT) and R01 NS065052 (JL). Dr. Rowe

is funded by a Bisgrove Scholar Award from Science
Foundation Arizona. Mr. Harrison was partially supported
by the Diane and Bruce Halle Foundation and NIH F31

NS09092. Flow cytometry was carried out at the University
of Kentucky Flow Cytometry and Cell Sorting Core Facility,
which is supported in part by the Office of the Vice President
for Research, the Markey Cancer Center and a grant from the

NIH Shared Instrument Program (S10 RR026827).

References

1. Lahz S and Bryant RA. Incidence of chronic pain follow-

ing traumatic brain injury. Arch Phys Med Rehabil 1996;

77: 889–891.
2. Nampiaparampil DE. Prevalence of chronic pain after

traumatic brain injury: a systematic review. JAMA 2008;

300: 711–719.

3. Bosco MA, Murphy JL and Clark ME. Chronic pain and

traumatic brain injury in OEF/OIF service members and

Veterans. Headache 2013; 53: 1518–1522.
4. Hoffman JM, Pagulayan KF, Zawaideh N, et al.

Understanding pain after traumatic brain injury: impact

on community participation. Am J Phys Med Rehabil

2007; 86: 962–969.

5. Gironda RJ, Clark ME, Massengale JP, et al. Pain among

veterans of operations enduring freedom and Iraqi free-

dom. Pain Med 2006; 7: 339–343.

6. Feliciano DP, Sahbaie P, Shi X, et al. Nociceptive

sensitization and BDNF up-regulation in a rat model of

traumatic brain injury. Neurosci Lett 2014; 583: 55–59.
7. Elliott MB, Oshinsky ML, Amenta PS, et al. Nociceptive

neuropeptide increases and periorbital allodynia in a model

of traumatic brain injury. Headache 2012; 52: 966–984.
8. Millan MJ. The induction of pain: an integrative review.

Prog Neurobiol 1999; 57: 1–164.
9. Old EA, Clark AK and Malcangio M. The role of glia in

the spinal cord in neuropathic and inflammatory pain.

Handb Exp Pharmacol 2015; 227: 145–170.
10. Ellis A and Bennett DL. Neuroinflammation and the gen-

eration of neuropathic pain. Br J Anaesth 2013; 111: 26–37.
11. Milligan ED and Watkins LR. Pathological and protective

roles of glia in chronic pain. Nat Rev Neurosci 2009; 10:

23–36.
12. Austin PJ, Kim CF, Perera CJ, et al. Regulatory T cells

attenuate neuropathic pain following peripheral nerve

injury and experimental autoimmune neuritis. Pain 2012;

153: 1916–1931.

13. Sommer C and Kress M. Recent findings on how proin-

flammatory cytokines cause pain: peripheral mechanisms

in inflammatory and neuropathic hyperalgesia. Neurosci

Lett 2004; 361: 184–187.
14. Ziebell JM and Morganti-Kossmann MC. Involvement of

pro- and anti-inflammatory cytokines and chemokines in

10 Molecular Pain 0(0)



the pathophysiology of traumatic brain injury.
Neurotherapeutics 2010; 7: 22–30.

15. Das M, Mohapatra S and Mohapatra SS. New perspec-
tives on central and peripheral immune responses to acute
traumatic brain injury. J Neuroinflammation 2012; 9: 236.

16. Lenzlinger PM, Morganti-Kossmann MC, Laurer HL,
et al. The duality of the inflammatory response to trau-
matic brain injury. Mol Neurobiol 2001; 24: 169–181.

17. Beggs S and Salter MW. The known knowns of microglia-
neuronal signalling in neuropathic pain. Neurosci Lett
2013; 557(Pt A): 37–42.

18. Sandkuhler J. Models and mechanisms of hyperalgesia and
allodynia. Physiol Rev 2009; 89: 707–758.

19. Witcher KG, Eiferman DS and Godbout JP. Priming the

inflammatory pump of the CNS after traumatic brain
injury. Trends Neurosci 2015; 38: 609–620.

20. Ellis GI, Reneer MC, Velez-Ortega AC, et al. Generation
of induced regulatory T cells from primary human naive
and memory T cells. J Vis Exp 2012; 62: 3738.

21. Wing K and Sakaguchi S. Regulatory T cells exert checks
and balances on self tolerance and autoimmunity. Nature
Immunol 2010; 11: 7–13.

22. Maloy KJ, Salaun L, Cahill R, et al. CD4þCD25þ T(R)
cells suppress innate immune pathology through cytokine-
dependent mechanisms. J Exp Med 2003; 197: 111–119.

23. Murphy TJ, Ni Choileain N, Zang Y, et al.
CD4þCD25þ regulatory T cells control innate immune

reactivity after injury. J Immunol 2005; 174: 2957–2963.
24. Josefowicz SZ, Niec RE, Kim HY, et al. Extrathymically

generated regulatory T cells control mucosal TH2 inflam-

mation. Nature 2012; 482: 395–399.
25. Josefowicz SZ, Lu LF and Rudensky AY. Regulatory T

cells: mechanisms of differentiation and function. Annu

Rev Immunol 2012; 30: 531–564.
26. Huang H, Ma Y, Dawicki W, et al. Comparison of induced

versus natural regulatory T cells of the same TCR specifi-

city for induction of tolerance to an environmental antigen.
J Immunol 2013; 191: 1136–1143.

27. Lifshitz J. Fluid percussion injury model. In: Chen J, Xu

XC, Xu X-M, et al (eds) Animal models of acute neuro-
logical injuries. Totowa, NJ: The Humana Press Inc.,

2008, pp.369–384.
28. Hosseini AH and Lifshitz J. Brain injury forces of moder-

ate magnitude elicit the fencing response. Med Sci Sports

Exerc 2009; 41: 1687–1697.
29. Bachstetter AD, Xing B, de Almeida L, et al. Microglial

p38alpha MAPK is a key regulator of proinflammatory

cytokine up-regulation induced by toll-like receptor
(TLR) ligands or beta-amyloid (Abeta).

J Neuroinflammation 2011; 8: 79.
30. Bachstetter AD, Rowe RK, Kaneko M, et al. The

p38alpha MAPK regulates microglial responsiveness to

diffuse traumatic brain injury. J Neurosci 2013; 33:
6143–6153.

31. Corder G, Doolen S, Donahue RR, et al. Constitutive mu-

opioid receptor activity leads to long-term endogenous
analgesia and dependence. Science 2013; 341: 1394–1399.

32. Posadas I, Bucci M, Roviezzo F, et al. Carrageenan-

induced mouse paw oedema is biphasic, age-weight

dependent and displays differential nitric oxide cyclooxy-

genase-2 expression. Br J Pharmacol 2004; 142: 331–338.
33. Rowe RK, Striz M, Bachstetter AD, et al. Diffuse brain

injury induces acute post-traumatic sleep. PLoS One 2014;

9: e82507.

34. Harrison JL, Rowe RK, Ellis TW, et al. Resolvins AT-D1

and E1 differentially impact functional outcome, post-trau-

matic sleep, and microglial activation following diffuse

brain injury in the mouse. Brain Behav Immun 2015; 47:

131–140.

35. Schmidt RH and Grady MS. Regional patterns of blood-

brain barrier breakdown following central and lateral fluid

percussion injury in rodents. J Neurotrauma 1993; 10:

415–430.
36. Ziebell JM, Taylor SE, Cao T, et al. Rod microglia: elong-

ation, alignment, and coupling to form trains across the

somatosensory cortex after experimental diffuse brain

injury. J Neuroinflammation 2012; 9: 247.
37. Cao T, Thomas TC, Ziebell JM, et al. Morphological and

genetic activation of microglia after diffuse traumatic brain

injury in the rat. Neuroscience 2012; 225: 65–75.
38. Mondello S, Papa L, Buki A, et al. Neuronal and glial

markers are differently associated with computed tomog-

raphy findings and outcome in patients with severe trau-

matic brain injury: a case control study. Crit Care 2011; 15:

R156.
39. Fenn AM, Gensel JC, Huang Y, et al. Immune activation

promotes depression 1 month after diffuse brain injury: a

role for primed microglia. Biol Psychiatry 2014; 76:

575–584.

40. Reichling DB and Levine JD. Critical role of nociceptor

plasticity in chronic pain. Trends Neurosci 2009; 32:

611–618.
41. Schafers M, Svensson CI, Sommer C, et al. Tumor necrosis

factor-alpha induces mechanical allodynia after spinal

nerve ligation by activation of p38 MAPK in primary sen-

sory neurons. J Neurosci 2003; 23: 2517–2521.

42. Zelenka M, Schafers M and Sommer C. Intraneural injec-

tion of interleukin-1beta and tumor necrosis factor-alpha

into rat sciatic nerve at physiological doses induces signs of

neuropathic pain. Pain 2005; 116: 257–263.
43. Cunha FQ and Tamashiro WM. Tumour necrosis factor-

alpha and interleukin-8 inhibit neutrophil migration

in vitro and in vivo. Mediators Inflamm 1992; 1: 397–401.
44. Basbaum AI, Bautista DM, Scherrer G, et al. Cellular and

molecular mechanisms of pain. Cell 2009; 139: 267–284.
45. DeLeo JA and Yezierski RP. The role of neuroinflamma-

tion and neuroimmune activation in persistent pain. Pain

2001; 90: 1–6.

46. Myers RR, Campana WM and Shubayev VI. The role of

neuroinflammation in neuropathic pain: mechanisms and

therapeutic targets. Drug Discov Today 2006; 11: 8–20.
47. Feliciano DP, Sahbaie P, Shi X, et al. Nociceptive sensi-

tization and BDNF up-regulation in a rat model of trau-

matic brain injury. Neurosci Lett 2014; 583: 55–59.
48. Alder J, Fujioka W, Lifshitz J, et al. Lateral fluid percus-

sion: model of traumatic brain injury in mice. J Vis Exp

2011; 54: 3063.

Rowe et al. 11



49. Eakin K, Rowe RK and Lifshitz J. Modeling fluid percus-
sion injury: relevance to human traumatic brain injury.
In: Kobeissy FHP (ed.) Brain neurotrauma: molecular,

neuropsychological, and rehabilitation aspects. Boca
Raton, FL: Frontiers in Neuroengineering, 2015, pp.1–27.

50. Hall JA, Cannons JL, Grainger JR, et al. Essential role for

retinoic acid in the promotion of CD4(þ) T cell effector
responses via retinoic acid receptor alpha. Immunity 2011;
34: 435–447.

51. Liu ZM, Wang KP, Ma J, et al. The role of all-trans ret-
inoic acid in the biology of Foxp3 regulatory T cells. Cell
Mol Immunol 2015; 12: 553–557.

52. DePaolo RW, Abadie V, Tang F, et al. Co-adjuvant effects
of retinoic acid and IL-15 induce inflammatory immunity
to dietary antigens. Nature 2011; 471: 220–224.

53. Carson WFt, Cavassani KA, Ito T, et al. Impaired CD4þ

T-cell proliferation and effector function correlates with

repressive histone methylation events in a mouse model
of severe sepsis. Eur J Immunol 2010; 40: 998–1010.

54. Napolitano LM and Campbell C. Polymicrobial sepsis fol-

lowing trauma inhibits interleukin-10 secretion and
lymphocyte proliferation. J Trauma 1995; 39: 104–110;
discussion 10-1.

55. Napolitano LM and Campbell C. Nitric oxide inhibition
normalizes splenocyte interleukin-10 synthesis in murine
thermal injury. Arch Surg 1994; 129: 1276–1282;

discussion 82-3.
56. Wolach B, Sazbon L, Gavrieli R, et al. Early immuno-

logical defects in comatose patients after acute brain

injury. J Neurosurg 2001; 94: 706–711.
57. Dziedzic T, Slowik A and Szczudlik A. Nosocomial infec-

tions and immunity: lesson from brain-injured patients.
Crit Care 2004; 8: 266–270.

12 Molecular Pain 0(0)


