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Abstract Microneedles (MNs) serve as a revolutionary paradigm in transdermal drug delivery, herald-

ing a viable resolution to the formidable barriers presented by the cutaneous interface. This review

examines MNs as an advanced approach to enhancing dermatological pathology management. It explores

the complex dermis structure and highlights the limitations of traditional transdermal methods, empha-

sizing MNs’ advantage in bypassing the stratum corneum to deliver drugs directly to the subdermal ma-

trix. The discourse outlines the diverse typologies of MNs, including solid, coated, hollow, hydrogel, and

dissolvable versions. Each type is characterized by its unique applications and benefits. The treatise

details the deployment of MNs in the alleviation of cutaneous cancers, the administration of inflammatory

dermatoses such as psoriasis and atopic dermatitis, and their utility in wound management. Additionally,

the paper contemplates the prospects of MNs within the realm of aesthetic dermatology and the burgeon-

ing market traction of cosmetic MN formulations. The review summarizes the scientific and commercial

challenges to the clinical adoption of MN therapeutics, including dosage calibration, pharmacodynamics,

biocompatibility, patient compliance, sterilization, mass production, and regulatory oversight. It empha-

sizes the need for ongoing research, innovation, and regulatory harmonization to overcome these obsta-

cles and fully realize MNs’ potential in treating skin diseases and improving patient welfare.
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1. Introduction
The human skin, as the body’s largest organ, serves as the primary
defense mechanism against the intrusion of external substances.
Its architecture is tripartite, comprising the epidermis, dermis, and
subcutaneous tissue1. The stratum corneum (SC), the epidermis’s
uppermost layer, is constituted of dead keratinocytes and inter-
cellular lipids. Occupying the topmost 10e20 mm of the skin, the
SC acts as the principal barrier against foreign substance pene-
tration1. Nonetheless, this barrier also poses a challenge for the
transdermal delivery of therapeutics, as only molecules smaller
than 500 Da with a certain degree of lipophilicity can freely
traverse the skin. To surmount the SC barrier and amplify drug
efficacy, a plethora of physical and chemical methodologies,
including sonophoresis, ionic liquids, and ultrasound, have been
explored2e4. These methods, however, are hampered by the high
cost of equipment and suboptimal delivery efficacy. Consequently,
the innovation of a transformative transdermal drug delivery
system (TDDS) is crucial for improving therapeutic outcomes and
addressing the existing constraints in drug administration.

Microneedles (MNs) signify a pivotal advancement in TDDS,
marking a new era in medical treatment5e7. These needles,
varying in length from several tens to thousands of micrometers,
facilitate the direct conveyance of drugs to subcutaneous tissues
by breaching the SC barrier, thereby optimizing drug delivery
while mitigating adverse effects and bolstering therapeutic
efficacy8,9. Customized MNs, tailored in material and design, offer
versatility for diverse applications10e12. In managing skin-related
pathologies, MNs have shown exceptional promise13e15. They
enable precise drug deployment to the targeted site, fostering
localized treatment and diminishing systemic side effects. This
precision is particularly advantageous for conditions such as
superficial tumors, inflammatory skin disorders, wounds, and
cosmetic skin concerns. Drug encapsulation within MNs has been
instrumental in enhancing drug potency, curtailing side effects,
and influencing processes like collagen remodeling and vascu-
larization. To further elevate therapeutic performance, innovative
strategies incorporating inorganic substances, cellular compo-
nents, cytokines, or biomedicines into MNs have been
proposed16e19. These multifaceted therapeutic modalities aim to
concurrently deliver multiple agents, providing a more holistic
treatment approach. Additionally, MNs can be integrated with
ultrasound, magnetic fields, lasers, and electronic systems to
activate the therapeutic agents20e23. The amalgamation of MNs
with electronic elements has led to the development of cutting-
edge systems that empower patients to monitor drug release and
disease progression in real-time24. This not only enhances patient
adherence but also affords meticulous control over drug dispen-
sation, thereby refining therapeutic outcomes.

The materials selected for MN fabrication must exhibit robust
characteristics, meeting the following criteria: 1. Exemplary
biocompatibility and non-toxicity; 2. Material stability that does
not compromise drug potency; 3. Adequate mechanical strength
for skin penetration without fracturing; 4. Broad applicability and
malleability; 5. Skin solubility with controlled drug release ki-
netics. With technological advancements, mass production of
MNs has become feasible. Numerous MN devices have progressed
to clinical trials, and some groundbreaking designs have entered
the commercial sphere25. Notably, the dermatological sector has
witnessed the commercialization of most MN products, garnering
significant industry interest. A succession of new products has
been launched, targeting applications such as skin whitening,
wrinkle reduction, and scar treatment26,27. Despite these impressive
strides, there remains an urgent need for further research into MN
applications for skin diseases. Afflictions like eczema, psoriasis,
and skin cancer could potentially benefit from MN-based
treatments. This review endeavors to encapsulate the latest MN-
mediated strategies for skin disease management. We delineate
skin diseases into four categories: superficial cancers, inflammatory
skin conditions, wounds, and aesthetic skin issues. We will delve
into the underlying mechanisms of MN-mediated strategies and
their potential to revolutionize skin disease treatment. Moreover,
we will address the challenges associated with transitioning MN
research to market-ready products and propose viable solutions.
2. Classification of microneedles

Microneedles are stratified into five distinct categories based
on their transdermal administration mode: solid, coated, hollow,
hydrogel, and dissolvable microneedles (Fig. 1). These classifi-
cations have found applications across a spectrum of research
domains, notably in drug delivery and disease diagnostics28,29.
The versatility of MNs is further exemplified by their compati-
bility with diverse materials, enabling their integration with
various scientific disciplines and methodologies. For example,
metal microneedles can be adeptly amalgamated with electronic
components to enhance biomarker detection. Conversely, hydrogel
microneedles demonstrate a synergistic relationship with chemical
processes, facilitating the development of a dynamic drug release
system28,30,31. In Table 132e53, we have compiled a concise
summary of their distinct characteristics.
2.1. Solid microneedles

Solid microneedles, engineered from metals, polymers, and silicon
using precision techniques such as laser cutting or etching32,33, are
increasingly acknowledged as potent tools for targeted drug
delivery34. These diminutive needles are meticulously designed to
perforate the skin’s outermost layer, forming microchannels that
facilitate the direct administration of therapeutic agents. This mode
of delivery offers several benefits, notably the precision targeting of
specific bodily regions and the reduction of side effects commonly
associated with systemic medications54,55. However, the deploy-
ment of solid microneedles in clinical settings is not without its
challenges. A primary concern is the risk of infection; since solid
microneedles are typically non-disposable, stringent sterilization
protocols must be adhered to post-use. The complexity and labor-
intensiveness of this process can elevate the likelihood of
contamination if not meticulously conducted. Additionally, the
potential for inflammatory reactions cannot be dismissed35.
The microchannels induced by the needles may provoke an
immune response, causing discomfort and potentially constraining
the utility of solid microneedles for drug delivery. Consequently,
dissolvable microneedles are often favored in certain scenarios,
such as wrinkle treatment, due to their disposability and reduced
risk of erythema compared to their solid counterparts56.

In summary, while solid microneedles hold the promise of
transforming drug delivery paradigms, they are currently beset
with significant hurdles pertaining to infection prevention and
inflammation management. The pursuit of novel fabrication
methods and material innovations continues to be a critical area of
research, with the potential to surmount these obstacles and



Figure 1 Schematic illustration of different types of MNs. Created with BioRender.com.

Table 1 Summary of five categories of MNs.

Category Material Fabrication Advantage Limitation Ref.

Solid MNs Metals, silicon,

ceramics

Laser cutting, etching,

photolithography

High mechanical strength Infection, inflammation 32e35

Coated MNs Metals, silicon,

ceramics

Spray coating, dip coating,

piezoelectric inkjet printing

High mechanical

strength, single-step

application

Lower drug capacity 36e39

Hollow MNs Metals, silicon,

polymers

Microelectromechanical

systems, 3D printing

High scalability, high

stability

Complex and expensive

fabrication method

40e44

Hydrogel

MNs

Crosslinking

polymers

Micromolding, 3D printing Unbreakable,

multifunctional

Insufficient mechanical

strength and toxicity

45e50

Dissolvable MNs Biodegradable and

biocompatible

polymers

Micromolding, drawing

lithography, 3D printing

Scale-up fabrication,

High biocompatibility

Limit dosing and

inconsistent

pharmacokinetics

51e53
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establish solid microneedles as a mainstay in transdermal drug
administration.

2.2. Coated microneedles

The constituent materials of coated microneedles mirror those
utilized in solid microneedles. In coated microneedles, therapeutic
agents are applied as a slender coating on the microneedle’s
exterior via methods such as spray coating, dip coating, or
piezoelectric inkjet printing36. This coating approach confers
multiple benefits over its solid counterparts. Primarily, coated
microneedles offer a streamlined and efficacious drug delivery
mechanism. The direct application of medication onto the surface
obviates the need for the prolonged soaking time requisite for
solid microneedles. This expeditious delivery is particularly ad-
vantageous in urgent care settings where swift absorption is
imperative. Additionally, coated microneedles circumvent the
necessity for protracted drug formulations that solid microneedles
depend on to sustain therapeutic levels over time. Instead, the
coating technique facilitates a more focused medication delivery,
thereby diminishing the likelihood of adverse effects. Zosano
Pharma Corporation has pioneered a titanium microneedle array
coated with zolmitriptan, designed to alleviate moderate to severe
migraine symptoms37. The results of clinical trials demonstrate
that this innovative technology is capable of providing sustained
pain relief for a duration ranging from 2 to 48 h38.

Nevertheless, the application of coated microneedles is not
devoid of limitations. A notable drawback is their relatively
modest drug-loading capacity39. The thinness of the applied
medication layer restricts the quantity of deliverable drugs, posing
challenges in situations necessitating high dosage administrations.
This limitation underscores the imperative for continued research
into alternative microneedle configurations, such as dissolvable
and hydrogel microneedles, to enhance drug-loading capabilities.

2.3. Hollow microneedles

The advent of hollow microneedles represents a significant engi-
neering breakthrough, employing a diverse array of materials such
as polymers, metals, and silicon57. These microneedles are
distinguished by their hollow structure, which acts as a channel for
administering drugs, cells, and other biomedical substances25,58.
This design has captured the medical community’s attention due
to its novel and efficient approach to drug delivery and biomarker
monitoring. Hollow microneedles have proven their value in
clinical trials, particularly in vaccine administration25,59. Their
hollow nature enables precise vaccine delivery into the skin,
circumventing conventional injection methods. This technique not
only lessens injection-related discomfort but also enhances
vaccine delivery efficiency.

For biomarker monitoring, hollow microneedles offer a stable
and effective means of extracting interstitial fluid (ISF)40,41,60. The
ISF is a crucial source of information for understanding the
physiological state of the body, and its extraction is essential for
diagnosing and treating various diseases. Hollow microneedles are
able to extract ISF with minimal discomfort and minimal risk of

http://BioRender.com
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infection, making them an ideal tool for biomarker monitoring.
Furthermore, hollow microneedles have also found applications in
the development of continuous glucose monitoring systems42.
These systems, which are used by many companies, utilize hollow
microneedles to continuously monitor blood glucose levels in
patients with diabetes. This technology has significantly improved
the quality of life for these patients, allowing them to better
manage their condition and avoid complications.

The fabrication of hollow microneedles involves intricate
techniques such as three-dimensional (3D) printing, drawing
lithography, and etching, demanding exacting precision and
attention to detail to ensure human safety and product effi-
cacy43,44. However, these methods are labor-intensive and
expensive, hindering hollow microneedles’ broader adoption.

There is a pressing need for simpler, more cost-effective pro-
duction methods for hollow microneedles. Reducing production
costs and enhancing device accessibility for a broader patient
demographic is essential. With continued research and develop-
ment, it is anticipated that future iterations of hollow microneedles
will surpass the effectiveness and efficiency of current models.

2.4. Hydrogel microneedles

Hydrogel microneedles represent a remarkable innovation in
medical technology, meticulously engineered from crosslinked
hydrogels such as GelMA (Gelatin Methacrylate), hyaluronic acid
methacrylate (HAMA), and PVA-dextran45. These materials are
shaped into microneedles through precision techniques like
micromolding and 3D printing, resulting in structures capable of
expanding upon insertion into the skin to deliver drugs directly to
targeted areas46e48. Despite their potential, the commercial
availability of hydrogel microneedle products is currently limited,
largely due to the toxicity risks associated with crosslinkers and
the insufficient mechanical strength of hydrogel materials.

The chemistry of hydrogels has been a focus of recent
research, with efforts to identify chemical bonds that can improve
their properties61, leading to the creation of responsive hydrogel
microneedles designed for specific diseases and conditions6,62.
Their engineering precision makes them highly versatile in
combating a variety of diseases.

Hydrogels are known for their capacity to stimulate the extra-
cellular matrix (ECM) for cell culture purposes63. This has made
hydrogel microneedles a preferred choice for cell therapy, where
they deliver therapeutic cells to damaged tissues with minimal
tissue disruption, thereby enhancing cell therapy’s efficacy.

Moreover, hydrogel microneedles have been employed in
biomarker monitoring49. Their microchannel structure allows
them to absorb interstitial fluid (ISF), which contains biomarkers
that offer insights into an individual’s health status47,50. Analyzing
ISF can lead to earlier disease detection and more precise treat-
ment approaches.

In summary, hydrogel microneedles, with their distinctive
properties and precision engineering, are pioneering new avenues
in medicine. Their minimally invasive approach to delivering
drugs, cells, and monitoring biomarkers holds significant promise
for enhancing patient care and pushing the boundaries of medical
science.

2.5. Dissolvable microneedles

Dissolvable microneedles (MNs) have ushered in a paradigm shift
in drug delivery, presenting a safe, efficient, and patient-friendly
alternative to conventional injections64,65. Their capacity to
dissolve within the skin ensures a pain-free administration and
enables precise drug targeting. The production of dissolvable MNs
employs various techniques, including micromolding, drawing
lithography, and 3D printing7,66,67. The choice of material is
pivotal, necessitating biocompatible and biodegradable options.
Commonly utilized materials include dextran, hyaluronic acid
(HA), chondroitin sulfate, polyvinylpyrrolidone (PVP), and
polyvinyl alcohol (PVA)51.

Beyond drug delivery, dissolvable MNs have ventured into
transdermal cell delivery. Innovations such as cryomicroneedles
have facilitated the transdermal transport of cells, heralding new
prospects for regenerative medicine and immunotherapy52,53.

The widespread adoption of dissolvable MNs has significantly
influenced the MN industry, fostering innovation and competition
among manufacturers. This has led to a diverse array of MN
products tailored to various needs and applications, expanding the
market and reducing costs, thereby enhancing patient accessi-
bility68. Nonetheless, challenges persist in their application for
systemic diseases. Scaling from animal models to humans
presents limitations due to size discrepancies and the MNs’ finite
dosing capacity. Additionally, achieving consistent pharmacoki-
netics remains a hurdle for clinical trial success37.

The horizon for dissolvable MNs is promising. Ongoing
research and development are poised to unveil further innovative
uses, such as in vaccine administration and chronic disease man-
agement. As technology advances and gains wider acceptance,
dissolvable MNs are set to play a pivotal role in transforming
healthcare delivery.
3. Superficial cancers

Skin cancers, encompassing a spectrum of malignant cutaneous
lesions, are primarily classified into keratinocyte cancer-
sdformerly known as non-melanoma skin cancersdand mela-
noma, the latter being the most aggressive form with the highest
mortality risk69. Surgical excision remains the treatment of
choice for skin cancers, offering high efficacy in most cases.
However, the decision to opt for surgery is contingent upon
various factors, including patient comorbidities, tissue tolerance,
and willingness for repeated interventions. Alternatively, drug
therapy, administered orally or intravenously, constitutes another
primary treatment modality, albeit with the risk of systemic
toxicity70. Topical treatments may be preferable in scenarios
where surgery or systemic drugs are contraindicated or declined
by the patient71. Nonetheless, the skin’s stratum corneum (SC)
poses a barrier to the permeation and absorption of anticancer
agents. To bypass these biological barriers, researchers have
leveraged the advantages of microneedles (MNs) to develop
various MN-based strategies for transdermal drug delivery. This
review examines the latest progress in employing MNs for skin
cancer treatment.

3.1. Chemotherapy

Chemotherapy continues to be a cornerstone treatment for most
cancer patients. Current chemotherapeutic agents, including
dacarbazine, temozolomide, fotemustine, and taxanes, are
employed for superficial cancer treatment but have not signifi-
cantly improved survival rates72. This is due to factors such as
drug resistance and adverse systemic reactions.
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Topical agent treatment achieves high drug concentrations at
the tumor site with reduced toxicity compared to systemic
agents71. The emerging transdermal MN drug delivery system
provides a minimally invasive and precise topical method for
treating superficial cancers.

Cisplatin (CDDP), a widely used chemotherapeutic agent that
induces apoptosis in cancer cells, is associated with systemic
toxicity, including gastrointestinal issues, myelosuppression,
ototoxicity, and neurotoxicity73. Lan et al.74 developed a dis-
solving MN patch delivering pH-responsive lipid-coated cisplatin
nanoparticles (LCC-NPs), significantly reducing CDDP’s sys-
temic toxicity. The outer lipid layers enhance CDDP’s solubility
and efficacy, while the MNs boost its anticancer effects and
minimize side effects. Chen et al.75 introduced a bioorthogonal
catalysis MN patch composed of a polyvinyl alcohol (PVA) matrix
with palladium-doped TiO2 nanosheets (Pd-TNSs) to target mel-
anoma. The Pd-TNSs not only improve the MNs’ mechanical
strength but also facilitate prodrug activation. Following systemic
administration of the prodrug N-allyloxycarbonyl-caged doxoru-
bicin (alloc-DOX), the MNs’ micropores allow Pd-TNSs to
interact with the drug molecules, triggering their activation via
Suzuki reactions. Notably, the PVA chains’ hydrogen bonds
enable easy withdrawal to prevent inflammation.

However, monotherapy with chemotherapy is often insuffi-
cient, prompting the development of synergistic therapies like
chemo-photothermal or chemo-photodynamic therapy. Sun et al.76

created a paclitaxel (PTX) and IR780-loaded micelles MN system
for melanoma therapy, combining PTX, a first-line chemotherapy
drug, with IR780, a photosensitizer. In vivo experiments demon-
strated that this synergistic therapy under NIR light irradiation was
more effective than monotherapy. Beyond traditional photosensi-
tizers, metal nanoparticles have also been utilized as photothermal
agents77. Zhao et al.78 devised a multifunctional nanoparticle-
integrated dissolving MN drug delivery system, encapsulating
the chemotherapeutic drug camptothecin and the photothermal
agent CuS within a zeolitic imidazolate framework-8 (ZIF-8),
functionalized with hyaluronic acid. This integrated system ach-
ieved synergistic chemo-photothermal therapy against melanoma.
To enhance therapy for deep-seated melanoma, Wang et al.23

engineered a wearable self-powered MN patch integrated with a
flexible triboelectric nanogenerator (F-TENG) to deliver calcium
carbonate nanoparticles loaded with chlorin e6 (Ce6) and DOX
(Fig. 2A and B). The drug nanoparticles release Ce6 and DOX in
the tumor’s acidic microenvironment, and the F-TENG-generated
iontophoresis propels the drug deeper into the skin, achieving a
synergistic effect through chemotherapy and photodynamic
therapy for deep-seated tumors.

Microneedle drug delivery systems have transcended their
initial purpose of drug loading to become highly personalized and
intelligent drug delivery devices. Li et al.79 innovated multifunc-
tional microneedle patches through direct ink drawing, catering to
cancer treatment at varying stages (Fig. 2C‒E). For incipient tu-
mors measuring approximately 50 mm3, a patch infused with
indocyanine green (ICG) and curcumin was employed for pho-
tochemotherapy. In contrast, for more advanced cancers, the
microneedle patch was tailored with a combination of doxorubicin
hydrochloride (DOX), ICG, and curcumin. Collectively, these
personalized microneedle patches offer a more effective and safer
alternative for treating malignancies at different stages. The
precision controllability inherent in microneedles has enabled
researchers to fabricate a wide variety of structures with relative
ease. In a separate study, Zhu et al.80 engineered an octopus bionic
microneedle patch characterized by its robust adhesion to tissue
surfaces and its capability for active drug injection. This flexible,
cup-like microneedle patch is designed to withstand moist tissue
environments and maintain stability for extended periods. More-
over, the microneedle’s composition of silk fibroin-pluronic F127
(Silk-Fp) and poly(N-isopropylacrylamide) (PNIPAm) ensures a
prolonged release of therapeutic agents. In an early-stage mela-
noma animal model, the Silk-Fp patch demonstrated its efficacy
by significantly inhibiting tumor growth and effectively managing
the progression of advanced melanoma.

3.2. Chemodynamic therapy

Chemodynamic therapy (CDT), introduced by Zhang et al.81 in
2016, capitalizes on the elevated levels of H2O2 and the mildly
acidic conditions prevalent within the tumor microenvironment
(TME)82. The primary agents in CDT are transition metal ions that
catalyze Fenton or Fenton-like reactions, transforming H2O2 into
the highly reactive hydroxyl radical ($OH) within cancer
cells83,84. This conversion results in the induction of apoptosis
through mechanisms such as phospholipid peroxidation, protein
inactivation, and DNA damage.

Despite its potential, CDT administered intravenously can lead
to unintended toxicity and biosafety issues. As a solution,
combining CDT with microneedle-based local treatment has
emerged as a viable alternative. Chen et al.85 developed a
microneedle patch loaded with 2D bimetallic metaleorganic
framework (MOF) nanosheets, serving as a cascade biocatalyst
to enhance melanoma CDT. These microneedles, integrated with
glucose oxidase (GOD)-immobilized Cu-TCPP(Fe) MOF nano-
sheets, are designed to initiate TME-responsive catalytic re-
actions. Upon application, the microneedle patch converts
endogenous glucose into H2O2 via GOD catalysis, and subse-
quently, the Fe/Cu metal centers in Cu-TCPP(Fe) transform H2O2

into $OH, inhibiting tumor growth. To augment H2O2 levels and
diminish the reductive glutathione (GSH) to boost CDT efficacy,
Yu et al.86 proposed a strategy that combines H2O2 elevation with
GSH depletion for transcutaneous CDT using a microneedle. They
synthesized a prodrug (PeNO-CA@Fe) capable of a cascade
synergy termed “H2O2 boost-GSH depletion-Fenton killing”.
Specifically, cinnamaldehyde (CA), as an H2O2 generation
enhancer, oxidizes arginine (Arg) to produce GSH-depleting nitric
oxide (NO), thereby maximizing the cytotoxicity of iron-ion-
mediated CDT. The microneedle serves as a precise delivery
vehicle for this prodrug, mitigating systemic toxicity.

Given that CDT monotherapy often exhibits limited efficiency,
it is frequently combined with other therapeutic modalities, such
as photothermal therapy. Song et al.87 introduced a Cu-doped
polydopamine (PDA) nanoparticle-embedded microneedle for
synergistic photothermal and chemodynamic therapy against skin
melanoma. Cu-PDA nanoparticles exhibit high photothermal
conversion efficiency, and the Cu2þ ions facilitate the Fenton re-
action to generate $OH. In vivo studies using the B16F10 mouse
melanoma model demonstrated that Cu-PDA nanoparticles
effectively curbed tumor growth and induced a combination of
necrosis and apoptosis. In another study, Ju et al.88 designed a
nanozyme-integrated microneedle patch to enhance the treatment
of cutaneous squamous cell carcinoma, bridging chemodynamic
therapy with self-generated H2O2 and photothermal therapy. This
system included a microneedle patch loaded with MnO2/Cu2O
nanosheets and combretastatin A4. The nanosheets exhibited
glucose oxidase-like activity, catalyzing glucose to produce H2O2.



Figure 2 Microneedles for superficial cancer therapy. (A) Schematic illustration of the wearable self-powered F-MN system for deep-seated

melanoma treatment. (B) Representative microscopy images of histological sections with or without F-TENG and corresponding drug penetration

depth and fluorescence intensity. Data are presented as mean � SD, nZ 3; *P < 0.05, **P < 0.01, ***P < 0.001, ***P<0.0001. The ns indicates

no significance. Reprinted from Ref. 23. Under Copyright ª 2023, John Wiley and Sons. (C) Schematic diagram of a multifunctional microneedle

patch to simultaneously trigger photothermal therapy and combination chemotherapy. (D, E) Early-stage and advanced-stage melanoma tumor

treatment (mean � SD, n Z 5). Reprinted with the permission from Ref. 79. Copyright ª 2023 American Chemical Society.

5166 Chaoxiong Wu et al.
Released Cu triggered a Fenton-like reaction, efficiently gener-
ating hydroxyl radicals for chemodynamic therapy. Additionally,
CA4 released inhibited cancer cell migration and tumor growth by
disrupting tumor vasculature. The MnO2/Cu2O also showed pho-
tothermal conversion under NIR laser irradiation, killing cancer
cells and enhancing the Fenton-like reaction efficiency.

3.3. Photothermal therapy (PTT)

In photothermal therapy, photothermal agents, upon irradiation by
light of a specific wavelength, transition from the ground singlet
state to an excited singlet state. This electronic excitation energy
then dissipates through vibrational relaxation, returning to the
ground state89. The resultant increase in kinetic energy heats the
surrounding microenvironment. At tissue temperatures exceeding
60 �C, cellular death occurs instantaneously due to plasma
membrane rupture and protein denaturation. Photosensitizing
agents are typically administered intravenously or topically in
clinical settings, yet recent studies indicate that microneedle-
mediated PTT can generate localized hyperthermia with remark-
able anti-tumor efficacy90.

Various nanomaterials, both organic and inorganic, have been
explored for cancer PTT. Notably, inorganic nanomaterials are
extensively utilized for PTT owing to their diminutive size and
multifunctionality, which enable preferential tumor accumulation
and controlled hyperthermia induction91. Zhao et al.92 introduced
a microneedle patch incorporating porous silicon (PSi) loaded
with dual nanozymes, demonstrating synergistic effects with PTT
and nanocatalytic therapy. This system also exhibited enhanced
bifunctional mimic enzyme activity, both peroxidase-like and
glutathione oxidase-like. In a melanoma animal model, the system
achieved a significant tumor growth inhibition rate of 98.8%
within 14 days. Post-malignant skin tumor resection and unhealed
wounds contribute to poor prognoses, extended recovery periods,
and high recurrence rates. Lei et al.93 developed a hyaluronic acid
(HA)-based microneedle functionalized with biomineralized
melanin nanoparticles for simultaneous tumor PTT and skin tissue
regeneration. The melanin nanoparticles possessing antioxidative
and photothermal functionalities were employed to implement
PTT and scavenge reactive oxygen species (ROS). Further,
melanin was encapsulated with an amorphous silica shell that
served as a source of bioactive SiO4�

4 to stimulate skin tissue
regeneration. Due to the physical penetration characteristics of
microneedles, this system exerted photothermal eradication of the
remaining subcutaneous tumor cells to avoid recurrence and
inhibit infection in wound beds. Moreover, benefiting from SiO4�

4
release and ROS-scavenging, angiogenic gene expression could be
up-regulated and the inflammatory environment could be well
controlled. Shan et al.94 pursued a different approach for mela-
noma treatment and skin repair acceleration. They designed a two-
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layered microneedle platform: the dissolvable layer was loaded
with indocyanine green (IR820) and curcumin for chemo-
photothermal therapy, while the supporting layer comprised a
sodium alginate/gelatin/hyaluronic acid solution to stimulate skin
tissue regeneration.

Despite these advancements, combined systems for skin tu-
mors face challenges, such as monitoring drug release behavior
and achieving precise control over drug release. Wang et al.95

developed a self-monitoring microneedle-based drug release
system. They synthesized a polymer, Poly-AM-TPE-CAA
(PATC), loaded with DOX and ICG. At lower temperatures,
PATC exhibited strong fluorescence aggregation, while at higher
temperatures, its fluorescence significantly decreased, enabling
verification of drug release postethermal trigger and monitoring
of the phase transition during drug release. Experimental findings
confirmed that the integrated MN system facilitated spatiotem-
porally controlled chemo-photothermal therapy and visualized
drug release.
3.4. Photodynamic therapy (PDT)

Photodynamic therapy relies on the generation of reactive oxygen
species (ROS) by laser-irradiated photosensitizers to exert cyto-
toxic effects on cancer cells. While photosensitizers can induce
systemic toxicity when administered intravenously, Abd-El-Azim
et al.96 leveraged hollow microneedles to facilitate the delivery of
photodynamic agent-loaded nanoparticles. Initially, hypericin
(Hy), the photosensitizing agent, was encapsulated into lipid
nanocapsules (Hy-LNCs) to enhance solubility and intradermal
delivery. Subsequently, hollow microneedle-based Hy-LNCs were
combined with light to improve dermal penetration and augment
Hy’s antitumor activity for skin cancer treatment. Impressively,
the hollow microneedle-delivered Hy-LNCs achieved an 85.84%
tumor destruction rate post-irradiation.

The efficacy of PDT is often compromised by tumor hypoxia
and the robust antioxidant system within solid tumors. To address
this, researchers have devised strategies to catalyze endogenous
hydrogen peroxide into oxygen and neutralize antioxidant gluta-
thione (GSH)97e99. Li et al.100 developed a hyaluronic acid
microneedle patch (MN-CZCH) containing a self-oxygenating
nanoplatform with GSH depletion capability, enhancing both the
biosafety and therapeutic efficacy of PDT (Fig. 3A). The Cu2þ

doped porous zeolitic imidazolate framework, integrated with
catalase (CAT), efficiently loaded the photosensitizer 2-(1-
hexyloxyethyl)-2-divinylpyropheophorbic-a (HPPH). Once incor-
porated into the microneedle patch, which penetrates the stratum
corneum (SC), the system effectively delivered HPPH to the tumor
site, bolstering PDT efficacy through CAT-catalyzed O2 self-
supply and Cu2þ mediated GSH depletion. Concurrently,
fluorescence imaging of released HPPH facilitated repeated PDT
sessions, circumventing systemic side effects and optimizing
therapeutic outcomes. Additionally, the same research group
engineered a synthetic biology-instructed microneedle patch for
traceable PDT. This transdermal theranostic microneedle, inte-
grated with 5-aminolevulinic acid and tumor acidity-responsive
nanoparticles, enriched intratumoral protoporphyrin IX for effi-
cient PDT101 (Fig. 3E). Catalase co-loaded copper-doped calcium
phosphate nanoparticles (CCPCA NPs) continuously generated
oxygen to alleviate tumor hypoxia, increased protoporphyrin IX
accumulation, and stimulated protoporphyrin IX biosynthesis. The
Ca2þ/Cu2þ interplay enabled enhanced repeatable PDT, while
in vivo fluorescence/photoacoustic duplex imaging monitored the
intratumoral oxygen state and drug metabolic kinetics.

3.5. Immunotherapy

3.5.1. Traditional immunotherapy
Cancer immunotherapy has been a transformative force in
oncology, significantly extending the lives of patients with pre-
viously intractable cancers102e104. Broadly, immunotherapeutic
strategies fall into three categories: immune checkpoint blockade,
adoptive cellular therapies, and cancer vaccines105e109. However,
their effectiveness is often limited by tumors’ low immunogenicity
and the immunosuppressive tumor microenvironment.
Microneedle-mediated delivery has been explored to potentiate
immune responses and enhance the efficacy of cancer
immunotherapies.

Immune checkpoint blockade involves inhibiting immune
suppressors like PD1/PD-L1 and CTLA4 with antibodies to acti-
vate the immune system. Li et al.110 engineered a composite
peptide-supramolecular microneedle system for melanoma
immunotherapy. This system, utilizing peptide-supramolecular
spherical micelles, not only improved tumor tissue penetration
but also encapsulated immunologic adjuvants like resiquimod
(R848) to modulate the immune microenvironment. The integra-
tion of these micelles with microneedles significantly enhanced
drug delivery and retention at the tumor site, effectively inhibiting
melanoma growth. Joo et al.111 developed a dissolvable self-
locking microneedle patch integrated with immunomodulators
for cancer immunotherapy (Fig. 4A‒C). This patch, featuring a
sharp tip for skin penetration and a wide body for skin locking,
was fabricated using a digital light processing (DLP) 3D printer. It
delivered anti-SD-208, a TGF-b receptor I kinase inhibitor, and
aPD-L1 Ab, demonstrating superior dose efficacy and immuno-
modulation compared to traditional methods.

Adoptive cellular therapy, particularly effective for B cell
malignancies, faces challenges in treating solid tumors due to
physical and physiochemical barriers. Li et al.112 described a
polymeric porous microneedle patch that delivered chimeric an-
tigen receptor T cells (CAR T) to solid tumors, aiming to prevent
tumor recurrence. The patch, made from PLGA and featuring
CaCO3 microparticle-etched pores for CAR T loading, was
applied post-surgery to distribute CAR T cells effectively within
solid tumors.

Cancer vaccines aim to activate the immune system against
cancer. The skin’s antigen-presenting cells (APCs), including
dendritic cells (DCs), play a crucial role in antigen uptake and
presentation. However, the low precision of intradermal injections
hampers effective immune response induction. To address this,
researchers have loaded DCs, peptides, tumor lysates, and DNA
into microneedles for cancer treatment113e115. To carry living DCs
vaccines, Chang et al.52 reported cryogenic microneedles (cry-
oMNs) that were fabricated by stepwise cryogenic micro-molding.
In brief, the OVA-DCs (ovalbumin-pulsed DCs) were suspended
in the cryogenic medium, phosphate-buffered saline supplemented
with sucrose and dimethyl sulfoxide could maintain cell viability,
then the cell sank into the model and built the CryoMNs by the
gradient cryogenic solidification. The results showed CryoMNs
could pierce into skin painlessly and allow DCs to remain active.
In melanoma mouse models, loaded OVA-DCs-cryoMNs showed
better activation and maturation ability of DCs than subcutaneous
and intravenous injections. To further induce higher antigen-
specific cellular immune responses, Chang et al.53 combined



Figure 3 Cascade catalytic therapy combined microneedle (A) Schematic diagram of the MN-CZCH patch for the repeated PDT of melanoma.

(B) ROS in A375 cells upon different treatments with laser irradiation (100 mW/cm2, 3 min). (C) The relative contents of GSH in A375 cells upon

different treatments. (D) In vivo antitumor effect of MN-CZCH patch. Statistical significance was analyzed via a two-tailed Student’s t test.

***P<0.001; ns, not significant. Reprinted with the permission from Ref. 100. Copyright ª 2022, American Chemical Society. (E) Schematic

illustration of in vivo real-time companion theranostics by MN-CCPCA patch. Adapted with permission from Ref. 101. Copyright ª 2022 Nature

Publishing Group.
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OVA-DCs with anti-programmed cell death protein 1 antibody
(aPD1) to encapsulate in cryoMNs. The co-encapsulated cryoMNs
resulted in more robust anti-tumor therapeutic efficacy than
administration with cryoMNs loaded with OVA-DCs or aPD1.

3.5.2. Synergetic immunotherapy
Photoimmunotherapy (PIT) significantly enhances immuno-
therapy by releasing damage-associated molecular patterns
(DAMPs) and inflammatory cytokines99,115e117. In PIT, immune
stimulation arises from hyperthermia generated by photothermal
therapy (PTT) or reactive oxygen species (ROS) produced by
photodynamic therapy (PDT), leading to tumor cell destruction118.
The application of microneedles in conjunction with PIT is
particularly effective as they can access the antigen-presenting
cells (APCs)-rich dermal layer, potentially eliciting a robust
immune response.

Ye et al.115 developed a melanin-mediated cancer immuno-
therapy patch that directly targets APCs by delivering melanin
combined with tumor lysates. The presence of melanin and tumor
lysate enables local heat release upon near-infrared (NIR) light
exposure, which in turn triggers the release of inflammatory
cytokines, attracting immune cells and producing immunogenic
cytokines to activate the immune system. Additionally, the in-
crease in local interstitial tissue temperature enhances lymphatic
and blood flow, aiding the migration of T cells and APCs. The
microneedle patch also encapsulates adjuvants like granulocyte-
macrophage colony-stimulating factor (GM-CSF) to recruit DCs.
In the B16F10 melanoma model, this vaccine microneedle patch
induced robust innate and adaptive immune responses, leading to
tumor regression.

In another study focusing on PDT-induced immunogenic cell
death (ICD) and DAMPs, Bian et al.119 utilized polyunsaturated
fatty acids (PUFAs) to conjugate chlorin e6 (L-Ce6), enhancing its
cellular uptake by tumor cells (Fig. 4D). The microneedle loaded
with L-Ce6 enhanced photoimmunotherapy. Upon 660 nm laser
illumination, the L-Ce6 microneedle triggered ICD and DAMPs
release, including high-mobility group box 1 protein (HMGB1),
calreticulin (CRT) exposure, and ATP secretion, ultimately
enhancing tumor immunogenicity and activating anti-tumor
immune responses in mouse melanoma.



Figure 4 Immunotherapy by microneedle. (A) Fabrication process of dissolvable self-locking MN patch. (B) Geometry of self-locking MN.

(C) Mechanism of action in SD-208 and aPD-L1 Ab for melanoma combination therapy. Reprinted from Ref. 111. Under Copyrightª 2023, John

Wiley and Sons. (D) Schematic illustration of the facile fast-dissolving microneedles-based composite system for photodynamic therapy.

Reprinted with the permission from Ref. 119. Copyright ª 2021 American Chemical Society.
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Chemoimmunotherapy combines anticancer agents with
immune modulators, offering a promising approach against can-
cer. This treatment induces tumor cell death and elicits tumor-
specific immune responses, significantly inhibiting the growth and
spread of metastatic tumors. Microneedles can mitigate the
adverse effects of chemoimmunotherapy, such as systemic im-
mune responses and cytotoxicity.

Jung et al.120 designed a dissolving microneedle using an
amphiphilic triblock copolymer to create micelles (PTX/
R848@NMC) with paclitaxel (PTX) and resiquimod (R848).
The PTX and R848 combination synergistically induced ICD in
melanoma cells at low PTX concentrations, sparing DCs. Upon
application in tumor-bearing mice, PTX/R848@NMC migrated to
tumor-draining lymph nodes, causing tumor cell death and DC
activation/maturation, effectively suppressing tumor growth. Jiang
et al.121 introduced microneedles loaded with temozolomide
(TMZ) and MnCl2 (TMZ/MnCl2@HMN) for local transdermal
drug release in melanoma chemoimmunotherapy. TMZ caused
DNA damage and amplified the Mn2þ induced cGAS-STING
pathway, creating a substantial immunological synergistic effect
with TMZ-induced ICD, presenting a promising strategy for
treating metastatic melanoma.
4. Inflammatory skin diseases

4.1. Psoriasis

Psoriasis, an immune-mediated chronic inflammatory skin condi-
tion, affects 2%e5% of the global population. It manifests as thick,
red, scaly plaques due to hyperproliferation of keratinocytes and
infiltration of inflammatory cells. Various therapeutic strategies,
including systemic therapy, topical drugs, and physical ther-
apy122,123, aim to mitigate psoriasis symptoms. Clinically approved
treatments encompass traditional drugs, biological agents, and
small-molecule targeted drugs. Biological agents, typically inject-
able, have limited application scope, while oral administration of
small-molecule targeted drugs and traditional drugs may cause
gastrointestinal discomfort and exhibit suboptimal efficacy.

First-line systemic therapies like methotrexate (MTX), cyclo-
sporine A (CyA), and retinoic acid are effective but can induce
adverse effects such as hypertension, hepatotoxicity, and renal
impairment. To minimize these side effects, researchers have
integrated microneedles with drugs124e131. Du et al.132 developed
an MTX-loaded microneedle patch for percutaneous administra-
tion. They demonstrated that the application of MTX-loaded
microneedles could ameliorate psoriasis-like skin in mice with
psoriasis. Compared with oral administration, the microneedle
group showed augmented efficacy in suppressing the exacerbation
of lesions and mitigated systemic toxicity. Psoriasis is a chronic
skin disease. To prolong the drug release, their group designed a
ROS-responsive cross-linked gel microneedle patch with epi-
gallocatechin-3-gallate (EGCG) and MTX133 (Fig. 5A‒C). After
insertion into psoriasis-like skin with a high ROS expression
environment, the MTX would quickly release from porous tips to
provide timely treatment. Then, the cross-linked gel needle tips
could continuously release EGCG, which has good anti-
inflammatory and antioxidant properties. Finally, this parch
showed an enhanced treatment outcome in both psoriasis-like and
prophylactic psoriasis-like models.

Conventional microneedles offer controlled, prolonged drug
release but may not meet patients’ on-demand delivery needs.
Yang et al.134 designed a self-powered, controllable transdermal
drug delivery system for the on-demand release of Dex to treat
psoriasis. In this system, the microneedle patch was fabricated
by the conductive material of polypyrrole (PPy). Further, they
developed a piezoelectric nanogenerator (PENG) based self-
powered controllable transdermal drug delivery system, which



Figure 5 Microneedle for psoriasis treatments. (A) Schematic of ROS responsive gel-based MN patches for psoriasis management. (B, C)

Evaluation of therapeutic effects of MN patches in the psoriasis mice (up) and prophylactic (down) models. Reprinted with the permission from

Ref. 133. Copyright ª 2023, American Chemical Society. (D) Confocal images of the cross-section of Treg cell-loaded MN. Scale bar, 200 mm.

(E, F) Treg cells viability and accumulated release of Treg cells from MN. (G, H) Schematic showing the release of Treg cells in vitro and

corresponding time-lapse images. Scale bar, 200 mm. Adapted with permission from Ref. 58. Copyright ª 2023 AAAS.
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could control drug release by converting mechanical energy into
electrical energy. It found that the patch could release 8.5 ng Dex
subcutaneously per electrical stimulation. In the psoriasis model, this
system showed better results than when treated with Dex solution
coating. In a related study, Wang et al.135 produced a microneedle
patch from a budesonide-encapsulated ionic hydrogel with an inverse
opal scaffold structure. The hydrogel generates charge upon skin
contact, prompting drug release and reducing skin fibrosis. The
patch’s vivid structural color, resulting from the inverse opal scaffold,
allows monitoring of drug release during treatment.

Microneedle devices are also explored for delivering thera-
peutic cells and aiding genome editing in psoriasis therapy. Zhang
et al.58 developed perforated microneedles for local regulatory T
(Treg) cell delivery to inhibit immune effector cell activation and
proliferation (Fig. 5D‒H). The microneedle’s spacious cavity
allows Treg cells in gelatin gel to fill the shell under vacuum,
maintaining cell viability for at least 6 h. The microneedle shell,
composed of poly(vinyl propionate-co-methyl methacrylate)
[poly(VP-co-MMA)], generates fatty acids that enhance Treg cell
suppressive function through fatty acid oxidation (FAO)-mediated
metabolic intervention. This Treg cell therapy via perforated
microneedles significantly alleviated psoriasis syndrome in a
mouse model compared to intradermal or intravenous cell in-
jections. For genome editing, Wan et al.136 reported a dissolvable
microneedle patch targeting NLRP3 with CRISPR-Cas9 for
synergistic inflammatory skin disorder therapy. The microneedle
delivers Cas9 nanocomplexes and Dex-loaded PLGA nano-
particles into the skin layers, with subsequent release of Cas9 and
Dex exerting therapeutic effects. This system outperformed Dex
cream or tacrolimus ointment in treatment efficacy.

4.2. Atopic dermatitis

Atopic dermatitis (AD) is a chronic inflammatory skin condition
characterized by erythema, dry skin, and itching, affecting 2%e5%
of the global population137. It is considered a Th2 or Th22-driven
allergic disease, with Th2 cytokines exacerbating inflammation
through eosinophils and mast cells, and Th22 contributing to skin
barrier disruption via IL-22 production138. Clinical management of
AD typically involves injections, oral medications, or topical
treatments, similar to psoriasis management strategies139,140.
However, these methods often cause significant patient discomfort,
prompting researchers to explore microneedle transdermal delivery
systems to improve drug efficacy and patient compliance141.

Triamcinolone acetonide (TA) is a widely prescribed synthetic
corticosteroid for AD relief. TA mitigates inflammation by
suppressing immunological pathways in keratinocytes, down-
regulating various inflammatory genes, and inhibiting inflamma-
tory cell functions. Nevertheless, intralesional TA injections can
cause considerable pain due to AD’s recurrent nature. Addressing
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this issue, Jang et al.142 introduced a high-dose TA-loaded
dissolving microneedle (TA-DMN) system for painless AD
treatment. This system encapsulated 2 mg of TA, aligning with
clinical dosages, and featured a stable TA particle size of 5.2 mm
to enhance safety. In vivo studies demonstrated that the high-dose
TA-DMN significantly reduced skin inflammation, comparable to
TA injections and cream formulations, offering a viable alternative
to painful intralesional injections.

Synthetic chemical drugs often require complex synthesis
steps, and their metabolism can lead to organ toxicity. Zhang
et al.143 presented polydopamine (PDA) nanoenzymes integrated
into near-infrared ray (NIR)-responsive microneedles for AD
treatment. The PDA nanoenzymes, synthesized through straight-
forward procedures, scavenged various ROS via their reductive
catechol and imine groups. Leveraging PDA’s photothermal con-
version ability, the microneedles inhibited bacterial growth,
alleviated inflammation, and stimulated microcirculatory blood
flow, resulting in reduced mast cells, Th2 cytokines, and epidermal
thickness in an AD mouse model.

Typically, drugs enter circulation after microneedle penetration,
but controlling drug release remains challenging. Yang et al.144

developed a conductive microneedle patch with electrically-
triggered drug release for AD treatment. The patch, comprising a
polylactic acid-platinum (PLA-Pt) array and a PLA-Pt-polypyrrole
(PLA-Pt-PPy) array, allowed anionic drugs to be doped into PPy,
with release rates modifiable by varying electrical voltages. In vivo,
the electrode microneedle delivered drugs more effectively than
other methods, showcasing a promising on-demand drug delivery
approach. Song et al.145 proposed an inflammation-responsive
double-layer microneedle (IDMN) for in situ delivery of Vitamin
D3 (VD3) for recurrent AD therapy. The IDMN’s inner layer, made
of gelatin methacryloyl (GelMA) loaded with VD3, and the outer
hyaluronic acid (HA) layer provided mechanical strength and
moisturizing effects post-dissolution. The inner layer’s-controlled
degradation and VD3 release were modulated by matrix metal-
loproteinase (MMP) concentrations. In BALB/c mice with AD,
IDMN application led to significantly improved treatment out-
comes. Another study introduced a PLGA/HA microneedle system
for long-term polyphenol delivery in AD management146. The HA
layer, containing gallic acid (GA), rapidly dissolved to release GA,
while the PLGA layer extended curcumin (CUR) release for over
56 days, demonstrating the system’s capability for rapid and
sustained AD management.

5. Wound

Wound management presents a significant financial challenge. To
meet the needs of wound care, various drug delivery systems, such
as nanocarriers, hydrogels, and films, have been developed147e149.
These systems enhance drug delivery by controlling release and
improving retention. However, obstacles such as wound clots and
bacterial biofilms can impede effective delivery. There is a need for
efficient topical delivery systems to facilitate wound healing.
Microneedles offer distinct advantages in wound healing and tissue
regeneration, improving delivery efficiency, reducing drug toxicity,
and providing integrated wound management150. This section re-
views recent advancements in microneedle-assisted wound healing.

5.1. Diabetic wound

Diabetic wounds, common in diabetic patients, often lead to
persistent non-healing wounds characterized by excessive ROS,
impaired angiogenesis, and chronic inflammation151,152. The lack
of nutrition and oxygen at wound sites further complicates clinical
treatment. Traditional treatments focusing solely on the wound are
inadequate due to the complex microenvironment. Thus, a
multifunctional tool for diabetic wound healing is sought153.

Recent studies have employed microneedles for diabetic
wound healing, promoting cell migration, enhancing angiogenesis,
and boosting antibacterial activities154. Cell-based strategies are
considered efficient, modulating cell proliferation and regulating
microenvironments. Fan et al.16 introduced novel porous
microneedle arrays with hydrogel-encapsulated stem cells post-
perfusion for diabetic wound treatment. These arrays were
created using UV-curable GelMA and PEGDA, combined with
glass microspheres, to fill negative molds and etched overnight.
ADSCs were loaded by perfusing Matrigel into the porous
microneedles. The porous structure allowed ADSCs to absorb
nutrients and proliferate, showing greater proliferation and growth
factor production than solid microneedles. This porous micro-
needle patch promoted angiogenesis, tissue regeneration, and
collagen deposition in diabetic wound models in mice.

Exosomes from stem cells can also activate fibroblasts, mac-
rophages, and vascular endothelial cells16,155. Zhang et al.156

developed indwelling microneedles with bioinspired adaptable
capabilities to encapsulate MSC-exosomes for diabetic wound
treatment. The patch used PVA hydrogel for needle tips to
encapsulate exosomes and 3M detachable medical tape as the
supporting substrate. The mechanical strength of the microneedle
was adjusted with Na2SO4 and Fe(NO3)3, adapting to different
stages based on Hofmeister effects. The 3M tape separated from
the tips upon contact with body fluids, leaving the needle tips in
the tissue. This design modulated wound microenvironments and
accelerated healing.

Hypoxia and infection pose urgent clinical challenges in
chronic diabetic wounds157. Studies have combined inorganic
catalase activity with microneedles for treatment158. Sun et al.159

designed integrated therapeutic nanozyme-based microneedles
(Fe2C/GOx@MNs) to promote healing of MRSA-biofilm-infected
diabetic wounds. Fe2C catalyzed hydrogen peroxide into hydroxyl
radicals in acidic environments, and GOx enhanced the
peroxidase-like property of nanozymes. The resulting hydroxyl
radicals disrupted biofilms and bacterial structures, leading to
bacterial death, while the chitosan base layer protected against
reinfection. Yang et al.160 developed a multifunctional micro-
needle bandage for diabetic wound treatment (Fig. 6A‒C). Firstly,
they prepared dopamine-coated hybrid nanoparticles (SeC@PA)
containing selenium (Se) and chlorin e6 (Ce6), and then modified
SeC@PA with L-arginine (LA) on the surface. After the micro-
needle was loaded with SeC@PA and applied to diabetic wounds,
the SeC@PA was delivered to the live tissue of the wound.
Impressively, SeC@PA could achieve dual directional regulation
of reactive oxygen species (ROS) and reactive nitrogen species
(RNS) in response to the microenvironment. With high GSH
levels, SeC@PA could produce 1O2 during irradiation. At the
same time, LA could produce NO to deplete GSH and generate
RNS to eradicate the biofilm. Conversely, after delivery into the
inflammatory tissue, SeC@PA exhibited potent antioxidant
effects by enhancing glutathione peroxidase (GPX) activity and
scavenging reactive species. Furthermore, it promoted macro-
phage polarization toward the M2-type to facilitate wound heal-
ing. However, the uncontrolled decomposition of inorganic
peroxides may lead to safety issues161. Gao et al.162 constructed
living Chlorella-loaded poly(ionic liquid)-based microneedles



Figure 6 Microneedle for wound therapy. (A) Scheme of self-enhancing photodynamic immunomodulatory microneedle for diabetic wound

therapy. (B) Anti-biofilms effect of nanoparticles. (C) Nanoparticles polarized macrophages toward M2 phenotype. Adapted with permission from

Ref. 160. Copyright ª 2023, Nature Publishing Group. (D) Schematic diagram illustrating the synthesis of Chlorella-loaded PIL-based

microneedles (PILMN-Chl). (E) The image of PILMN-Chl with microscope. (F) In vivo therapeutic performance of PILMN-Chl in chronic

diabetic wounds. Reprinted from Ref. 162. Under Copyright ª 2024 John Wiley and Sons.
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(PILMN-Chl) for microacupuncture oxygen and antibacterial
therapy against MRSA-infected chronic diabetic wounds
(Fig. 6D‒F). Cationic PIL was used for bacterial infections, and
chlorella, a natural oxygen generator, photosynthesized to produce
oxygen continuously. In vivo studies showed that PILMN-Chl had
anti-inflammatory and sterilization effects, making it a promising
candidate for chronic wound infection treatment strategies.

5.2. Infected wound

Skin infections caused by fungi, bacteria, and viruses are
widespread and pose a significant public health concern. Tradi-
tional drug administration methods lack specificity and increase
the risk of systemic toxicity. Topical treatments with antibiotics
have limitations in addressing superficial infections. Conse-
quently, researchers are increasingly turning to microneedles for
anti-infection purposes by encapsulating multifunctional materials
or drugs163e165.

Inorganic materials are frequently chosen for their multifunc-
tional treatment capabilities166,167. Shan et al.168 introduced a
dual-functional MgB2 microparticles integrated microneedle
(MgB2 MN) patch designed to eradicate bacteria and remove dead
bacteria, aiding in skin infection management. The resultant MgB2
microparticles could produce an alkaline microenvironment by
hydrolysis, which could promote the fibroblasts and keratinocytes
proliferation and migration. Moreover, the microparticles
exhibited remarkable bactericidal activity and could effectively
mitigate dead bacteria-induced inflammation. In vivo experiments
revealed that the integrated microneedle could reduce bacterial
skin infections and dead bacteria-induced wound inflammation.
Wound healing has several stages, so it is a significant challenge to
select appropriate interventions. Zhang et al.169 described a
coreeshell structured microneedle that regulates inflammation,
proliferation, and remodeling phases in a programmed manner.
This patch consists of a ROS-degradable poly(vinyl alcohol) shell
loaded with verteporfin (VP) and a core made of crosslinked
heparin (cHP core). VP generates ROS under laser irradiation to
eliminate underlying bacteria and blocks engrailed-1 (En1)
activation, promoting scarless skin regeneration. The cHP core
modulates the immune microenvironment and induces macro-
phage polarization from the M1 to M2 phenotype. In rabbit ear
scar models, this structured microneedle not only enhanced
chronic wound healing but also reduced hypertrophic scarring.

Wound monitoring is crucial for patients to understand their
health status, but traditional methods require complex instruments
or skilled operators, limiting their use170. The microneedle sensing



Table 2 MNs used in aesthetic skin issues.

Disease type Therapeutic substance Ref.

Acne vulgaris Eugenol-loaded polydopamine 178

Azelaic acid 179

Epigallocatechin gallate (EGCG) 180

Salicylic acid, asiaticoside 181

Clindamycin 182

Zinc porphyrin-based MOF and

zinc oxide (ZnTCPP@ZnO)

21

Hair loss IL-2 and CCL22 19

Minoxidil 183e186
VEGF and ritlecitinib 187

Kopexil and kopyrrol 188

Chitosan lactate (CL) and

exosomes (EXO)

189

Platelet rich plasma (PRP) 190

Ceria nanozymes 191

Finasteride 192

Quercetin (Qu), copper and

zinc ions

193

Triamcinolone acetonide 194

Scar Triamcinolone acetonide 195,196

Exosomes 197

Silver nanoclusters, trigonelline,

zeolitic imidazolate framework-8

198

Bletilla striata polysaccharide

(BSP) and quercetin (QUE)

199

5-Fluorouracil acetic acid

(5-FuA) prodrug

200

Microneedles for skin diseases treatment 5173
platform has shown promise in disease state monitoring171e173.
Xiao et al.174 developed a sensing microneedle patch for
healing bacterially infected wounds and monitoring wound pH.
The patch, loaded with MOF (BiePCN-222) and curcumin in the
tip and a pH-sensitive fluorescent indicator in the substrate, can
self-sterilize by disrupting bacterial metabolic electron transfer.
Curcumin serves as an anti-inflammatory agent. The fluorescent
indicator enables rapid and precise wound pH detection, with
color changes captured by a smartphone for real-time monitoring.
In mouse models, this patch monitored wound infection and
demonstrated excellent antimicrobial properties. Wang et al.175

created a novel theranostic platform combining a triboelectric
nanogenerator (TENG) and microneedle (Fig. 7). The microneedle
consists of a polyvinylpyrrolidone layer (pMN) atop a conductive
stainless-steel layer (sMN). The pMN contains antibiotics that
dissolve in interstitial fluids, while the sMN, coated with silver and
carbon nanotubes, acts as an electrochemical sensor for hydrogen
peroxide and uric acid detection in wounds. Additionally, the
TENG provides electrical stimulation to expedite wound closure.

6. Aesthetic skin issues

The appearance of skin is a significant concern in daily life, as
abnormalities can have both physiological and psychological im-
pacts on individuals. Conventional transdermal formulations face
substantial challenges in effectively delivering drugs to lesions due
to the skin barrier and hypertrophic tissues. Intralesional injections,
while potentially effective, require skilled administration and can
be uncomfortable, leading to limited patient compliance176,177.
Microneedles offer a more direct and efficient approach for treating
skin disorders compared to systemic diseases, superficial cancers,
or autoimmune diseases. Several microneedle products are already
available for treating wrinkles and pigmentation25. This section
will introduce novel treatments combined with microneedle
applications for various skin disorders, including acne vulgaris,
alopecia, scars, and beauty-related issues (Table 2)19,21,178e200.

Acne vulgaris, a prevalent inflammatory skin disease caused by
Propionibacterium acnes, is typically treated with antibiotics and
creams. To enhance the efficacy and reduce the toxicity of these
traditional drugs, researchers have integrated them with micro-
needles. Additionally, synergistic therapeutic strategies have been
Figure 7 Schematic images of electronic microneedle. (A) Schematic

MN-TENG-based theranostic platform. (B) SEM of pMN/CNT/Ag/sMN. (

Copyright ª 2024 John Wiley and Sons.
developed. Notably, Xiang et al.21 synthesized a composite of zinc
porphyrin-based MOF and zinc oxide (ZnTCPP@ZnO) and
loaded it into microneedles to treat acne vulgaris (Fig. 8). This
composite significantly improved sonocatalytic performance and
reduced the activation energy of oxygen. Under ultrasound, it
rapidly produced ROS to kill P. acnes. Furthermore, released zinc
ions could regulate metallothioneins (Mt) 1, Mt2, and DNA
replication, maintaining zinc homeostasis in cells and accelerating
skin repair.

Hair loss, particularly alopecia, which includes androgenetic
alopecia (AGA) and alopecia areata (AA), seriously affects
image for fabrication process (left) and working principles (right) of

C) Optical images of the integrated platform. Reprinted from Ref. 175.



Figure 8 Efficient sonodynamic ion therapy-based MN patch for acne treatment. Adapted with permission from Ref. 21. Copyright ª 2023

AAAS.
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appearance. AGA, the most common type, involves excess
androgen, inflammation, and follicle shrinkage201. Approved
drugs are limited to finasteride and minoxidil, which suffer from
adverse effects and low absorption, resulting in poor patient
compliance. Researchers have developed multiple strategies based
on AGA’s pathophysiology and have utilized microneedles to
enhance drug absorption, induce growth factor production, and
stimulate neoangiogenesis183e185,187e192. Zhang et al.193 proposed
a combination therapy for AGA using nanocomposites loaded
microneedles. This nanocomposite contained quercetin, copper,
and zinc ions, which synergistically alleviated inflammation,
inhibited androgen damage, and activated hair regeneration and
follicle stem cells.

AA, a T-cell mediated autoimmune disease characterized by
hair loss, affects approximately 3% of the population. First-line
drugs for AA include corticosteroids and Janus Kinase
inhibitors186,194. However, AA relapse remains a challenge.
Studies have shown that Treg cell activity influences AA devel-
opment. Younis et al.19 developed an immunoregulation
microneedle to enhance Treg cells for AA treatment. This system
delivered IL-2, a Treg cell survival factor, and CCL22, a Treg cell
chemoattractant, expanding Treg cells without causing peripheral
immunosuppression.

Post-healing scars impact aesthetics and function. Hypertro-
phic scars (HS) are characterized by excessive extracellular matrix
(ECM) deposition. Conventional transdermal preparations strug-
gle to penetrate the rigid stratum corneum and dense ECM. To
overcome these barriers, researchers have combined microneedles
with materials and treatments such as exosomes, MOFs, and
mechanical therapy195,197e199,202. Yang et al.200 developed
endogenous stimuli-responsive separating microneedles to treat
HS by remodeling the pathological microenvironment. They
synthesized a 5-fluorouracil acetic acid (5-FuA) prodrug respon-
sive to endogenous stimuli (MMP2, MMP9, and ROS). In vivo
experiments showed the patch significantly reduced collagen
fiber deposition and fibroblast proliferation. Single-cell RNA
sequencing (scRNA-seq) analysis revealed that fibroblasts and
keratinocytes played central roles in HS treatment with
microneedles.

Keloids, another type of pathological scar, are more chal-
lenging to treat due to their prolonged progression. While keloid
treatment with microneedles is similar to HS, the scarcity of
representative animal models limits research. However, several
studies have explored microneedle applications in keloid patients.
Tan et al.196 conducted a clinical trial evaluating the efficacy and
safety of triamcinolone-loaded microneedles in reducing keloid
volume. The results indicated that microneedle patches signifi-
cantly reduced keloid volume, offering an alternative for patients
unsuitable for conventional treatments.

Microneedles used in aesthetic skin treatments are gaining
attention. Microneedles can combine functional agents, increase
dermal collagen content, and promote neovascularization, effec-
tively reshaping skin appearance. Their use in medical aesthetics
for treating wrinkles, pigmentation, or photoaging is more readily
approved than clinical drugs14,203,204. The commercialization of
microneedles for cosmetic dermatology is driving the develop-
ment of the transdermal delivery system industry25.

7. Conclusion and prospect

Skincare and skin diseases represent a significant segment in the
clinical application of microneedles25. This review encapsulates
recent achievements in treating skin diseases using microneedles
(MNs) and elucidates their mechanisms of action. The swift
evolution of MNs promises to enhance patient care, as they are
adaptable to a broad spectrum of treatments. Nonetheless, the
translation of drug delivery and material loading in MNs for
multi-treatment applications into commercial products remains
limited205. While the market is replete with cosmetic MN prod-
ucts, formidable challenges obstruct the development of MN drug
products. The primary hurdles in the clinical translation of MN
drugs encompass:

1. Scientific barriers: (1) Limited dosing capacity: the micro-
needles’ size inherently restricts the drug quantity they can
carry. (2) Inconsistent pharmacokinetics: factors such as aging
skin can impede microneedle insertion and complete dissolu-
tion, complicating consistent drug delivery. (3) Material safety:
selecting safe and appropriate excipients is critical yet chal-
lenging in pharmaceutical development.

2. Commercial barriers and regulations: (1) Patient/Prescriber
acceptability: convincing stakeholders of MN products’ bene-
fits, given existing cost-effective alternatives, is daunting. (2)
Sterilization: aseptic processing, though essential, adds
significant cost. (3) Large-scale fabrication: ensuring batch
consistency and developing cost-effective production methods
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are vital for therapeutic MN applications. (4) Official guidance:
currently, FDA guidance is the primary reference for MN de-
vices, underscoring the need for more comprehensive regula-
tory frameworks.

The focus is shifting toward the creation of intelligent and
multimodal microneedles, designed to cater to specific disease
conditions and facilitate both treatment and monitoring of drug
delivery and disease progression175. However, material safety
remains a paramount concern with novel materials, necessitating
careful consideration during research and development.

Currently, there is a growing emphasis on the development of
intelligent and multimode microneedles206e209. These efforts are
aimed at integrating multimode materials or devices that can be
tailored to specific disease conditions, enabling the treatment and
monitoring of drug delivery parameters as well as changes in
disease status. However, despite the challenges already mentioned,
the safety of materials remains one of the primary concerns
associated with novel materials. So, researchers ought to give
particular consideration to this segment during the design process
of the experiment.

In conclusion, although the potential of MNs in skincare and
skin disease treatment is enormous, there are numerous challenges
that need to be addressed to translate these advances into clinically
viable products. This involves cell experiments, animal tests, and
clinical trials to assess safety and efficacy. Additionally, it is
imperative to establish uniform standards and regulations for MN
devices to ensure their safety and effectiveness in clinical practice.
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