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Abstract

Dysregulation of calcium homeostasis is a major mechanism of doxorubicin (DOX)-induced cardiotoxicity.

Treatment with DOX causes activation of sarcoplasmic reticulum (SR) ryanodine receptor (RYR) and rapid release

of Ca2þ in the cytoplasm resulting in depression of myocardial function. The aim of this study was to examine the

effect of dantrolene (DNT) a RYR blocker on both the cardiotoxicity and antitumor activity of DOX in a rat model of

breast cancer. Female F344 rats with implanted MAT B III breast cancer cells were randomized to receive

intraperitoneal DOX twice per week (12 mg/kg total dose), 5 mg/kg/day oral DNT or a combination of DOX þ DNT

for 3 weeks. Echocardiography and blood troponin I levels were used to measure myocardial injury. Hearts and

tumors were evaluated for histopathological alterations. Blood glutathione was assessed as a measure of

oxidative stress. The results showed that DNT improved DOX-induced alterations in the echocardiographic

parameters by 50%. Histopathologic analysis of hearts showed reduced DOX induced cardiotoxicity in the group

treated with DOX þ DNT as shown by reduced interstitial edema, cytoplasmic vacuolization, and myofibrillar

disruption, compared with DOX-onlyetreated hearts. Rats treated with DNT lost less body weight, had higher

blood GSH levels and lower troponin I levels than DOX-treated rats. These data indicate that DNT is able to

provide protection against DOX cardiotoxicity without reducing its antitumor activity. Further studies are needed

to determine the optimal dosing of DNT and DOX in a tumor-bearing host.

Translational Oncology (2020) 13, 471–480
Introduction
Doxorubicin (DOX) is an anthracycline antibiotic commonly used
for treatment of various malignancies. DOX can cause unpredictable
and sometimes irreversible cardiac toxicity, which remains a major
limitation in cancer chemotherapy [1,2]. DOX-induced cardiotoxi-
city is cumulative-doseedependent and begins with the first dose of
chemotherapy [3,4]. The acute/subacute cardiovascular complica-
tions of DOX are characterized by various atrial and ventricular
arrhythmia [5,6], whereas the cumulative chronic cardiotoxicity is
typically manifested as irreversible cardiomyopathy, which, in turn,
leads to congestive heart failure [3].
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The mechanism of DOX-induced cardiotoxicity is not well
understood, making it difficult to predict or prevent cardiotoxicity
in the individual patients [7]. It is believed that DOX-induced
cardiotoxicity is a result of the summation and mutual feedback of
diverse processes [8,9], with the major mechanism considered to be
the oxidative stress [10,11]. Redox-related metabolic transformation
of DOX results in overproduction of reactive oxygen species (ROS)
and nitrogen species [12]. ROS alter calcium homeostasis in various
muscle cell types via disruption of normal sarcoplasmic reticulum
(SR) function, including activation of Ca2þryanodine receptors/
Ca2þ�releasing channels (RYRs) to induce Ca2þ release from SR and
inhibition of the Ca2þ ATPase pump (SERCA) [13,14]. Treatment
with high concentrations of ryanodine [15], or Ca2þ chelators [16]
inhibits DOX-mediated ROS production. These reports indicate that
increased DOX/ROS-mediated abnormal Ca2þ release may play an
important role in DOX-induced cardiotoxicity. It has also been found
that RYRs have several sites for binding DOX and the binding occurs
regardless of whether the channel is open or closed [17]. DOX can
bind and open RYR2 which contributes to the release of Ca2þ from
SR and increases the levels of Ca2þ in the cytoplasm, resulting in
activation of contractile proteins and initiation of muscle contraction
[18]. It has been suggested that Ca2þ uptake into SR and restoration
of SR Ca2þ levels is inhibited by redox modification of SERCA2A by
the DOXmetabolite doxorubicinol, leading to calcium overload [19].

Dantrolene (DNT) is a postsynaptic muscle relaxant that lessens
excitation-contraction coupling in muscle cells. It is commonly used
to treat malignant hyperthermia, a genetic predisposition to excessive
intracellular Ca2þ release on exposure to volatile anesthetics. DNT
was able to block both RYRs [20] and to correct the abnormal Ca2þ

in experimentally induced heart failure [21]. Rat experimental studies
have tested and compared single intraperitoneal (i.p.) doses of DNT
at 5 mg/kg and 10 mg/kg [22,23] and intravenous (i.v.) doses of
DNT at 3 mg/kg, 10 mg/kg, and 20 mg/kg [24]. DNT at a dose of
5 mg/kg was able to protect against DOX-induced cardiotoxicity
[25], isoproterenol cardiotoxicity [22], and whole body irradiation
[26].

DNT and its analog azumolene were suggested as potent inducers
of cell death in tumor cell culture [27] because of antioxidant
properties [28]. However, there are no published studies on the effect
of DNT in a tumor-bearing host. Therefore, the present study aimed
to obtain preliminary data on the efficacy of DNT as an adjuvant to
chronic DOX chemotherapy in a tumor-bearing host using a rat
breast cancer model [29,30].

Materials and Methods

Ethics Statement

This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of Laboratory
Animals of the National Institutes of Health. The protocol was
approved by the Animal Care and Use Committee at the Central
Arkansas Veterans Healthcare System (CAVHS), where the animals
were housed, treated, and sacrificed. All procedures and experiments
complied with the guidelines to minimize animal suffering.

Animal Model
Female Fisher344 rats (NCI, Frederick, MD) weighing

140e150 g were used. The rats were maintained two/cage in
standard cages in the animal care facility and housed under controlled
conditions of a 12-hours light/dark cycle at 21 �C. Food and water
were provided ad libitum. Orthotopic breast cancer was created by
injecting 1 � 10̂ 6 13762 MAT B III rat mammary adenocarcinoma
cells (ATCC, Manassas, VA) in 0.2 ml saline into the mammary fat
pad of rats anesthetized with 2% isoflurane/oxygen, as described in
our previous publications [30,31]. After tumors reached 5e6 mm in
diameter, the rats were randomly assigned into the following
treatment groups: (1) DOX-treated (n ¼ 14) group received
intraperitoneally (i.p.) 2 mg/kg/injection of doxorubicin hydrochlor-
ide (Sigma Chemical Co., St. Louis, MO) diluted in saline twice a
week for 3 weeks (6 doses for a total dose of 12 mg/kg); (2)
DNT-treated group (n ¼ 14) received by oral gavage 5 mg/kg/day
dantrolene sodium (Revonto, Novartis, Greenville, NC) diluted in
water for 3 weeks; (3) DOX þ DNT (n ¼ 14) group received DOX
and DNT as described for DOX and DNT groups; and (4) tumor
growth control group injected with saline and gavaged with water
(n ¼ 10); and (5) naïve tumorfree controls for body weight change
comparison (n¼ 5). Rat body weights were recorded daily and tumor
size was measured using calipers. Animals were sacrificed after the
completion of the treatment. Blood was withdrawn via heart puncture
with a heparin-containing syringe. Samples from tumors and the left
ventricle (LV) were fixed in neutral buffered formaldehyde (4% wt/
vol). Tumor volumes were calculated according to the formula:
V ¼ 0.5 � (ab̂ 2), where “a” is the longer diameter and “b” is the
shorter diameter of the tumor [31].
Echocardiography
Cardiac pathophysiological alterations were examined by echocar-

diography before tumor implantation and after completion of
treatment using ultrasound imaging system Vevo 770 High-Resolu-
tion In Vivo Imaging System (VisualSonics, Toronto, ON, Canada)
with an RMV 707B Scanhead, as described previously [30].
Histopathological Assessment of Cardiac and Tumor Tissue
Tissue samples from the left ventricle were fixed in 10% neutral

buffered formalin and processed for paraffin-embedded sections of
4 mm thickness. Sections were stained with hematoxylin and eosin
(H&E) for routine light microscopic examination. The myocardium
was scored using a semiquantitative method as described [32,33] for
the severity and extent of cardiomyopathy, specifically for cytoplasmic
vacuolization, edema, vascular congestion and myofibrillar degenera-
tion. The latter parameter encompassed assessing for hypereosino-
philic cytoplasm, loss of striations and pyknosis or karryorhexis of
cardiomyocytes. Briefly, the above changes were graded as no change
(0), mild (1), moderate (2) and marked (3) to facilitate recognition of
trends in lesional severity. Formalin-fixed and paraffin-embedded
sections were also prepared also from representative breast tumors
from the study groups.
GSH Determination
GSH concentrations of whole blood were determined by a

standard enzymatic recycling procedure, as previously described [34].
Briefly, 500 ml of heparinized blood was mixed with equal volumes of
10% 5-sulfosalicylic acid and centrifuged at 5 �C at 3000�g for
15 min. Ten mL of the supernatant was added to 1 ml of reaction mix
(0.2 mmol/L NADP, 0.6 mmol/L 5,5-dithio-bis-2-nitrobenzoic acid
and 1.33 units GSH reductase) and the absorbance was measured at
412 nm. The data were expressed as nmol/g tissue and mmol/L.
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Plasma Troponin Measurement
Plasma concentrations of cardiac troponin I (cTnI) were

determined using Rat Cardiac Troponin-I ELISA kit (Life Diag-
nostics, West Chester, Pa). The results were expressed as ng/ml.

Statistical Analysis
Data were analyzed statistically using the MIXED Procedure from

SAS v9.2 (The SAS Institute, Cary, NC). Briefly, each rat had its
body-weight change, its tumor-volume change, and all of its
cardiac-function responses calculated as the measured value at
sacrifice minus the measured value at baseline. The resulting
within-subject changes and responses were analyzed via one-way
ANOVAs with post hoc pairwise comparisons for whether the
amount of change or response differed significantly between
treatment groups. Before the one-way ANOVAs, the changes in
body weight and tumor volume were examined via likelihood-ratio
test for variance heterogeneity between treatment groups (no
significant variance heterogeneity was detected). All statistical
hypothesis tests were two-sided and used a P < 0.05 significance
level despite the multiple comparisons, in order not to inflate Type II
(false negative) error in this modestly powered pilot study.

Results

Effect of DNT on DOX-Induced Body Weight Loss and
Survival

The body weight change, which is a good indicator of the general
health status of laboratory animals, is presented in Figure 1. The
means of body weight for the baseline between the groups were not
significantly different. Tumor-control rats and rats in the DNT group
lost less body weight in comparison with the groups treated with
DOX alone or DOX þ DNT (group means ± SDs of body-weight
loss were 14 ± 4 g for the tumor controls, 25 ± 5 g for the DOX
group, 18 ± 6 g for the DNT group, and 23 ± 8 g for the
DNT þ DOX group). This finding was associated with a 40%
mortality in the group of rats treated with DOX alone, compared with
Figure 1. Effects of chronic DOX, DNT, and DOX þ DNT on body w
tumors. Bottoms and tops of boxes respectively show first and th
symbols inside boxes show means. n¼ 5 Naive controls (both tim
DOX group at baseline (n ¼ 11 at sacrifice), n ¼ 14 in the DNT gr
baseline (n ¼ 12 at sacrifice).
only 16% mortality in the DNT þ DOX group and 0% mortality in
the group treated with DNT alone during the 3-week study period
(not shown).

Echocardiographic Assessment of Cardiac Physiological Altera-
tions

To determine whether DNT can provide cardioprotection during
chronic DOX treatment of tumor-bearing rats, we used echocardio-
graphy to measure changes in cardiac output (CO) and stroke volume
(SV) before and after tumor implantation. Heart rate was similar
between the groups and was not significantly affected by tumor
presence or treatments (260e325 beats/min). Once the tumor
implants had engrafted, we measured CO and SV in the rats before
and after their assigned treatment. Changes in CO and SV after
treatment (denoted DCO and DSV, respectively) are presented in
Figure 2. The results showed that DOX treatment significantly
impaired cardiac function (means ± SDs of �15.1 ± 14.3 mil/min
for DCO and�16.3 ± 39.0 ml for DSV). In contrast, DNT preserved
both CO and SV in DNT treatment alone (2.8 ± 17.6 ml/min for
DCO and 11.3 ± 38.4 ml for DSV) and in DOX þ DNT treatment
(�1.1± 10.8 ml/min forDCO and 5.5± 40.1 ml forDSV). ANOVA
post hoc analysis of the treatment-group differences in DCO showed
that the 17.9-ml/min difference in DNT versus DOX was statistically
significant (P ¼ 0.0041), and that the 14.0-ml/min difference in
DNT þ DOX versus single-agent DOX was also statistically
significant (P ¼ 0.022), but that the 3.9-ml/min difference between
DNT þ DOX versus DNT alone was not (P ¼ 0.52). However, the
same analysis of treatment group difference in DSV showed that none
of the groups differed significantly from each other in the amount of
stroke-volume degradation (P-values of 0.088, 0.17, and 0.72,
respectively, for DNT versus DOX, DOX þ DNT versus DOX
alone, and DOX þ DNT versus DNT alone).

Histopathological Examination
DOX-treated cardiac tissue is characterized by excessive myofi-

brillar degeneration, swelling of sarcoplasmic reticulum (SR) as well as
eight loss from baseline of surviving rats with implanted breast
ird quartiles; horizontal lines dividing boxes show medians, and
e points), n¼ 10 Tumor controls (both time points), n ¼ 14 in the
oup (both time points), and n ¼ 14 in the DOX þ DNT group at



Figure 2. Changes in cardiac output (A) and stroke volume (B) before the treatment (n ¼ 14/group) and after the treatment of the
surviving rats with breast tumors (n¼ 13/DOX group; n¼ 12/DNT group; n¼ 12/DOXþDNT group) treated with chronic DOX, DNT
and DOX þ DNT.
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mitochondria, myocyte vacuolization, granulation of cytoplasm, and
hypereosinophilia [17]. We have applied a semiquantitative assess-
ment of the histopathological alterations of the hearts of the surviving
rats treated with chronic DOX, DNT and DOXþDNT. The results
indicate that DNT reduced DOX-induced cardiotoxicity in the group
treated with DOX þ DNT as shown by reduced interstitial edema,
cytoplasmic vacuolization and myofibrillar disruption, compared with
DOX only treated hearts (Figure 3). However, when compared with
drug-free tumor controls, single-agent DNT leads to increases in
histopathology scores for all of the examined markers.
cTnI Plasma Concentration
Previously we have found that DOX administration caused

increase in the circulating level of cTnI in this rat model of breast
cancer [30]. The results from this study showed that, at the end of the
experiment, when compared with that in the DOX group, the cTnI
concentration in the plasma of rats treated with DNT was 30% lower
(P ¼ 0.028), whereas the cTnl concentration in the plasma of rats
treated with DNT þ DOX was 27% lower (P ¼ 0.11) (Figure 4).
However, when the groups' cTnl plasma concentrations were
compared with that in the untreated tumor-control group, they
were 68% higher (P ¼ 0.0057) in the DNT group, and 77% higher
(P ¼ 0.030) in the DNT þ DOX group (Figure 4). These data
suggest that the amount of tumor burden and weight loss can induce
cardiotoxicity. These data also correlate with the results from the
echocardiography showing that DNT can decrease DOX-induced
severe cardiotoxicity, even in the presence of tumor.
GSH Concentration
GSH (glutamyl-cystein-glycine) is a sulfhydryl (-SH) antioxidant,

ubiquitous in living organisms, that has multiple functions, including
scavenging oxidants and detoxifying toxic substances [35,36].
Reduced glutathione (GSH) can be converted to oxidized glutathione
(GSSG) during oxidative stress and the ratio GS/GSSG is considered
a marker for oxidative stress [37]. The results from this study
(Figure 5) showed that rats treated with DNT had strongly elevated



Figure 3. Histopathological alterations in the hearts of the surviving rats with breast tumors treated with chronic DOX (n ¼ 9), DNT
(n ¼ 14) or DOX þ DNT (n ¼ 12) versus no tumor-controls. A. Results from a semiquatitative assessment of histopathological
alterations (mean ± SE, n¼ 9/DOX group; n ¼ 10/DNT group; n ¼ 10/DOX þ DNT group; n¼ 5/control group. *P < 0.05 DOX vs all.
B. Composite image of representative histopathologic changes in myocardium of the study groups: B1: normal myocardial
histology in naı̈ve controls; B2 cytoplasmic vacuoles (yellow arrows), edema (black arrow) and eosinophilic myocytes with pyknotic
nuclei (thick black arrow) in rats treated with DOX; B3: edema (black arrows) in rats treated with DNT þ DOX; B4: cytoplasmic
vacuoles (yellow arrows) and mild edema (black arrow) in rats treated with DNT. Hematoxylineeosin stain, magnification 200�.
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levels of GSH and GSH/GSSG in comparison with rats treated with
DOX, whereas rats treated with a combination of DOX þ DNT had
only mildly elevated levels. Compared with DOX rats, DNT rats has
95% higher mean GSH levels (P < 0.0001) and 63% higher mean
GSH/GSSG ratios (P ¼ 0.0014), whereas DNT þ DOX rats had
31% higher mean GSH levels (P ¼ 0.019) and 24% higher mean
GSH/GSSG ratios (P ¼ 0.13).
Effect of DNT on Antitumor Efficacy of DOX
Figure 6 shows the means for tumor volumes of the rats treated

with DOX alone, DNT alone, DOXþDNT and control tumors. At
this dose, when compared with DNT alone, DOX alone reduced
tumor growth by 62% (P ¼ 0.0003) whereas DOX þ DNT reduced
it by 48% (P ¼ 0.0033), but the 14% difference in tumor-growth
reduction by DOX alone versus DOX þ DNT was not statistically
significant (P ¼ 0.39). The histopathological examination of the
tumors showed increased presence of necrosis in the tumors of rats
treated with DOX þ DNT in comparison with DNT group, which
was comparable with the necrosis detected in tumors of rats treated
with DOX alone.
Discussion
DOX-induced cardiotoxicity may not be detected for many years and
remains a life-long threat. Approximately 10% of patients treated
with DOX or its derivatives develop cardiac complications up to 10
years after the cessation of chemotherapy [12]. As many as 65% of
patients with a childhood malignancy treated with DOX have
echocardiographic evidence of left ventricular contractile abnormal-
ities as adults [7,38]. Cardiovascular disease is the major cause of
competing mortality in women with early breast cancer, and women



Figure 4. Average plasma cTnI concentration in the surviving rats treated with chronic DOX (n ¼ 8), DNT (n ¼ 12), DOX þ DNT
(n ¼ 11) and control group (n ¼ 4). Bottoms and tops of boxes, respectively, show first and third quartiles; horizontal lines dividing
boxes show medians, and symbols inside boxes show means.

Figure 5. Blood GSH levels (A), GSSG (B) and ratio GSH/GSSG (C) in the surviving rats treated with chronic DOX (n ¼ 8), DNT
(n ¼ 13), DOX þ DNT (n ¼ 11) and control group (n ¼ 3). Bottoms and tops of boxes respectively show first and third quartiles;
horizontal lines dividing boxes show medians, and symbols inside boxes show means.
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Figure 6. Effect of chronic DOX, DNT and DOXþ DNT on breast tumor growth in surviving rats. Tumor volumes of rats with treated
with chronic DOX (n ¼ 9), DNT (n ¼ 14) and DOX þ DNT (n ¼ 12-versus controls with untreated tumor (n ¼ 10) (A). Representative
image of tumor necrosis in a rat treated with DOX (B). Arrows show viable tumor nests in a background of prominent tumor
necrosis. Hematoxylin and eosin stain, magnification 200�.
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with breast cancer have an excess risk of cardiovascular diseases
relative to age-matched women without a history of breast cancer
[39,40]. The role of ROS in the pathogenesis of DOX-induced
cardiotoxicity and heart failure has provided a basis for coadministra-
tion of antioxidants to counteract cardiotoxicity, but have not been
successful. Dexrazoxane is the only approved drug used in clinical
settings as cardioprotective agent, but its clinical use has been limited
because of reports showing a possible interference with antitumor
activity of DOX and the potential risk of a second malignancy
[41e43]. The search for new approaches to prevent DOX-induced
cardiotoxicity remains a critical issue in both oncology and
cardiology.
DNT, an antagonist of RYRs is an FDA-approved drug for clinical

treatment of malignant hyperthermia and several other disorders
associated with dysregulation of Ca2þ homeostasis, such as
neuroleptic malignant syndrome, muscle spasticity, ecstasy intoxica-
tion, and Alzheimers [44e47]. Because DOX is a widely used
chemotherapy agent, efforts are directed towards reducing its
off-target toxicity without alteration of anticancer efficacy.
In this study we have used our rat breast cancer model [30,48,31]

which closely resembles human breast cancer to examine the
cardioprotective actions of DNT against chronic DOX, a scenario
similar to the clinical situation. An important finding of this study
was that DNT was able to protect the heart from DOX toxicity in the
presence of tumors, as evident by preservation of CO and SV, without
affecting DOX antitumor efficacy. However, single treatment with
DNT at this dose led to the increase in histopathological scores of
heart vacuolization, edema, and myofibrillar degeneration in
comparison with the untreated tumor controls. This observation
indicates that the dose used in this study may be too high and the
doseeresponse needs to be determined in the future studies.

It has been found that malignant disease negatively affects cardiac
function in patients and animal models independently of cardiotoxi-
city of anticancer treatment, because of the oxidative and
inflammatory responses elicited by the cancer [49e51]. Our previous
studies using the same rat model of breast cancer showed the
damaging effects of the tumor presence on the heart function [31,29].

Malignancy depletes host GSH levels resulting in increased
treatment-related toxicity [36,52]. The levels of GSH and GSH/
GSSG were significantly decreased in the blood of the patients with
breast cancer compared with those of the control subjects [53]. DOX
and other chemotherapeutic agents generate high levels of ROS in
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cancer patients resulting in increased degree of oxidative stress [54]. A
single dose of 5 mg/kg DNT was able to protect rat heart against an
acute DOX (20 mg/kg) dose [25]. Similarly, a single dose of 5 mg/kg
DNT was reported to protect rat heart against injury induced by
isoproterenol [22] and whole body irradiation. DNT inhibited
DOX-mediated ROS production in vitro in rat cardiomyocytes [15].
In the present study, DNT-treated control rats had higher levels of
blood GSH and GSH/GSSG in comparison with rats treated with
DOX.

Decrease in food intake and weight loss are the most common and
serious health problems in patients with cancer undergoing
chemotherapy [55]. A number of studies, including ours [29] have
shown that DOX administration induces significant body weight loss
and suppressed food intake and water consumption [56,57]. This
study showed that DOX treatment was associated with a significant
body weight loss from the baseline because of the suppressed food
intake and water consumption, and a 40% of the animals in this
group did not survive until the end of the experiment. In contrast,
DNT-treated groups increased food and water consumption, and lost
less body weight. None of the rats treated with DNT alone died
during the experiment. This finding is translatable to humans because
up to 80% of cancer patients develop cachexia characterized by
reduced food intake, involuntary weight loss and wasting muscle mass
[58,59] and this is associated with more toxicity from chemotherapy
[60,61]. DNT supplementation in the present study was able to
decrease cardiac toxicity even as it improved the catastrophic loss of
body weight in the group of rats treated with DOX alone. Moreover,
none of the rats in the DNT group died as a result of the treatment, in
comparison with 40% mortality in DOX group and 16% in the
DNT þ DOX group. One limitation of this study was that we have
determined the cardioprotective effects of a single dose of DNT that
was based on data reported in the literature. This single dose exposure
limits the interpretation of the benefits as well as the side effects of
DNT. Future studies will benefit from a dose response assessment of
DNT. Furthermore, we did not measure and correlate the effects of
DNT with calcium levels in the treated rats. Despite its limitations,
this study showed for the first-time that DNT has the potential as an
adjuvant in cancer therapy.

Conclusions
The combination of chemotherapy has the ability to minimize the
toxicity limitations of some chemotherapy agents and to increase
clinical efficacy [62]. Recent reports suggest that currently available
anticancer drugs are more effective when combined with Ca2þ

channel blockers [63] which can also block multidrug resistance of
cancer cells [64] and therefore can increase the sensitivity of cancer
cells to treatment [65,66]. DOX is a powerful chemotherapy agent
used for treatment of various malignancies; however, cardiac toxicity
continues to compromise its clinical application [67]. The search for
new approaches to prevent DOX-induced cardiotoxicity remains a
critical issue in both oncology and cardiology [68]. The collective
results from this study suggest that DNT may be a valuable drug for
protection against DOX-induced cardiotoxicity in cancer patients
while maintaining DOX antitumor efficacy. These results lay the
foundation for further studies to determine the optimal DNT
parameters (e.g., frequency, dosages), delivery mechanism (e.g., oral
versus intraperitoneal or intravenous) and its effect on tumor
response/resistance.
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