
Citation: Monaco, G.; Khavaran, A.;

Gasull, A.D.; Cahueau, J.; Diebold,

M.; Chhatbar, C.; Friedrich, M.;

Heiland, D.H.; Sankowski, R.

Transcriptome Analysis Identifies

Accumulation of Natural Killer Cells

with Enhanced Lymphotoxin-β

Expression during Glioblastoma

Progression. Cancers 2022, 14, 4915.

https://doi.org/10.3390/

cancers14194915

Academic Editor: Mirko H.H.

Schmidt

Received: 11 September 2022

Accepted: 27 September 2022

Published: 7 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Transcriptome Analysis Identifies Accumulation of Natural
Killer Cells with Enhanced Lymphotoxin-β Expression during
Glioblastoma Progression
Gianni Monaco 1,2, Ashkan Khavaran 1, Adrià Dalmau Gasull 1 , Jonathan Cahueau 1, Martin Diebold 1 ,
Chintan Chhatbar 1, Mirco Friedrich 3, Dieter Henrik Heiland 4,5,6,7 and Roman Sankowski 1,2,*

1 Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
2 Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
3 DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology,

German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
4 Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
5 Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg,

79106 Freiburg, Germany
6 Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center-University of Freiburg,

79106 Freiburg, Germany
7 German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
* Correspondence: roman.sankowski@uniklinik-freiburg.de

Simple Summary: Natural killer (NK) cells play a pivotal role in anti-cancer immunity. We conducted
an integrated analysis of single-cell RNA-sequencing datasets of malignant brain tumor-associated
immune cells from a mouse glioma model and human newly diagnosed and recurrent glioblastomas.
We found a robust increase in NK cells during brain tumor production. The cells showed a gene
expression phenotype associated with NK cell dysfunction. Notably, the cytokine Lymphotoxin-β
(LTB) was highly expressed in these cells. LTB receptors are found on myeloid and structural cells. In
summary, we characterize a dysfunctional NK cell phenotype in advanced glioma.

Abstract: Glioblastomas are the most common primary brain tumors. Despite extensive clinical and
molecular insights into these tumors, the prognosis remains dismal. While targeted immunotherapies
have shown remarkable success across different non-brain tumor entities, they failed to show efficacy
in glioblastomas. These failures prompted the field to reassess the idiosyncrasies of the glioblastoma
microenvironment. Several high-dimensional single-cell RNA sequencing studies generated remark-
able findings about glioblastoma-associated immune cells. To build on the collective strength of these
studies, we integrated several murine and human datasets that profiled glioblastoma-associated
immune cells at different time points. We integrated these datasets and utilized state-of-the-art
algorithms to investigate them in a hypothesis-free, purely exploratory approach. We identified a
robust accumulation of a natural killer cell subset that was characterized by a downregulation of
activation-associated genes with a concomitant upregulation of apoptosis genes. In both species,
we found a robust upregulation of the Lymphotoxin-β gene, a cytokine from the TNF superfamily
and a key factor for the development of adaptive immunity. Further validation analyses uncovered
a correlation of lymphotoxin signaling with mesenchymal-like glioblastoma regions in situ and
in TCGA and CGGA glioblastoma cohorts. In summary, we identify lymphotoxin signaling as a
potential therapeutic target in glioblastoma-associated natural killer cells.

Keywords: glioblastoma; GL261; immunotherapy; lymphotoxin; natural killer cell; mesenchymal
transcriptional subtype; immune cell crosstalk
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1. Introduction

Glioblastomas are aggressive primary brain tumors with a median survival of 14.6 months
despite standard-of-care treatment [1]. Evidence from single-cell RNA sequencing studies
suggests that glioblastomas and other gliomas arise from a transformation event of glial pro-
genitor cells [2,3]. In line with this origin, glioblastoma cells express astrocyte-like (AC)-like,
neural progenitor cell (NPC)-like, oligodendrocyte progenitor (OPC)-like, mesenchymal
(MES)-like and other transcriptional programs [2,4,5]. These states are concomitantly found
within the same tumor, affecting different functional and prognostic aspects of glioblas-
toma biology. Recent evidence suggests that neuroectodermal-like tumor cells, i.e., NPC-,
OPC- and AC-like cells, engage in crosstalk with resident brain cells, driving diffuse tu-
mor infiltration, while MES-like regions are found at the tumor core [6]. Different modes
of crosstalk between neoplastic and resident cells have been described, including micro-
tubules, synapse formation and secretion of soluble factors [6–9]. MES-like regions are
characterized by immune cell infiltrates, hypoxia and genomic instability [2,10]. Integration
of molecular and clinical data has associated MES-like regions with aggressive clinical
behavior [11,12]. The influences of chronic inflammation and hypoxia-driven genomic insta-
bility and epigenomic reprogramming on tumor evolution within MES-like regions are an
area of active research [6,13]. Herein, immune cells, a major component of the glioblastoma
microenvironment [14], are of particular interest as vectors of targeted immunotherapies.

Several single-cell RNA sequencing studies have examined the myeloid and T lym-
phoid compartments that represent the most common immune cells in glioblastomas. The
complex interactions between T cells, myeloid cells, non-neoplastic astrocytes and glioma
cells have recently been highlighted as drivers of the immunosuppressive glioblastoma
microenvironment [15–19]. It was shown that brain resident microglia are gradually re-
placed during tumor progression in humans and mice [20,21]. While glioma-associated
macrophages are largely characterized by cytokine/chemokine, antigen presentation, an-
giogenesis and hypoxia-associated signaling [20–23], glioma-associated dendritic cells
(DCs) show a remarkable heterogeneity with hallmarks of impaired function [20,24]. T cells
display the molecular hallmarks of anergy and exhaustion [25]. A recent study found an
unexpected expression of an NK cell-like transcription program in glioblastoma-associated
cytotoxic T cells highlighting commonalities between adaptive and innate immunity [26].
Conversely, the functional parallels between NK cells and cytotoxic T cells are well-
established [27].

NK cells are innate lymphoid cells with a central role in anticancer and antiviral im-
munity [28]. Although they are relatively sparse in glioblastomas [26], several NK-cells
targeting tumor immune evasion mechanisms have been identified. Different mechanisms
are involved, including integrin and NKG2D ligand binding [29–31]. Here, we show that
glioma progression is associated with an NK cell transcriptional phenotype characterized by
reduced activation, an upregulation of apoptosis genes and enhanced lymphotoxin signaling.

We have integrated single-cell RNA sequencing datasets from GL261 syngeneic glioma
models that were obtained 14, 21 and 28 days after injection [20,21,32]. The NK cells showed
a robust correlation with the time lapsed after tumor injection. The pseudotime analysis re-
vealed a downregulation of interferon genes and an upregulation of Lymphotoxin-β (LTB),
a member of the TNF superfamily involved in the development of adaptive immunity and
inflammation [33]. LTB is a ligand to Lymphotoxin-β receptors (encoded by the LTBR gene).
LTB is expressed by activated T, B and NK cells as well as innate lymphoid cells, while LTBR
is expressed on stromal and myeloid cells [33]. Crucially, LTB–LTBR signaling is required
for NK cell development [34]. The connection between LTBR signaling and malignancies
is well-established [35]. The gene regulatory network and pathway enrichment analy-
sis showed a downregulation of interferon- and an upregulation of apoptosis-associated
genes. We confirmed these findings in humans showing that LTB gene expression was
spatially correlated with the NK cell exhaustion marker killer cell lectin-like receptor G1
(KLRG1) [36–38]. Mining of the Cancer Genome Atlas Consortium (TCGA) and the Chinese
Glioma Genome Atlas (CGGA) glioblastoma cohorts showed enhanced LTB expression
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in MES-like glioblastomas and an association of LTB expression levels with overall sur-
vival. In summary, a crosstalk between the lymphoid, tumor and myeloid cells within a
glioblastoma drives the chronic inflammation associated with reduced NK cell function.

2. Materials and Methods
2.1. Data Processing and Analysis

The count data were downloaded from the indicated sources and loaded into R using
the Read10x function of the Seurat v4 algorithm [39]. Doublet exclusion was done using the
scDblFinder R package v1.10.0 (https://bioconductor.org/packages/release/bioc/html/
scDblFinder.html accessed on 15 August 2022). The CITE-Seq mouse dataset from [20]
was used as a reference for the multimodal reference mapping workflow specified by the
following vignette: https://satijalab.org/seurat/articles/multimodal_reference_mapping.
html accessed on 15 August 2022. The remaining mouse datasets were integrated using this
workflow with default parameters. The human dataset was integrated using the harmony
package with default parameters [40].

The NK cell counts were obtained by assessing the relative abundance of NK cells
across all cells and biological replicates. Pearson’s correlation analysis was conducted on
each cell type using the stat_cor function of the ggpubr v0.4.0 (https://cran.r-project.org/
web/packages/ggpubr/index.html accessed on 15 August 2022).

The latent factors underlying the changes in NK cells were identified using the MOFA+
algorithm [41]. The “integration of a time-course single-cell RNA-seq dataset” workflow
was used with default parameters as specified under the following vignette: https://raw.
githack.com/bioFAM/MOFA2_tutorials/master/R_tutorials/scRNA_gastrulation.html ac-
cessed on 15 August 2022.

The pathway enrichment analysis was conducted using the enrichR web interface [42].
Gene lists from the factors identified using MOFA+ were individually loaded into the
website, and the top factors were visualized.

The enrichment of time points in each cluster was assessed using the hypergeometric
function with Benjamini–Hochberg adjustment for multiple testing.

The pseudotime analysis was conducted using the StemID2 functionality of RaceID
v0.2.6 and FateID v0.2.2. [43,44]. The workflow was run following the vignette specified un-
der: https://cran.r-project.org/web/packages/RaceID/vignettes/RaceID.html accessed
on 15 August 2022.

The cell–cell interaction analysis was run using default parameters as specified by
the developers. First, human orthologues of the mouse genes were identified using the
biomaRt v2.52.0. Then, the counts and relevant metadata were exported, and the analysis
was run in the command line as specified in the readme file under: https://github.com/
ventolab/CellphoneDB accessed on 15 August 2022.

The transcription factor analysis was conducted using the SCENIC R package [45] using
default parameters following the vignette specified under: https://github.com/aertslab/
SCENIC/blob/master/vignettes/SCENIC_Running.Rmd accessed on 15 August 2022.

The gene ontology enrichment analysis was conducted using the clusterProfiler v4.4.4.
R package [46]. First, the gene names were converted into ENTREZ using the bitr function.
Then, the enrichGO function was run.

The spatial co-expression analysis was conducted using the functionality of the
SPATA2 v0.1.0. R package. Herein, normalized transcript counts were correlated across 10X
Visium spots. Similarly, the spatially weighted correlation analysis of previously defined
glioblastoma gene expression signatures with the LTB and LTBR genes was conducted as
previously described [10].

Count tables containing the fragments per kilobase of a transcript per million frag-
ments mapped (FPKM) the values of the TCGA and CGGA datasets, and the sample
annotations were downloaded from the following URLs: https://www.proteinatlas.org/
about/download accessed on 15 August 2022 and http://cgga.org.cn/download.jsp (mR-
NAseq_325) accessed on 15 August 2022, respectively. The datasets were subset for glioblas-
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toma (“GBM”) and IDH wildtype (“IDHwt”/”Wildtype”). For survival analysis, patients
above 20 were considered. The code for survival analysis was modified from: http://www.
cgga.org.cn/analyse/RNA-data-survival-result.jsp accessed on 15 August 2022.

2.2. Visualization of the Data

The functionalities of the indicated R packages were used where possible. Otherwise,
the tidyverse v1.3.2. and ComplexHeatmap v2.12.1. R packages were used [47,48]. The
code for the Kaplan–Meier visualization was obtained from: http://www.cgga.org.cn/
tools/plot_survival.jsp accessed on 15 August 2022.

Human Protein Atlas image selection and processing: Images regions were obtained
from https://www.proteinatlas.org/ENSG00000111321-LTBR/pathology/glioma#img ac-
cessed on 15 August 2022. The images were processed in Photoshop 2022 with selective
sharpening and increases in vibrancy, brightness and contrast.

3. Results
3.1. The Mouse Glioma Model GL261 Shows a Diverse Immune Cell Compartment with Changes
throughout Tumor Progression

We set out to study the longitudinal immune composition of GL261 syngeneic gliomas
and validate our findings in human glioblastomas (Figure 1a). In recent years, several
studies have profiled the immune compartments in these mice [17,20,21,32,49]. Interestingly,
three recent studies with comparatively large immune cell amounts have collected glioma
tissues for single-cell RNA sequencing after 14, 21 and 28 days (14 d, 21 d and 28 d) with
minor adjustments of the respective protocols [20,21,32]. We utilized the Seurat single-
cell RNA-sequencing analysis workflow with reference-based mapping of the datasets
from the three abovementioned time points onto a reference dataset containing single-cell
transcript and epitope information [39]. We transferred the cell type labels of the reference
dataset to be consistent with the integrated dataset [20]. Visual inspection of the UMAP
embedding of the integrated dataset confirmed the mixing of the datasets (Figure 1b).
Graph-based clustering showed the presence of different cell states in most of the identified
cell types [50] (Figure 1c,d). Cluster marker genes were consistent with the published cell
type-enriched genes, including the homeostatic microglia clusters 0, 1, 4, 6 and 22 (P2ry12
and Hexb), tumor-associated microglia clusters 2, 8, 9, 10 (Cd74 and Apoe), monocyte and
macrophage clusters 3, 8, 11 (Ly6c2 and Tgfbi), T cell clusters 5, 13, 18, 19, 21 (Cd3d and
Trbc2) and NK cluster 7 (Ncr1 and Klra4) (Figure 1e). In order to assess changes in the
cell type composition between 14 d and 28 d after GL261 cell inoculation, we conducted
a linear regression analysis for the percentages of the respective cell types over the three
post-inoculation (p.i.) time points (Figure 2a). Some cell types showed shifts in abundance
without reaching a statistical significance of 0.05, e.g., the homeostatic microglia subset
TAM1 reducing over time, or cDC2 and mDC increasing over time (Figure 2a). NK cells
showed a statistically significant longitudinal increase from 1.26% ± 1.37 standard error of
the mean (s.e.m) at 14 d to 5.21%± 0.857 at 21 d to 8.44%± 3.95 at 28 d (Figure 2a). To assess
the transcriptional heterogeneity in NK cells across the p.i. time points, we conducted an
unsupervised Multi-Omics Factor Analysis v2 (MOFA+) analysis of these cells followed
by a pathway enrichment analysis using the enrichR algorithm [41,42]. MOFA+ infers a
low-dimensional data representation and returns latent factors that account for variability
in single-cell data [40]. Our analysis of the three p.i. time points returned eight latent factors
(Figure 2b). Interestingly, Factor 1, which accounted for the most variability in the data,
was mainly represented at 21 d and 28 d, while Factor 3 was mainly present at 14 d and
21 d, and Factor 5 had a gradual increase from 14 d to 28 d (Figure 2b). The enrichR-based
analysis of the MSigDB Hallmark 2020 pathways showed myc-, E2F- and mitosis-related
pathways among the top five pathways in Factor 1 (Figure 2c). Interestingly, Factor 3, which
was downregulated at 28 d, contained interferon signaling among the top five pathways,
while Factor 5 included hypoxia and glycolysis among its top five pathways (Figure 2c).
In summary, an exploratory approach to profile immune cells during glioma progression
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showed a robust time-dependent increase in NK cells that was associated with a time-
dependent downregulation of interferon signaling and upregulation of hypoxia pathways.
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Figure 1. Integration of three GL261 murine orthotopic glioma single-cell RNA-sequencing datasets to
analyze tumor progression. (a) Schematic illustration of the workflow of the present study. (b) UMAP
visualization of the integrated dataset (n = 61,814) color-coded by time point. (c) UMAP visualization
of the integrated dataset color-coded by cluster. (d) UMAP visualization of the integrated dataset
color-coded by cell type. (e) Heatmap visualization of the top 10 marker genes per cluster. The color
coding of the respective clusters is consistent with panel c. The color scale indicates the Pearson’s
residuals from a negative binomial regression.
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A time-dependent analysis of the cluster composition at each time point showed a relative 
decline in Cluster 0 and a relative increase in Cluster 1 throughout glioma progression 
(Figure 3b). An enrichment analysis using hypergeometric testing showed statistically sig-
nificant enrichment of Clusters 0 and 5 at 14 d, Clusters 2, 3 and 4 at 21 d and Clusters 1, 
5 and 6 at 28 d. To assess stepwise gene expression changes, we applied the pseudotime 
analysis algorithm StemID [42]. This algorithm identified several trajectories (Figure 3c). 
We assessed the origin and direction of the trajectory based on the differences in tran-
scriptional entropy. Following the notion that clusters with higher entropy represent tran-
scriptional precursor states [51], we identified Cluster 0 as the earliest transcriptional state 

Figure 2. Cell type dynamics during GL261 murine orthotopic glioma progression and transcriptional
changes in NK cells. (a) Dot line plot visualization of the relative abundances of the indicated cell
types as a percent of the total number of immune cells for each time point. The error bar indicates the
s.e.m. The cell labels are adapted from the 21 d p.i. time point dataset [20]. At the bottom of each plot,
the Pearson’s correlation coefficient and two-sided p-value are indicated. (b) Heatmap visualization
of latent factors determined by MOFA+ analysis. The color scale indicates the percentage of variance
explained. For enhanced readability, the respective values are indicated in each cell. (c) The enrichR-
based pathway enrichment analysis of MSigDB Hallmark 2020 pathways. The color of the dots
indicates the -log10-transformed adjusted p-values of the enrichment.
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3.2. The Mouse Glioma Model GL261 Shows a Time-Dependent Accumulation of NK Cells with
Downregulation of Activation Markers and Enhanced Lymphotoxin-β Expression

Having identified NK cells as a highly variable immune cell type during glioma
progression, we sought to characterize the transcriptional heterogeneity within each time
point. To this end, we sub-clustered the NK cells and identified seven clusters (Figure 3a).
A time-dependent analysis of the cluster composition at each time point showed a relative
decline in Cluster 0 and a relative increase in Cluster 1 throughout glioma progression
(Figure 3b). An enrichment analysis using hypergeometric testing showed statistically
significant enrichment of Clusters 0 and 5 at 14 d, Clusters 2, 3 and 4 at 21 d and Clusters 1,
5 and 6 at 28 d. To assess stepwise gene expression changes, we applied the pseudotime
analysis algorithm StemID [42]. This algorithm identified several trajectories (Figure 3c). We
assessed the origin and direction of the trajectory based on the differences in transcriptional
entropy. Following the notion that clusters with higher entropy represent transcriptional
precursor states [51], we identified Cluster 0 as the earliest transcriptional state followed by
Clusters 1 and 2 (Figure 3c,d). The heatmap visualization of the smoothed transcriptional
changes along the identified trajectory showed a gradual downregulation of Gzma, the
interferon signaling-associated genes Irf7, Isg15 and Stat1 and the chemokine gene Ccl5 with
a concomitant upregulation of Gzmc and Ltb (Figure 3e). Alterations of interferon genes
and Ccl5 expression were previously associated with NK cell exhaustion [38,52]. The TNF
superfamily member gene LTB has pleiotropic functions, including cancer inflammation,
tertiary lymphoid structure and NK cell development [33–35,53]. A visualization of the
stepwise cluster composition of the trajectory showed that the second half of the trajectory
was almost exclusively composed of cells from 21 d and 28 d (Figure 3e). Representative
gene expression UMAP plots confirmed the gene expression patterns of Gzma, Gzmc and Ltb
along the trajectory (Figure 3f). Cells from clusters other than Cluster 6 showed expression
of the NK marker Ncr1/Nkp46, while Cluster 6 showed expression of T cell markers,
including Cd3e and Trac. These cells may represent NKT cells or a recently identified
subset of glioma-associated T cells expressing NK cell markers [26]. The enrichment
of Cd3e and Trac in cluster 6 suggests that the remaining clusters consist of bona fide
NK cells. The gene ontology analysis indicated that Cluster 0’s cells were associated
with the terms accompanying iron homeostasis, commonly upregulated in the hypoxic
tumor environment [54] (Supplementary Figure S1a). Cluster 1 showed expression of
inflammation and extracellular matrix-associated terms, and Cluster 2 was associated with
protein and RNA homeostasis-related terms (Supplementary Figure S1a). To identify which
gene regulatory elements were driving the identified transcriptional changes, we conducted
a SCENIC analysis [45]. Interestingly, we identified a downregulation of type I (IRF7) and
type II interferon (STAT1) and NF-κB (KLF2) signaling (Supplementary Figure S1b). Finally,
protein validation based on CITE-Seq data from 21 d cells [20] showed a downregulation
of several NK cell activation markers (Ly49D, CD69) along the trajectory between Clusters
0, 1 and 2 (Figure 3g). Interestingly, Cluster 2 showed that upregulations of CD117/c-kit
and LTBR signaling have been implicated in lymphoid tissue development and tertiary
lymphoid structures during development and in cancer [53,55]. The upregulation of
CD117/c-kit and LTB suggest an NK cell subset with a dysfunctional/de-differentiated
transcriptional state [34]. In summary, we identified an NK cell subset associated with
glioma progression. These cells showed a downregulation of NK activation markers
and interferon signaling-associated genes, suggesting a dysfunctional NK transcriptional
cell state.
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expression of LTB between 14 d and 21 d, while neutrophils showed a downregulation of 

Figure 3. Characterization of NK cells during GL261 murine orthotopic glioma progression.
(a) UMAP visualization of 2664 cells sub-clustered from the NK cell cluster of Figure 1c. The color
coding of the top panel corresponds to the new cluster assignment. The bottom panel is color-coded
by the p.i. time point. (b) Alluvial plot indicating the cluster distribution of the indicated p.i. time
point. (c) UMAP visualization of the data from figure panel a superimposed by the lineage graph
determined using the StemID algorithm. The nodes are color-coded by the transcriptional entropy of
the indicated clusters; the link color indicates the p-value of the indicated connection. (d) Bar plot
showing the transcriptional entropy differences across the cluster. Cluster 3 with the lowest entropy
is set to 0. The color coding is consistent with the top part of figure panel a. (e) Heatmap of the
locally smoothed gene expression z-scores along the trajectory between Clusters 0, 1 and 2. Genes
with a correlation coefficient above 9 are summarized into gene expression modules; gene expression
modules with at least 3 genes are shown. The bar plot below the heatmap indicates the time point
composition of each step along the trajectory. (f) UMAP visualization of cells from figure panel a
color-coded by the expression of the indicated genes. (g) Heatmap showing the log-transformed
expression of the differentially expressed proteins in the indicated clusters.
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3.3. Myeloid Cells Are the Main Putative Ligands for Lymphotoxin-β

LTB signaling occurs via a membrane-bound (LTα1LTβ2) heterotrimer binding to
LTBR [33]. While LTB is mainly expressed on lymphoid cells, LTBR is found on stromal
and myeloid cells. We utilized the cell–cell interaction analysis algorithm CellphoneDB
to explore this crosstalk across immune cell subsets [56]. The analysis suggested sev-
eral putative interactions across the immune cell types at the available p.i. time points
(Supplementary Figure S2a). We found several T cell subsets involved in putative LTB–LTBR
crosstalk (Supplementary Figure S2b). Interestingly, NK cells and cDC2 showed higher ex-
pression of LTB between 14 d and 21 d, while neutrophils showed a downregulation of LTB
between these time points. Lta was expressed by regulatory and effector T cells with the
mean Lta expression increasing between 14 d and 21 d (Supplementary Figure S2c). The 28 d
day time point was underrepresented in this analysis, which may be due to the technical
differences of this dataset, as the number of the identified interactions in this dataset overall
is lower (Supplementary Figure S2a). In summary, during glioma progression, NK cells
appear to be increasingly involved in LTB-mediated crosstalk with myeloid cells and likely
other non-immune cells that are not present in this dataset.

3.4. Human Glioblastoma Progression Is Associated with Dysfunctional NK Cell Accumulation
and Enhanced Lymphotoxin-β Expression

To validate our findings in humans, we turned to a dataset of immune cells FACS-
sorted from newly diagnosed (ND) and recurrent (R) glioblastomas [20]. This dataset
contained tumor cells along with diverse immune cell populations (Figure 4a). Notably,
we found a significantly higher relative numeric abundance of NK cells in R glioblastomas
compared to ND ones (Figure 4b). Apart from higher numeric abundance, cells from R
glioblastomas showed significantly higher transcript abundances of LTB compared to their
ND glioblastoma-associated counterparts (Figure 4c). Likewise, LTB expression across the
immune cell types was enhanced in R glioblastomas (Figure 4d). Next, we conducted a
MOFA+ analysis of the latent factors underlying the transcriptional phenotypes of ND-
and R-glioblastoma-associated NK cells followed by an enrichR-based pathway enrich-
ment analysis. We found a downregulation of the factors associated with the cell cycle
(Factors 1, 3, 5, 6) and interferon-gamma signaling (Factor 5) and an upregulation of the
factors associated with apoptosis (Factors 2 and 8) (Figure 4e). Next, we sub-clustered the
NK cells to assess the stepwise transcriptional changes (Figure 4f). StemID suggested a
trajectory based on transcriptional similarity and entropy from Cluster 3 over Clusters 0 to
1 (Figure 4g). Clusters 0 and 1 almost exclusively consist of R-glioblastoma-associated NK
cells (Figure 4h). Along the trajectory, we found a downregulation of ISG15, CD69 and CCL5
and an upregulation of LTB, GZMB and FTL (Figure 4h,i). Interestingly, we found an upreg-
ulation of KLRG1, a marker gene for exhausted NK cells [36,37] (Figure 4i). A gene ontology
analysis showed enrichment of the cytokine and chemokine function-associated terms in
Cluster 0 and the RNA and protein turnover-associated terms in Cluster 1 (Supplementary
Figure S3a). The SCENIC analysis identified a reduction in gene expression under the
control of STAT1, IRF1 and IRF7 between Clusters 0 and 1 (Supplementary Figure S3b). In
summary, single-cell RNA-sequencing data from human ND and R glioblastomas showed
an accumulation of NK cells with reduced expression of activation, interferon-gamma and
cell cycle genes and enhanced expression LTB and apoptosis-associated genes, suggesting
an exhausted NK cell phenotype. NK cell exhaustion has been associated with the loss
of cell proliferation markers, reduced interferon signaling and apoptosis signaling [38].
Strikingly, the data showed broad similarities with the mouse data above.
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Figure 4. Dysfunctional NK cells accumulate in recurrent human glioblastoma. (a) UMAP of
61,164 human glioblastoma-associated cells from the Antunes et al. dataset. The color coding shows
immune cell assignment as provided by the authors of the study [20]. The tumor cells were assigned
based on the expression of glioblastoma-associated gene signatures. Non-neoplastic oligodendrocytes
and immune cells that were not assigned by the authors were excluded. (b) Dot plot visualization of
the NK cell count relative to all immune cells color-coded by the tumor stage. The indicated p-value
was calculated using an unpaired two-sided Wilcoxon rank-sum test. (c) Empirical cumulative
density function plot of the LTB expression in NK cells color-coded by the tumor stage. The indicated
p-value was calculated using a two-sided two-sample Kolmogorov–Smirnov test. (d) Dot violin plots
showing LTB expression in the respective cell types in ND and R glioblastomas from figure panel a.
(e) Heatmap visualization of latent factors determined by MOFA+ analysis. The color scale indicates
the percentage of variance explained. For enhanced readability, the respective values are indicated in
each cell. The enrichR-based pathway enrichment analysis of MSigDB Hallmark 2020 pathways. The
color of the dots indicates the -log10-transformed adjusted p-values of the enrichment. (f) UMAP
visualization of 2,158 cells sub-clustered from the NK cell cluster of figure panel a. The color coding
of the top panel corresponds to the new cluster assignment. The bottom panel is color-coded by
the p.i. time point. (g) Bar plot showing the transcriptional entropy differences across the cluster.
Cluster 1, with the lowest entropy, is set to 0. The color coding is consistent with that of figure panel f.
(h) Heatmap of the locally smoothed gene expression z-scores along the trajectory between Clusters 3,
0 and 1. Genes with a correlation coefficient above 9 are summarized into gene expression modules;
gene expression modules with at least 3 genes are shown. The bar plot below the heatmap indicates
the tumor stage composition of each step along the trajectory. (i) UMAP visualization of cells from
figure panel f color-coded by the expression of the indicated genes.
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3.5. LTB–LTBR Crosstalk Is Associated with MES-like Regions of Glioblastomas

Next, we utilized a spatial transcriptomics dataset of human glioblastomas to map
LTB and LTBR expression in situ [10]. We found that transcripts of LTB and its receptor
LTBR are found in adjacent tumor regions with overlaps at the intercept of these regions
(Figure 5a). The spatial transcript dataset confirmed a correlation of LTB transcripts with
the NK exhaustion marker gene KLRG1 and lymphoid cell markers, including TRAC and
IL2RA, while LTBR transcripts were associated with the pan-myeloid marker AIF1/Iba-1,
the macrophage marker CD163 and the neutrophil marker CTSG (Figure 5b). Spatially
weighted correlation analysis for LTB showed a strong association with MES-like glioblas-
toma regions with reactive gene signatures and regions showing developmental gene
expression patterns, such as the OPC- and NPC-like regions (Figure 5c). LTBR expression
was spatially correlated to MES-like regions with myeloid and reactive gene expression
programs (Figure 5c). These findings were further confirmed by an unbiased gene ontology
term enrichment analysis of differentially expressed genes in spatial dots expressing LTB
and LTBR, respectively. LTB-expressing dots showed enrichment of adaptive immunity and
nervous system development terms (Figure 5d). LTBR-expressing dots were characterized
by the enrichment of innate immune-related gene ontology terms (Figure 5e). In situ protein
validation from glioma samples of the Human Protein Atlas [57] confirmed the expression
of LTBR protein in different samples in cells that had the morphological features of ramified
microglia cells and foamy macrophages (Figure 5f). Its ligand LTB was undetectable in
glioblastoma sections due potentially to the challenges of detecting secreted proteins in
immunohistochemistry. Next, we characterized the expression of LTB and LTBR in the
TCGA and CGGA datasets [58,59]. The cancer transcriptional subtype assignment [4,60]
was summarized elsewhere [61]. Both datasets consisted mostly of AC-like and MES-like
glioblastomas (Supplementary Figure S4a). In line with the spatial gene expression data,
LTBR expression was highest in MES, followed by classical (CL) samples; LTB expression
was highest in MES, followed by Proneural (PN) samples (Supplementary Figure S4b). To
assess the impact of LTB expression on the clinical outcome of glioblastomas, we compared
overall survival in low- and high-LTB expressing samples of both datasets with the median
as the cutoff. High LTB expression appeared to be associated with a reduced overall survival
(Supplementary Figure S4c), whereas LTBR expression did not reach statistical significance.
In summary, we found that LTB expression was spatially correlated with the expression
of NK and T cell gene expression. It was mainly found in MES-like and neuroectodermal
progenitor-like regions and appeared to be associated with clinical prognosis.
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Figure 5. LTB expression is spatially associated with lymphoid cell and neurodevelopmental genes
and clinically associated with poor prognosis. (a) H&E images of two independent glioblastoma
samples analyzed using 10X Visium from a published dataset [10]. Spatial co-expression of LTB
and LTBR is color-coded. (b) The normalized spatial gene expression of the indicated genes and
the cell types that these genes are enriched in is superimposed with the bottom case from figure
panel a. (c) Dot plot visualizing the spatially weighted correlation analysis between the expression
of the LTB and LTBR with glioblastoma-associated gene sets. (d) Dot plot indicating the gene
ontology terms enriched in dots with LTB expression. (e) Dot plot indicating the immune-associated
gene ontology terms enriched in dots with LTBR expression. (f) Representative images of LTBR
immunohistochemistry from the Human Protein Atlas. The sample IDs are presented above the
images. Filled arrowheads indicate ramified microglia-like cells; empty arrowheads indicate cells
with foamy macrophage-like morphology.
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4. Discussion

Glioblastomas are aggressive brain tumors that remain incurable. As more than 50% of
a glioblastoma tumor’s mass consists of myeloid cells alone [62], understanding the immune
compartment of the glioblastoma microenvironment may hold the key to targeted therapies
for this tumor entity. In the present study, we have conducted an integrated analysis of
glioma-associated immune cells during glioma progression in humans and mice. We found
that NK cells show a time-dependent accumulation during the progression of murine
orthotopic GL261 gliomas. Transcriptionally, NK cells adopt a dysfunctional phenotype
with a downregulation of interferon genes and stimulatory receptor proteins, including
CD69 and LY49D. At the same time, these cells upregulate the LTB gene, a TNF superfamily
member associated with lymph organ development. In human glioblastoma tissues, LTB
expression was spatially correlated with the MES-like subtype, and neurodevelopmental
gene expression signatures appeared to be associated with prognosis.

The glioblastoma immune microenvironment has been subject to extensive research
in recent years [14]. While a special focus has been directed at macrophages as the most
common immune cells of glioblastoma [62], lymphoid and dendritic cells have been studied
extensively for targeted immune therapies, including immune checkpoint inhibition, vac-
cines and chimeric antigen receptor (CAR) T cell therapies [63–67]. As immune checkpoint
inhibitors have shown moderate clinical efficacy, the molecular and cellular mechanisms
of glioblastoma-associated immunosuppression are under continued investigation. Inter-
estingly, autologous tumor-infiltrating T and NK cells were shown to regain tumor lysis
activity after ex vivo stimulation, underscoring the strong immunosuppressive influence
of glioblastomas [68,69]. By overcoming glioblastoma-mediated immune suppression,
immunocytokines have recently shown impressive results in inducing inflammation and T
cell-mediated tumor cell lysis in glioblastomas in vivo [70]. Other promising approaches
include CAR NK cells [71,72]. In summary, while various therapeutic strategies are being
developed, the molecular mechanisms of glioblastoma-associated immune suppression
and tumor cell infiltration are gradually being understood.

Accumulating evidence points toward glioblastomas co-opting neurodevelopmental
programs for tumor progression. One insidious feature of this co-option is the integra-
tion of tumor cells into existing neural cell networks that drive tumor progression [6–8].
The immune system adapts to the de-differentiation tendency of tumors by producing
immature immunosuppressive cells [73]. In this context, LTB may serve as a molecular
marker of “immune de-differentiation”. Its role in lymphoid organ development and NK
cell maturation is well characterized [33,34]. Interestingly, fetal lymphoid tissue inducer
cells are NK cell-like cells that are also found postnatally and lack interferon-γ expres-
sion [74]. A chronically inflammatory milieu in glioblastoma drives profound changes in
the immune compartment [20–23]. During chronic inflammation, LTB secretion induces
the formation of tertiary lymphoid structures, the ectopic lymphoid cell aggregates [75].
NK cells are not the only cells that express LTB. It is also expressed by B and T lymphoid
cells, tumor-associated macrophages and monocytes. Interestingly, a recent study high-
lighted an NK-like phenotype in T cells showing enhanced LTB expression [26]. Some
degree of transcriptional convergence in glioblastoma has been reported within the myeloid
cell compartment [20,21,23] (e.g., between microglia, CNS-associated macrophages and
monocyte-derived macrophages) and even between myeloid and tumor cells [16]. These
observations may support the notion of glioma-associated immune de-differentiation across
different cell lineages.

The present study has outlined some similarities and crucial differences in the observed
NK cell transcriptional phenotype across human and murine gliomas. In both systems, we
find an accumulation of NK cells with enhanced expression of LTB and a downregulation
of activation markers. In humans, enhanced LTB expression was primarily associated with
MES-like tumor transcriptional subtypes that show strong transcriptional similarities with
the GL261 cell line [76]. Differently, we found that human NK cells show a higher expression
of the NK exhaustion marker gene KLRG1 and apoptosis-associated genes [38]. This may
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occur due to the overall shorter observational time frames between murine gliomas (weeks)
and human glioblastomas (months). Other aspects determining interspecies differences are
interindividual genetic and lifestyle variations, microbiota and therapeutic interventions in
the patient cohort. In summary, we found a robust cross-species NK cell transcriptional
signature associated with glioma progression.

This study has several limitations that need to be considered. The murine and human
data were obtained in different laboratories, leading potentially to batch effects. As a
meta-analysis, the nature of this study is observational; hence, it is lacking mechanistic
corroboration. To obtain insights into the functional NK cell states beyond transcriptomics,
in vitro analyses are required. Furthermore, protein validation of the main marker genes
across humans and mice is advisable. We have strived to address these and other limitations
by using state-of-the-art single-cell RNA sequencing data integration algorithms and
analyzing these data using distinct, complementary analytical pipelines. Finally, protein
validation for the human tissues was achieved using a public protein expression database.

5. Conclusions

Here, using human and murine glioma data, we have shown a distinct NK cell tran-
scriptional phenotype associated with glioma progression. These cells are characterized by
reduced expression of activation markers and enhanced LTB gene expression. High LTB
gene expression was mainly associated with MES-like and neurodevelopmental glioblastoma
subtypes. The novelty of our study is the description of a previously underappreciated NK
cell state that may underlie the previously reported NK cell dysfunction [69]. Our findings
contribute to the understanding of the immune component of the glioblastoma microenvi-
ronment and may help facilitate the development of immune therapies for this tumor.
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article/10.3390/cancers14194915/s1, including Figure S1: Gene ontology and regulatory element
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