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ABSTRACT: The hydrogen-bonded organic frameworks (HOFs)
have gained significant attention due to their various alluring
applications in the fascinating field of supramolecular chemistry.
Herein, we report the electrocatalytic activity of HOFs toward the
hydrogen evolution reaction (HER) by utilizing the molecular
adduct of cyanuric and trithiocyanuric acid with various organic
substrates (melamine and 4,4′-bipyridine). Both the experimental
and theoretical findings provide insights and validate the electro-
catalytic activity toward HER applications. This work contributes
significantly to designing novel highly efficient metal-free HOF-
based electrocatalysts for the HER.

■ INTRODUCTION

Over the last decades, supramolecular chemistry has set a path
toward a vibrant field of research due to its wider applications
in the field of catalysis, organic synthesis, the chemistry of
materials, medicine, and so forth.1−4 In this endeavor, a myriad
of new solids, composed of multimolecular components with
elegant physical and chemical properties, have been intuitively
designed via the molecular recognition process, utilizing
various types of intermolecular interactions, for example,
hydrogen bonds, which have been extensively reported in the
literature.5,6

Hydrogen-bonded organic frameworks (HOFs) are porous
crystalline materials constructed via intermolecular interactions
formed by hydrogen atoms lying between two strongly
electronegative atoms. The directional and flexible nature of
hydrogen bonds allows for the design/reticulation of various
framework structures such as covalent organic frameworks
(COFs) and metal−organic frameworks (MOFs). In the last
couple of years, varieties of functional HOFs have been
synthesized and used for various potential applications such as
separation,7−10 sensing,9,11,12 semiconductors,8,10 gas adsorp-
tion,13,14 supercapacitors,15 catalysis,16−21 and proton con-
ductors.22−24 Notably, Liu et al. synthesized bimetallic HOFs
on nickel foam (HOF−CoxFe1−x) and studied the electro-
chemical water splitting.25 Similarly, to create carbon-based
oxygen reduction reaction (ORR) catalysts, Liu et al. used an
HOF (HOF-8) as a precursor.26 However, based on our
knowledge, to date, there has been no report about metal-free
HOF materials for electrochemical hydrogen evolution
reaction (HER) applications.

Molecular hydrogen (H2) is a promising candidate for future
renewable energy sources due to its high efficiency, cleanliness,
sustainability, and environmental friendliness.27 Electrochem-
ical water splitting is the most efficient method for hydrogen
evolution.19,22−24,28−30 Among a wide variety of electro-
catalysts, Pt/C shows an unbeatable HER property. However,
the low abundance, high cost, and poor stability of Pt seriously
prohibit the development of the water electrolysis technology
for commercial production of H2.

17 Therefore, the fabrication
of nonprecious electrocatalysts with low cost, high activity, and
advanced stability is highly desirable. Thus, transition metal-
based oxides,18,19 sulfides,22,23 phosphides,24,31 nitrides,32,33

carbides,34 MOFs,35,36, and so forth have been well-tested for
the desired catalytic activity, but these catalysts often suffer
inherent corrosion and passivation in the acidic proton
exchange membrane electrolyte.37 Therefore, the possible
development of metal-free HOF-based electrocatalysts for
potential HER applications is profoundly essential. However,
some high-quality research articles have been reported on the
HER.38−40 Nevertheless, exploring HOFs and their activity
toward the HER provides a wide scope for the development of
an alternate metal-free electrocatalyst of interest.
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■ EXPERIMENTAL SECTION

Chemicals and Reagents. All the chemicals have been
purchased from Sigma-Aldrich with >99% purity and were
used without additional purification.
Synthesis Procedure. Molecular adducts M.CA, M.TC,

and B.TC were obtained via a facile one-step hydrothermal
process by using the previously reported synthetic procedure
(see the Supporting Information for the detailed description).
Powder X-ray Diffraction. Powder X-ray diffraction

(PXRD) data were collected on a PANalytical diffractometer
with Cu-Kα radiation (λ = 1.54060 Å). An X-ray generator
with parameters of 40 kV and 30 mA was used to collect
intensity data with a step size of 0.017° (2θ) in a continuous
scanning mode. Diffraction patterns were collected in the 2θ
range of 5−50° at room temperature.
Field Emission Scanning Electron Microscopy and

Transmission Electron Microscopy Analysis. Field
emission scanning electron microscopy (FESEM) images
were obtained using a Carl Zeiss Merlin Compact instrument
at an acceleration voltage of 5 kV. The transmission electron
microscopy (TEM) images were obtained using an FEI-
TECNIA G2 transmission electron microscope operating at
200 kV.
Electrochemical Measurement. All the measurements

were performed in a three-compartment electrochemical cell
on a CHI 760D electrochemical workstation at room
temperature in a 0.5 M H2SO4 (pH = 0) solution for the
HER. Linear sweep voltammetry (LSV) was performed at a
scan rate of 5 mV/s. A glassy carbon electrode (GCE) was
used as the working electrode. The GCE was prepolished using
three different sizes of alumina powder in polishing cloth,

sonicated with water for 10 min, and dried at room
temperature. Ag/AgCl (3 M KCl) and Pt were used as
reference electrodes and counter electrodes, respectively, in all
measurements. All the polarization curves were transformed
from the Ag/AgCl electrode to reversible hydrogen electrode
(RHE) by using the formula ERHE = EAg/AgCl + 0.059 pH
E0

Ag/AgCl. The catalytic suspension was prepared by taking 1 mg
of the as-synthesized sample dispersed in a mixed solution of 5
vol % Nafion and 95 vol % ethanol and sonicating for about 30
min into a homogeneous slurry. 5 μL of the slurry was
deposited onto a polished GCE and dried in air. The mass
loading of active materials was about 0.07 mg/cm2. To evaluate
the electrochemically active surface area (ECSA), cyclic
voltammetry (CV) was carried out to probe the electro-
chemical double-layer capacitance (Cdl) of various samples at
the non-Faradic region identified from CV. This non-Faradic
region is typically a 0.1 V window about the open-circuit
potential, and all measured current values are due to double-
layer charging. A linear trend was observed by plotting the
current at 0.15 V versus Ag/AgCl against the scan rate. The
linear slope, equivalent to twice the double-layer capacitance
Cdl, was used to present the ECSA. The measurement of the
ECSA was performed according to eq 1.

= C CECSA /dl s (1)

where Cs is the specific capacitance of carbon-based
compounds and the value of Cs is 27.5 μF/cm2. The value of
Rf can be calculated by dividing the electrode surface area
(0.071 cm2) by the ECSA values.

Computational Details. The theoretical calculations are
performed using the spin-polarized density functional theory

Figure 1. Scheme of the structure of the as-synthesized HOFs.

Figure 2. SEM (a−c) and TEM (d−f) images of the as-synthesized B.TC, M.TC, and M.CA, respectively.
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(DFT), as implemented in the Vienna ab initio simulation
package (VASP).41 The potentials of the atoms are described
using the projected augmented wave (PAW) method.42 The
generalized gradient approximation (GGA) is employed to
consider the exchange and correlation effects at the Perdew−
Burke−Ernzerhof (PBE) level.43 A plane-wave cutoff energy of
450 eV is sufficient to obtain well-converged results. During
relaxation, the Brillouin zone sampling is performed using a 5
× 5 × 1 Monkhorst−Pack grid. The maximum force converged
to a value lower than 0.03 eV/Å, and the total energy
converged to less than 10−6 eV per atom for obtaining the
relaxed structures.

■ RESULTS AND DISCUSSION
In this work, we have synthesized three different hydrogen-
bonded robust organic framework structures: M.CA, M.TC,
and B.TC utilizing melamine (M), cyanuric acid (CA),
trithiocyanuric acid (TC), and bipyridine (B) via simple
hydrothermal methods.44,45 The synthesis scheme for the three
different structures is presented in the Supporting Information
(Figure S1). Figure 1 presents the crystal structures of the as-
synthesized materials under study. The as-synthesized B.TC,
M.TC, and M.CA have been characterized using various
techniques to ascertain their structure and morphology. The
morphology of B.TC, M.TC, and M.CA complexes was
investigated using FESEM and TEM measurements. Both the
FESEM and TEM images confirmed that B.TC form a nano-
leave-like morphology, whereas M.TC and M.CA show a nano-
belt-like structure (Figure 2). The PXRD patterns verified the
highly crystalline behavior of microcrystalline B.TC, M.TC,
and M.CA (Figure S2). All the well-resolved peaks are in good
agreement with the reported patterns.44 For exploring the
chemical stability of the complex, the synthesized materials
were immersed in acidic, neutral, and alkaline conditions for
about 24 h. After washing and drying, PXRD analysis was
carried out, and the data show that all complexes retain their
stability in acidic and neutral conditions. In contrast, all the
complexes are unstable in alkaline conditions (Figure S3).
The as-synthesized HOF materials B.TC, M.TC, and M.CA

were explored for the electrochemical generation of molecular
hydrogen. All the catalysts were modified over the GCE with a
mass loading of 0.70 mg/cm2. The HER performance of B.TC,
M.TC, and M.CA was examined along with that of the GCE
for comparison. The LSV polarization curves were recorded in
the Ar-saturated 0.5 M H2SO4 electrolyte at a 5 mV/s scan rate
and are shown in Figure 3a. The increase in cathodic current
density after a certain negative bias suggests HER initiation on
the catalyst surface. In the case of M.CA, it catalyzes the HER
at the onset overpotential of −0.13 V. However, upon

replacing CA with TC, that is, for M.TC, the HER activity is
enhanced, resulting in higher current density and a lower onset
overpotential of −0.10 V. Similarly, upon replacing melamine
(M) with bipyridine (B), that is, in the case of B.TC, further
enhancement in the HER activity was observed compared to
that of M.TC and M.CA. B.TC exhibits an onset potential of
about −0.08 V, and after that, the cathodic current starts to
increase, along with the simultaneous formations of gas
bubbles on the electrode surface. A benchmark current density
of 10 mA/cm2 was achieved at the overpotential of −0.29 V.
The obtained onset overpotential of catalyst B.TC is quite
comparable with that of much earlier reported metal-free HER
electrocatalysts. A comparison with previous reports was
summarized and is presented in the Supporting Information
(Table S1). However, it may be pertinent to mention that
though B.TC possesses lower activity than the benchmark
catalyst Pt/C, taking into account the cost and paucity of Pt,
the efficacy of B.TC is appreciable toward the lower cost,
metal-free, and facile synthesis process. The higher HER
activity of B.TC may be accounted for by its interesting 3D
channel-like structure, porous morphology, and HER active
sites.
The Tafel slope is the intrinsic property of the materials, and

it helps predict the mechanism and reaction kinetics for
electrochemical reactions.46,47 In the HER, the smaller Tafel
slope of the catalysts suggests a faster proton reduction process
at a lower potential. The Tafel slope is derived by fitting the
linear part of the Tafel plot (η vs log j). In an acidic medium,
the HER mechanism proceeds through three steps, that is,
Volmer, Heyrovsky, and Tafel reactions: which is associated
with the Tafel slopes of 120, 40, and 30 mV/dec, respectively.
The Tafel slope for B.TC is nearly 78 mV/dec, which is much
lower than that of M.TC (104 mV/dec) and M.CA (120 mV/
dec) (Figure 3b) but higher than that of Pt/C (31 mV/dec).
The Tafel slope for B.TC suggests that the Volmer−Heyrovsky
mechanism is involved in the reaction process. The lower Tafel
slope of B.TC indicates faster reaction kinetics toward the
HER than that of M.TC and M.CA. Also, the magnitude of the
current exchange density offers important information on the
electrode performance. The exchange current density was
evaluated from the Tafel plots using extrapolation methods
(Figure S4). The B.TC electrocatalyst shows a higher exchange
current density (jo) of 0.047 mA/cm2 than either M.TC (0.037
mA/cm2) or M.CA (0.016 mA/cm2). Further, it signifies the
higher electrode kinetics and better activity of B.TC toward the
HER. The electrochemical impedance spectroscopy measure-
ment was carried out to study the electron transfer kinetics
further. Catalyst B.TC shows a lower value of charge transfer
resistance in the Nyquist plot than M.TC and M.CA (Figure

Figure 3. (a) HER polarization LSV plot of B.TC, M.TC, M.CA, and the GCE at a scan rate of 5 mV/s. (b) Corresponding Tafel plots.
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S5). The better charge transfer resistance and higher metallic
character in B.TC reflect the higher HER activity. Further, the
electrochemical HER activity of materials is checked at
different pH values of electrolytes. As the materials are
unstable in an alkaline pH, the HER activity of B.TC, M.TC,
and M.CA was explored in a neutral medium (1 M phosphate-
buffered saline). As can be seen, all the electrocatalysts show a
very poor HER activity in a neutral medium (Figure S6).
To obtain further insights into the HER activity, the DFT

calculations have been performed to estimate the overpotential
of the HER on the system considered in this work using the
H* free energy profile. The HER activities of the three systems
have been compared at the overpotential considering four
possible sites of M.CA, three possible sites of M.TC, and three
potential sites of B.TC.
The naming of the system is performed considering the type

of active sites under study (Table 1). The free energy change
during the formation of intermediate H* from the initial stage
H+ + e− is presented in Figure 4a. The Gibbs free energy of H*
absorption ΔGH* should be zero for an ideal catalyst. For the
M.CA structure, the overpotential at each site is more than 2
eV, which is very high. The overpotential at the C site of TC of
the M.TC complex is about −1.07 eV and that at the S site of
TC of the B.TC structure is about 0.97 eV. The other values
are demonstrated in Table 1. We can conclude that the
presence of sulfur atoms increases the activity of the complex.
To check the possibility of conversion of 2H + 2e− on the
complex at the same time, we consider the free energy profile
of intermediate 2H* (Figure 4b). By considering this method,
the overpotentials for the HER are calculated to be 0.35 and

0.2 eV on M.TC and B.TC structures, respectively, considering
C and S as active sites (Figure 4c,d). This signifies that the
sulfur atom and the structural arrangement are crucial for B.TC
to be an efficient catalyst for the HER. The adsorption of 2H
should be optimal to achieve lower overpotential.
In addition, the intrinsic catalytic activity and number of

active sites of B.TC, M.TC, and M.CA were further verified by
estimating the mass activity, specific activity, double-layer
capacitance (Cdl), ECSA, roughness factor (Rf), and Faradaic
efficiency. Catalyst B.TC exhibits the mass activity and specific
activity values of 3.22 A/gm and 0.033 mA/cm2, respectively,
at the overpotential of 200 mV. The mass activity and specific
activity of B.TC catalysts are much higher than those of M.TC
and M.CA (Table S2).
The values of Cdl, ECSA, and Rf were directly proportional

to the surface area of the catalyst and were used to estimate the
number of active sites.48 The detailed calculations of Cdl,
ECSA, and Rf are presented in the Supporting Information. For
the calculation of the Cdl value, the CV curve of each sample
was recorded at the potential window from 0.1 to 0.2 V (vs
Ag/AgCl) with different scan rates, as shown in Figure 5a−c.
The current values from the anodic scan and cathodic scan at
the middle potential (0.15 V) against the scan rates are plotted
in Figure 5a′−c′. The linear slope is twice the Cdl value. The
Cdl value of B.TC was calculated to be 35.5 μF, which is almost
more than 2 times higher than that of M.TC (14 μF) and
M.CA (11.5 μF). Similarly, the values of ECSA and Rf are
summarized in Table S2. Thus, B.TC shows higher ECSA and
Rf values as compared to M.TC and M.CA.

Table 1. Various Sites on the M.CA, M.TC, and B.TC Systems We Considered and the Overpotential of the Corresponding
Systems During the HER

system (M.CA) overpotential (η) system (M.TC) overpotential (η) system (B.TC) overpotential (η)

N-site-M-MCA 2.07 S-site-TC-M.TC −1.22 C-site-TC-B.TC 1.601
C-site-M-MCA 2.47 C-site-TC-M.TC −1.07 S-site-TC-B.TC 0.97
N-site-CA-MCA 2.43 C−S-site-M.TC 0.35 C−S-site-B.TC 0.2
C-site-CA-MCA 2.59

Figure 4. (a) Calculated free energy profile of the HER at the equilibrium potential for M.CA, M.TC, and B.TC complex structures. (b) Calculated
free energy profile of the HER at the equilibrium potential for M.TC and B.TC structures considering the reaction of two hydrogen atoms at the
same time. (c) 2H-adsorbed M.TC and (d) 2H-adsorbed B.TC structures. Dark blue, yellow, gray, and light blue colors denote the N, S, C, and H
atoms, respectively.
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The higher ECSA and Rf values of B.TC suggest that the
enhanced HER activity might originate from the increased
ECSA, thus exemplifying that B.TC has higher exposed
catalytically active sites that significantly contribute to its
excellent HER activity and establishing that the metal-free
B.TC electrocatalyst holds a promising position in terms of
higher activity toward the HER. The chemical stability and
efficiency of a catalyst play a vital role in its practical
application; thus, to address such points, a durability test is
performed using the galvanostatic method at 5 mA/cm2, as
illustrated in Figure S7. Interestingly, it is observed that the
current density was stable for 11 h, with more than 95% of the
initial current being preserved, and the loss was negligible.
After stability measurement, the study of the crystal structure is
quite essential for electrocatalysts to validate the robust nature
of the material. The PXRD analyses for sample B.TC have
been carried out after 11 h of durability measurement. In the
PXRD pattern, no predominant change in the crystal phase
was observed, suggesting the stability of the crystalline HOF
structure in the electrocatalyst (Figure S8). These results
reflect its robustness for long-term reaction and justify its
potential for promising application in various energy devices
with alluring features.

■ CONCLUSIONS
In summary, the hydrogen-bonded porous organic framework
structures of B.TC, M.TC, and M.CA significantly contribute
to the HER in an acidic medium. B.TC possesses outstanding
HER preference with a small overpotential of 80 mV, a Tafel
slope of 78 mV/dec, an exchange current density of 0.047 mA/
cm2, and long-term durability. The overpotential values of
experimental results are in good agreement with theoretical
calculations. This novel material with a unique structure can be
a good alternative metal-free electrocatalyst for energy devices.
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