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Abstract: In the present study, chitosan (CS) and pectin (PEC) were utilized for the preparation of 3D
printable inks through pneumatic extrusion for biomedical applications. CS is a polysaccharide with
beneficial properties; however, its printing behavior is not satisfying, rendering the addition of a
thickening agent necessary, i.e., PEC. The influence of PEC in the prepared inks was assessed through
rheological measurements, altering the viscosity of the inks to be suitable for 3D printing. 3D printing
conditions were optimized and the effect of different drying procedures, along with the presence
or absence of a gelating agent on the CS-PEC printed scaffolds were assessed. The mean pore size
along with the average filament diameter were measured through SEM micrographs. Interactions
among the characteristic groups of the two polymers were evident through FTIR spectra. Swelling
and hydrolysis measurements confirmed the influence of gelation and drying procedure on the
subsequent behavior of the scaffolds. Ascribed to the beneficial pore size and swelling behavior,
fibroblasts were able to survive upon exposure to the ungelated scaffolds.

Keywords: 3D printing; chitosan; pectin; hydrogels

1. Introduction

Chitosan (CS) is a linear seminatural polysaccharide derived from chitin through
alkali deacetylation [1]. The abundance of chitin in nature alongside the simplicity of its
deacetylation procedure renders CS a low-cost polymer [2]. CS consists of N-glucosamine
and N-acetylglucosamine units, which are connected through β(1–4) glycosidic bonds [3].
It is a biocompatible, biodegradable and nontoxic polymer [4] with enhanced antimicro-
bial [3] and antioxidant activity [5]. Furthermore, due to its cationic nature, it has excellent
mucoadhesive properties and in combination with its exceptional gel forming ability [2,3],
it is a polymer extensively used in various applications including drug delivery and tissue
engineering.

Depending on the desired application, CS has been prepared in different types of
constructs, including porous scaffolds [6], membranes [7], beads [8] and nanoparticles [9].
When intended for biomedical applications and especially tissue engineering and wound
healing, CS is usually processed with electrospinning [10], freeze drying [6], gas foaming,
phase separation [6], solvent casting and electrophoretic deposition [11]. Each of these
techniques has its limitations, and some apply to all of them; lack of control of the mi-
crostructure like shape and porosity, use of solvents and inability to produce complex
structures are some of them [12]. With the evolution of 3D printing and the availability
of cost-effective 3D printers on the market, the research on 3D printed constructs of nat-
ural polymers for biomedical applications including skin regeneration and engineering
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applications has bloomed [13,14]. 3D printing offers control over the size, shape and
microstructure and allows the direct incorporation of cells to produce cell-laden scaffolds.
Among the different 3D printing technologies, natural polymers, and especially CS, have
been 3D printed with extrusion-based, fused-deposition modeling and solvent dispensing
methods [12,15].

3D printing of CS still shows some limitations. There is still a need to improve its
printability and fidelity by examining new combinations of materials that will result in
optimized constructs [12]. Like for all bioinks, viscosity needs to be adjusted so that it
can be easily extruded without clogging the output and maintain its shape afterwards.
To improve printability, CS is often combined with other materials, like PEG [16], raffi-
nose [17,18] and gelatin [19–21]. Cleymand et al. [22] developed CS/guar gum inks for
3D printing, resulting in enhanced dimensional stability of the printed patterns. Rahim-
nejad et al. [23] extensively studied CS-based thermosensitive hydrogels combined with
different gelling agents and gelation kinetics, shear thinning and shear recovery behav-
ior along with time and temperature dependence were taken into account, concluding
in auspicious results. However, as most hydrogels, the stability of 3D printed CS con-
structs is often poor, and some type of crosslinking is applied either pre- or postprinting.
These include photo-crosslinking, which requires the functionalization of CS [24], covalent
crosslinking (e.g., genipin) [16], or physical crosslinking [17–19,25–27]. Adhikari et al. [28]
developed a CS/alginate 3D printable bioink reinforced with hydroxyapatite, combining
both pre- and post-printing crosslinking. Moreover, some studies reported the use of a
support frame, made from synthetic thermoplastic polymer, to improve the shape of the
CS constructs [29,30].

Derived from fruits and vegetables, pectin (PEC) is an anionic polysaccharide with
good gelling properties [31]. It is biocompatible, biodegradable PEC has been used ex-
tensively in the food and pharmaceutics industries, and it can be 3D printed [32]. PEC
possesses carboxyl groups that can physically crosslink with the amino groups of CS via
the formation of polyelectrolyte complexes (PECs) in the pH range 3–6 [33]. Materials con-
taining CS and PEC have been evaluated in vivo on rats [34] as well as in vitro on human
stem cells, revealing encouraging results [35]. They were assessed as suitable candidates
for tissue engineering applications, counting skin and bone regeneration, as they exhibited
viscoelastic behavior, good mechanical properties and no cytotoxicity [33,36,37]

In this study, hydrogel scaffolds containing CS and PEC were prepared with pneu-
matic extrusion 3D printing, as a preliminary evaluation of their suitability for biomedical
applications. The combination of CS and PEC was chosen to (i) improve the printability
of both and (ii) stabilize the constructs via the formation of a PEC. Postprinting physical
crosslinking with different bases was tested to further improve the stability of the con-
structs. The interactions between the components of the scaffolds were examined with
FTIR spectroscopy, and their physicochemical properties were evaluated, including water
swelling ratio, enzymatic hydrolysis rate and in vitro cytotoxicity.

2. Results and Discussion
2.1. Rheological Evaluation

The definition of rheology is the deformation of the matter’s flow and is investigating
its response to an applied stress or strain [38]. The preparation of bioinks with specific
printable behavior depends on the flow ability of the bioinks and, consequently, the assess-
ment of their rheological behavior is essential. CS is a natural polymer whose rheological
behavior depends mainly on the concentration of the examined solution [39]. Its viscos-
ity increases while increasing the concentration of the ink. According to Kienzle-Sterzer
et al. [40], CS gels have a shear thinning behavior. Consequently, an increase in shear stress
would provoke a decrease in the viscosity value of the samples. PEC is a polysaccharide
utilized extensively in food industry as a gelling agent. It has been utilized in bioinks
preparation due to its ability to act as a thickening agent capable of increasing viscosity.
According to Owens et al., while heating PEC solutions, in the temperature range between



Mar. Drugs 2021, 19, 36 3 of 18

0 ◦C to 50 ◦C, there is no detection of thickening of the solution. Contrarily, during cooling,
hydrogen bonding is enhanced, providing strong gels [41]. The behavior of PEC is in
accordance with our everyday experience. PEC is extensively utilized in jam preparation
where this phenomenon takes place. The jam containing the polysaccharide is heated, PEC
is solubilized and during cooling procedure, the viscosity of the jam increases since PEC
is forming thick gels [42]. As a result, in a warmed PEC solution, viscosity along with
storage modulus (G′) and loss modulus (G′′) are expected to increase during cooling [43].
The shear thinning behavior of the prepared CS-PEC bioinks is clearly depicted in Figure 1
since the viscosity values decrease while increasing the rotation speed. According to the
literature, shear thinning behavior is mandatory for a continuous flow during 3D printing
procedure [22]. Interesting is the effect of PEC on the rheological behavior of the samples.
A great difference in the viscosity values of CS-PEC 5–5% and CS-PEC 5–10% is noticed,
confirming the thickening ability of PEC.
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Hydrogels are considered suitable for 3D printing only if they are capable of forming
cylindrical fibers during extrusion and retaining distinct layers throughout the printing
procedure [44]. Inks with viscosity values exceeding 10,000 Pa·s are characterized as too
viscous, forming usually nonuniform filaments with difficulty in depositing smoothly;
however, they are characterized by excellent printing accuracy. On the contrary, inks
with viscosity values lower than 100 Pa·s are characterized as too fluidic, showing great
extrudability but poor shape fidelity [45,46]. However, the utmost importance of the printed
hydrogels is their ability to retain their shape during the printing procedure. According to
the literature, an optimal range of viscosity suitable for high fidelity printing was found to
be between 400–4000 Pa·s [47].

Among the four prepared inks, the sample CS-PEC 5–10% revealed the higher, com-
parable to bibliography viscosity values and, consequently, its rheological behavior was
further assessed. Figure 2a clarifies the change of the sample’s viscosity between 15–55 ◦C
for different shear stress values. During cooling, the viscosity is increased in every ap-
plied rotational speed, behavior which is expected according to the individual polymers’
rheological performance. Moreover, viscosity values are higher for lower frequencies.
In Figure 2b, the storage (G′) and loss modulus values (G′′) of the sample CS-PEC 5–10%
between 15–55 ◦C for various fixed frequencies are presented. A sol-gel transition at 53 ◦C
is detected during cooling, while the inks behave like weak gels in the temperature range
15–50 ◦C, confirming once again the improved mechanical properties of the inks.
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2.2. Morphological Characterization

According to the literature, 3D printing of natural polymers is still challenging since
these water-soluble polymers are not able to maintain a concrete structure [48]. A square
grid was selected for 3D printing since according to Ma et al. [49], this scaffold facilitates
fibroblasts proliferation and skin regeneration, as compared to aligned and randomly dis-
tributed scaffolds. Figure 3a presents a 3D printed scaffold of neat CS 4% w/v solution. CS
viscous solutions (25–30 wt %) extruded under high pressure results in high-fidelity printed
scaffolds [50]. However, in lower concentrations, the ink’s inability to form uniformly
extruded filament, results in a dot-structure instead of a uniform grid. CS inks with high
viscosity values (~1500 Pa·s) result in high fidelity microstructures [48]. Figure 3b–e present
the 3D printed scaffolds of the CS-PEC inks. As mentioned above, the viscosity values of
the inks CS-PEC 4–5%, CS-PEC 4–10% and CS-PEC 5–5% are low and the resulted shape
fidelity of the final scaffolds is insufficient. However, the effect of PEC on the printing
ability of the inks, as well as on the final scaffolds’ shape, is obvious. While increasing
PEC concentration, the ability of inks CS-PEC 4–10% and CS-PEC 5–10% to maintain their
morphology is evident, resulting in regular grids with square holes. Moreover, the higher
CS concentration results in increased viscosity ink, which, in conjunction with the presence
of PEC, renders the CS-PEC 5–10% the most appropriate among the four CS-PEC inks.
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Macroscopic photographs and scanning electron microscope micrographs of the dried
samples are shown in Figure 4. The different postprinting gelating and drying conditions
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applied on the samples resulted in four different samples CS-PEC RD, CS-PEC FD, CS-
PEC G RD and CS-PEC G FD (G; gelation, RD; drying in room temperature, FD; freeze
drying). Drying of the scaffolds is important since their storage and transfer are easier in
comparison to wet scaffolds. As it can be observed, the samples CS-PEC RD and CS-PEC
G FD retain their shape and morphology macroscopically whereas shrinkage is observed
in the samples CS-PEC FD and CS-PEC G RD during drying and storage. The evaluation
of drying procedure is important since according to Claymand et al. [22], drying after
printing procedure might induce shrinkage of the scaffolds, whereas their inner pore
structure affects the proliferation of cells on them [37]. As expected, ungelated samples
are transparent, which is in agreement with literature data [51]. In contrast, gelation of
the scaffolds with alkali solution (10 min gelation time) results in opaque brittle samples
where according to Frick et al. [52], the alkali treatment of CS films is responsible for their
increased brittleness. Furthermore, it is commonly known that subjecting natural polymer
solutions in lyophilization results in porous structures [53]. Consequently, through these
images the formed porous structure of the scaffolds CS-PEC FD is revealed, in contrast
with the samples RD, attributed to the sublimation of the contained water. This result is in
agreement with previous data from our group, where ultraporous structures of CS dressings
were prepared with lyophilization [54]. The CS-PEC G FD sample shrunk less than CS-PEC G
RD, likely due to the stabilization of its structure during its storage in the freezer before its
lyophilization. Furthermore, SEM micrographs depict the microstructure and the morphology
of the printed scaffolds. Concerning the ungelated samples, their surface is smooth, whereas
the alkali-treated scaffolds’ surface is rougher, ascribed to the gelation with KOH solution.
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Through SEM micrographs, the average filament diameter and the average pore size
were measured (Figure 5a,b). Concerning the diameter of the filament, it is observed that
gelated samples CS-PEC G RD and CS-PEC G FD have smaller average diameter, 273.9 µm
and 318.6 µm, respectively, while ungelated scaffolds present larger diameter. The sizes of
the gelated scaffolds’ diameters are comparable to the needle’s inner diameter (260 µm).
This behavior is expected and attributed to the maintenance of the 3D structure after
the instant postprinting gelation of the samples. However, the ungelated scaffolds have
a liquid-like behavior and they present a tendency where upper and lower layers fuse
together, resulting in the distortion of the scaffolds’ shape. Regarding the obtained pore
size, the scaffolds with larger diameter naturally present a smaller pore size and vice versa.
The CS-PEC G RD sample deviates from the aforementioned behavior by having small
pore size with small filament diameter. However, the scaffold’s shape shrunk after the
gelation and drying procedures. The sample CS-PEC G FD was the only one the retained
its shape having large pore size and small filament diameter after printing, crosslinking
and drying.
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2.3. Characterization of the Scaffolds

The addition of PEC to the CS solution aims for the preparation of bioinks with
improved printability. However, the presence of both polysaccharides, results in inter-
molecular interactions. The characteristic FTIR bands of CS and PEC as well as of the
formulated scaffolds are presented in Figure 6. Briefly, the typical bands of CS are present
at 3400 cm−1 due to the O-H hydroxyl groups, at 3360 cm−1 attributed to -NH group
stretching vibrations whereas at 1656 cm−1 and 1584 cm−1 are the peaks corresponding
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to amide I and II, respectively [55]. The main absorbance bands characterizing PEC are
present at 3436 cm−1 attributed to O-H groups, at 2945 cm−1 ascribed to symmetric -CH3
stretching, while the bands at 1747 and 1630 cm−1 are owed to the stretching of the carbonyl
groups C=O of the carboxylic and ester moieties, respectively [56]. The FTIR spectra of
the CS-PEC scaffolds reveal the presence of both polysaccharides, while small shifts in the
characteristic bands of the polymers are detected. These shifts are attributed to interactions
owed to the presence of hydrogen bonds and to electrostatic interactions between the
anionic carboxylic groups of PEC and the positive charged amino groups of CS. According
to the literature, during the formation of polyelectrolyte complexes, the main changes are
detected in the range of 1800–1600 cm–1, providing evidence of the interaction of the amino
and carboxyl groups. Due to the formation of intermolecular ionic bonds, the asymmetric
stretching vibration of the carbonyl group of the carboxylate (COO–) groups in pectin
along with the bands ascribed to asymmetric and symmetric bending vibrations of the
NH3 groups are expected to be shifted [57,58]. More specifically, in the CS-PEC RD and
FD samples, the characteristic broad peaks attributed to hydroxyl and amino groups are
shifted to 3462 cm−1, whereas the peaks attributed to amide I, II as well as to the carbonyl
groups are all shifted to lower wavenumbers. The spectra of CS-PEC G RD and CS-PEC
G FD are interesting; the vibration of the carbonylic bond at 1747 cm−1 is shifted to 1738
and 1698 cm−1 at the CS-PEC G FD and G RD spectra, respectively, whereas the peaks of
the amides I and II are not clearly distinguished, due to the gelation of the samples with
KOH solution.
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The formation of polyelectrolyte complexes between CS and PEC occurs in the pKa
range of the two polymers. The pKa value of CS lies between 6.2–7.0 whereas PEC’s pKa
value is between 3.5–4.5. The pH value of the prepared CS-PEC inks was measured to be
in the range of 4.0–4.5. Consequently, the amino groups of CS and the carboxylic groups
of PEC are positively and negatively charged respectively, leading to the formation of
H-bond interactions among the polysaccharide networks as depicted in Figure 7. When the
degree of esterification of PEC is high (>50%), the interactions occurring between carboxyl
and amino groups in semidilute and gelling solutions, are intermolecular associations
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governed by hydrogen bonds and hydrophobic interactions [58,59]. These intermolecular
interactions are leading to the enhanced printing behavior of the ink in comparison to the
printing behavior of neat CS solution as well as to the ability of the 3D printed scaffolds to
maintain their shape after the printing procedure.
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Polymeric scaffolds addressed for tissue engineering applications must meet various
requirements, namely biocompatibility, good mechanical properties and appropriate pore
size [60]. Among them, an important characteristic is their ability to swell in aqueous
media. When scaffolds are in contact with human tissues, increased amounts of body
fluids are absorbed [61]. CS and PEC, as natural polysaccharides, have an innate ability of
swelling in aqueous solutions. The gelation of the scaffolds, as well as the utilized drying
procedure affects their swelling ability. The swelling behavior of polymeric scaffolds is
a pH-dependent phenomenon that reaches an equilibrium point within the first 2 h [62].
Padney et al. concluded that when the ionic interactions between CS and PEC are weaker,
the swelling ability of the polymeric matrixes is higher [63]. More specifically, in pH 7.4,
the amine groups of CS are partially deionized, whereas the carboxylic groups of PEC are
negatively charged. Consequently, an enhanced swelling ability of the printed scaffolds in
pH 7.4 is expected. Figure 8a presents the swelling behavior of the 3D printed scaffolds in
SBF buffer while Figure 8b shows the water content of the scaffolds. As depicted, all the
scaffolds have an initial burst water uptake during the first 20 min, followed by a small
reduction of the amount of the swelled water, possibly due to erosion of the scaffolds, reach-
ing an equilibrium point at 3 h. Ungelated scaffolds CS-PEC RD and CS-PEC FD present
higher swelling ability up to 341 ± 35% and 373 ± 50%, respectively, in contrast to gelated
CS-PEC G RD and CS-PEC G FD samples, which swell up to 102 ± 9% and 181 ± 27%,
respectively. The water content of the scaffolds is CS-PEC RD 77 ± 1.8%, CS-PEC FD
78 ± 4.5%, CS-PEC G RD 50 ± 2.2% and CS-PEC G FD 64 ± 3.5%. The samples’ behavior
is in agreement with literature data, since treatment with alkali in CS scaffolds leads to
reduced swelling ability [52,64]. Furthermore, freeze dried samples tend to have higher
swelling ability and water content in comparison to room temperature dried scaffolds,
revealing the effect of the increased porosity caused by the freeze-drying procedure on
the swelling properties. Naturally, neat CS presents a low degree of swelling which varies
between 50–150% depending on the pH, the molecular weight and the degree of deacety-
lation [65]. Consequently, the scaffolds’ enhanced swelling is ascribed to the presence of
PEC, since the anionic end groups enhance the electrostatic repulsions, ameliorating the
total swelling ability of the scaffolds.

An important characteristic of polymeric scaffolds for skin regeneration applications is
their dehydration ability which is also referred as swelling reversibility. Swelling reversibil-
ity is interlaced to the reusability of the scaffolds [66]. Figure 8c shows the relative water
content of the samples and their behavior through the dehydration process. The freeze-
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dried samples CS-PEC FD and CS-PEC G FD had higher relative water content in t = 0 min
(36 ± 5.3% and 30 ± 11.8%, respectively) owed to their higher porosity, whereas CS-PEC
RD and G RD relative water content was 23± 1.4% and 24± 7.7%, respectively. During the
first 5 min, the water content of all samples diminished to 3–4%, while at 60 min, the water
content is 0.7–2%. Developing reusable scaffolds with swelling ability and thereafter almost
complete dehydration, is, according to the literature, helpful for long-term applications on
wounds [67].
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CS is able to be depolymerized by lysozyme through the hydrolysis of its glycosidic
bonds [68]. According to the literature, the weight loss of CS scaffolds depends on the
polymers’ concentration of the initial solutions, the degree of deacetylation (DD) along
with the molecular weight and their swelling behavior [69]. Since molecular weight, con-
centration and DD are constant in CS-PEC scaffolds, their hydrolysis behavior changes
in accordance with their swelling ability. As the aqueous enzymatic solution reaches the
polymeric scaffold, lysozyme begins to break down the polymer. Consequently, the higher
porosity allows more surface area for the enzyme degradation to take place. Figure 9
presents the mass loss results of the samples during enzymatic hydrolysis. Ungelated
samples behave as expected and described in the literature, since increased swelling ratio
results in increased degradation rate [37]. The sample CS-PEC FD, presenting the higher
swelling ability, lost approximately 80% of its mass during enzymic hydrolysis, while
CS-PEC RD lost 45% of its mass. Interesting is the hydrolysis behavior of the gelated
samples. The gelation of the scaffolds induced reduction of the mesh size of the polymeric
network, likely leading to prevention of lysozyme effectively cleaving the glycosidic bonds.
As a result, the mass loss of the samples CS-PEC G FD and CS-PEC G RD is up to 60% and
70%, respectively.
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The thermal behavior of the prepared scaffolds was evaluated through DSC measure-
ments. CS, according to the literature, has a characteristic endothermic peak at around
50–100 ◦C. This temperature range in the CS thermogram is also called dehydration temper-
ature and is attributed to the loss of the absorbed water due to the presence of hydrophilic
groups on the CS backbone [70]. Figure 10 presents the DSC scans of the CS-PEC scaffolds.
It is evident that all the 3D printed scaffolds have an endothermic peak around 60 ◦C
accredited to their dehydration. Interesting are the enthalpy values of these endother-
mic peaks, since higher values mean greater amount of absorbed water in the scaffold.
The ungelated samples CS-PEC RD and CS-PEC FD have grater enthalpy in comparison to
gelated CS-PEC G RD and CS-PEC G FD. Concurrently, freeze-dried samples CS-PEC FD
and CS-PEC G FD reveal higher enthalpy than the room dried CS-PEC RD and CS-PEC
G RD. These results are in agreement with the swelling and dehydration measurements,
where gelation and inner porosity affect the absorbed moisture of the scaffolds.
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Polymeric scaffolds for skin regeneration applications must allow the attachment
and proliferation of cells. Fibroblasts are cells mainly responsible for collagen production,
which is the major components of the extracellular matrix of the dermis [71]. According
to Howling et al., CS has a positive impact on fibroblast proliferation, as well as on the
contraction of collagen lattices [72]. Furthermore, the morphology of a scaffold has been
proven to drastically affect the growth of various cell types [73]. The porosity along with
the 3D structure of a scaffold has a great impact on cell attachment, affecting cellular
growth [74,75]. In the present study, the viability and cytocompatibility of fibroblast cells
on the CS-PEC scaffolds was assessed, aiming to ensure their viability upon exposure to
the materials through an MTT assay (Figure 11a). According to the literature, CS-PEC
matrices reveal no cytotoxicity [37,58]. Ungelated samples CS-PEC RD and CS-PEC FD
behaved accordingly and displayed no cytotoxicity, while the absorbance is not significantly
different from the control sample. In contrast, gelated samples CS-PEC G FD and CS-PEC
G RD revealed lower values when compared with the control sample. This result is in
contrast with the data reported by Bergonzi et al. [18], where CS-PEC scaffolds gelated
with KOH solution were able to support cell growth. According to Kruse et al., fibroblasts
could adhere and proliferate in slightly alkaline conditions [76]. However, in basic pH
environment, they show increased apoptosis [77]. Consequently, as the gelation was
conducted with KOH solution, the pH value of the scaffolds was too basic for the cells and
a reduction of the living population was expected. A further confirmation of the suitability
of the polymeric scaffolds supporting the adherence and proliferation of fibroblasts was
evaluated. Figure 11b presents cells distribution within the scaffolds in histological sections.
It is evident that cells could adhere and proliferate all over the scaffold CS-PEC RD. Even
though the data presented are preliminary, however, the successful seed of fibroblasts on
the scaffold along with the cell distribution within the scaffold in histological sections is
evidence that the scaffold CS-PEC RD could be further assayed for application in tissue
engineering and eventually for other biomedical applications.
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3. Materials and Methods
3.1. Materials

Chitosan with high molecular weight (310,000–375,000 Da) and a degree of a deacety-
lation >75% was supplied from Sigma Aldrich Co (St. Louis, MO, USA). Pectin from citrus
peel with molecular weight 30,000–100,000 and a degree of esterification 63–66% (high
methoxyl Pectin) was obtained from Fluka Chemie GmbH, Buchs, Switzerland. Potassium
hydroxide was purchased from Merk (KGaAn Darmstadt, Germany). Lysozyme from
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chicken egg white was supplied from Sigma Aldrich Co (St. Louis, MO, USA). All the other
reagents utilized were of analytical grade.

3.2. Preparation of the CS-Pectin Solutions and Scaffolds

For the preparation of CS-PEC solutions, CS and PEC powders were mechanically
mixed and suspended in a proper amount of water under mechanical stirring. Acetic acid
was added, resulting in the formation of a 2% v/v acetic acid aqueous solution. In the acidic
pH, CS was solubilized, while thereafter, temperature was increased to 80 ◦C and PEC was
completely dissolved. During cooling, the solutions turned into gels at 50 ◦C. The final
mass ratio of the samples was CS:PEC 10:1 and 20:1, while the total concentration was 4.2%
w/v, 4.4% w/v, 5.25% w/v and 5.5% w/v for the samples CS-PEC 4–5%, CS-PEC 4–10%,
CS-PEC 5–5% and CS-PEC 5–10%, respectively (Table 1). These are the lowest polymeric
concentrations where the ink was easily extruded from the nozzle with a continuous flow
and the printed scaffolds retained their shape. Afterward, the samples were placed under
vacuum to remove the air bubbles generated while stirring. When a homogenous gel was
formed, it was poured into a jet dispenser’s nozzle syringe suitable for 3D printing.

The CS-PEC solutions were extruded pneumatically by an extrusion-based 3D Bio-
printer (CELLINK® Inkredible, Gothenburg, Sweden), through a nozzle of inner diameter
0.26 mm (G25). An STL file of a three-dimensional rectangle was utilized for the 3D printing
while the slicing of the STL sample was performed with Slic3r software (infill 80%, 6 layers,
angle of layers 0◦) (Figure 12a,b) [78,79]. Printing conditions were optimized according to
the concentration of the ink, and they are summarized in Table 1. The printed scaffolds
obtained from the optimum ink composition (CS-PEC 5–10%) were dried and physically
gelated. Drying of the samples was performed using two methods, by evaporation of
the solvent in room temperature or by lyophilization. The gelation of the samples was
performed post-printing by the addition of KOH 1.5 M solution on the constructs according
to Bergonzi et al. [18]. Each sample was printed in multiple times for the various physico-
chemical measurements. Gelation time was measured optically, when the scaffolds became
opaque and remained innate when inverting the petri dish [80]. The different drying and
gelating conditions resulted in the production of four different samples, namely CS-PEC
RD, CS-PEC FD, CS-PEC G RD and CS-PEC G FD, where G stands for gelation, RD stands
for drying in room temperature and FD stands for freeze drying.
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the optimum ink composition (CS-PEC 5–10%) were dried and physi-
cally gelated. Drying of the samples was performed using two meth-
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Figure 12. (a) 3D model of the constructs with dimensions 2 × 2 × 0.1 mm and after slicing with Slic3r 
(6 layers) and (b) process flow of file preparation for 3D printing. 

  

Figure 12. (a) 3D model of the constructs with dimensions 2 × 2 × 0.1 mm and after slicing with
Slic3r (6 layers) and (b) process flow of file preparation for 3D printing.

Table 1. Optimum printing parameters of the inks.

Sample Final Polymeric Concentration CS:Pec Infill Speed (m/s) Pressure (kPa) Temperature

CS-PEC 4–5% 4.2% w/v 20:1 80% 2.5 110 RT
CS-PEC 4–10% 4.4% w/v 10:1 80% 2.5 260 RT
CS-PEC 5–5% 5.25% w/v 20:1 80% 3 180 RT

CS-PEC 5–10% 5.5% w/v 10:1 80% 3 285 RT
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3.3. Rheological Evaluation of the Inks

Rheological evaluation was conducted according to Nordby et al. on a ARES (TA
Instruments, New Castle, DE, USA) with a cone-plate geometry [81]. The cone angle was
set at 1◦ while its diameter was 75 mm. Due to the morphology of the cone, there was a
gap of 0.05 mm between the two flat surfaces. Each sample was subjected into stirring at
a temperature above the gelling point of the samples, at 55 ◦C before the measurement.
Silicone oil was applied to the free surface of the samples in order to avoid evaporation of
the contained water. Equation (1) was utilized for the evaluation of the viscosity values.

|η∗| =
[(

G′′

ω

)2

+

(
G′

ω

)2
]

(1)

3.4. Characterization of the Printed Scaffolds
3.4.1. Fourier-Transformed Infrared Spectroscopy (FTIR)

The FTIR spectra of the samples were obtained by FTIR spectrometer (model FTIR-
2000, Perkin Elmer, Waltham, MA, USA). In brief, a small amount of each sample was
triturated with a proper amount of potassium bromide (KBr) and the disks were formed
under pressure. The spectra were collected in the range from 400 to 4000 cm−1 at a
resolution of 4 cm−1 using 16 coadded scans while the baseline was corrected and converted
into absorbance mode.

3.4.2. Scanning Electron Microscopy

Scanning electron microscopy (SEM) images were obtained with an electron micro-
scope JEOL 2011 (Akishima, Tokyo, Japan). Each sample was placed on the holder and
covered with carbon to provide good conductivity of the electron beam. Operating con-
ditions were set at accelerating voltage 20 kV, probe current 45 nA and counting time
60 s.

3.4.3. Swelling Capacity and Dehydration

Swelling ability of the prepared scaffolds was evaluated by measuring the amount
of water sorption aptitude of simulated body fluid (SBF) buffer (pH = 7.2), prepared as
described by Kokubo et al. [82]. The swelling ability was evaluated in the samples CS-PEC
RD, CS-PEC FD, CS-PEC G RD and CS-PEC G FD. Each dry scaffold was carefully weighed
(Wd) and washed twice with SBF for 10 min. The samples were then placed on filter
paper in order to remove the excess surface water and their weight (Wf) was measured at
predetermined times (5 min, 10 min, 20 min, 30 min, 1 h, 2 h, 3 h and 48 h). Swelling ratio
and water content were calculated according to equations (2) and (3) respectively.

Swelling ratio % = (Wf −Wd) × 100/Wd (2)

Water content % = (Wf −Wd) × 100/Wf % (3)

The dehydration progress of the samples was evaluated by measuring the water
content loss of the samples. The samples were placed in water for 24 h (W0, water content
100%) and then placed in vacuum oven (40 ◦C, 200 mbar). The weight of the samples (Wf)
was measured in predetermined times (5 min, 10 min, 20 min, 30 min, 60 min). The mea-
sured weight was compared to the initial weight of the dry samples (Wd, water content
0%). The relative water content was assessed through the equation (4). Measurements were
performed in triplicate.

Relative water content = (Wf −Wd) × 100/W0 −Wd (4)

3.4.4. Enzymatic Hydrolysis

Enzymatic hydrolysis of the samples was evaluated by placing the samples in 5 mL of
SBF, pH = 7.4 containing 1 mL of lysozyme solution (0.8 mg/mL). The samples were then
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placed in an oven at 37 ◦C and at predetermined times (0 h, 24 h, 48 h, 72 h, 96 h, 144 h
and 240 h), they were washed with distilled water, vacuum dried in an oven at 50 ◦C and
weighed. Measurements were performed in triplicate.

3.4.5. Differential Scanning Calorimetry (DSC)

Thermal analysis studies were carried out by a Perkin-Elmer Pyris 6 differential scan-
ning calorimeter (DSC) (Waltham, MA, USA) calibrated with indium and zinc standards
in order to examine the crystalline state of the samples. About 5 mg of each sample were
placed in sealed aluminum pans and heated up from 30 to 200 ◦C with a heating rate
20 ◦C/min in inert atmosphere (N2, flow rate 50 mL/min).

3.4.6. In Vitro Cell viability

Scaffolds of cylindrical shape were printed with density of first layer 100%. To evaluate
the direct cytotoxicity of our materials, the different CS-PEC scaffolds were deposited on
confluent cell cultures. Normal human fibroblast cells isolated and expanded from skin
biopsies as described elsewhere at passage 1 [83] were seeded at 22,500/well onto a 24-well
plate. The cells were left to grow in DMEM (BIOWEST, Nuaillé, France), 10% fetal bovine
serum (BIOWEST), 1% penicillin/streptomycin (BIOWEST) for 48 h and their viability
was estimated by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT)
assay at time 0 before treatment. Then, the four different scaffolds were added into each
well containing cells in triplicates for 24 h and subjected to MTT assay. The viability of
cells was evaluated by estimating the relative change in optical densities (indicative of the
cell number) after 24 h of exposure and comparing this value among the scaffolds and
against the plastic control. The experiment was performed in triplicate and the results were
expressed as mean ± standard deviation (SD). Unless otherwise stated, one-way ANOVA
with post hoc Tukey test was used. A p-value ≤ 0.05 was considered statistically significant.

The scaffold presenting the optimal results in this experiment was assessed for its
capacity to support fibroblast adherence and expansion. Before seeding, the scaffolds were
sterilized by immersion in 70% ethanol for 30 min. Then, the scaffold was calibrated by
being incubated overnight at DMEM complete medium at 37 ◦C, 5% CO2. Fibroblasts
were seeded at a density of 750,000 cells/cm2 onto a culture area of 0.47 cm2. Fibroblasts
in the scaffold were allowed to grow for 3 weeks post-seeding by changing the culture
medium, DMEM complete every other day and then fixed using an overnight incubation in
4% paraformaldehyde at 4 ◦C. Inserts were paraffin-embedded and sectioned followed by
processing for hematoxylin and eosin (H&E) staining. Tissue sections were photographed at
×40 magnification to examine the distribution and growth of fibroblasts within the scaffold.

4. Conclusions

In the present study, two natural polysaccharides, CS and PEC, were utilized for
the preparation of inks appropriate for 3D printing. Rheological analysis measurements
confirmed the effect of PEC on the rheological behavior of the inks and established the
applicability in the printing procedure of the sample CS-PEC 5–10% while optimum
printing conditions were found. The effect of gelation and different drying conditions on
the behavior of the 3D printed scaffolds were assessed. Through SEM micrographs the
average pore size and filament diameter were measured whereas, FTIR spectra confirm the
presence of intermolecular interactions between the two polymers. Swelling and hydrolysis
studies verified the effect of gelation and freeze-drying procedure on the subsequent
behavior of the scaffolds. Finally, the viability of fibroblasts on the CS-PEC scaffolds was
estimated and ungelated scaffolds are proved to successfully support their proliferation.
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