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Novel approach to enhance coastal 
habitat and biotope mapping 
with drone aerial imagery analysis
João Gama Monteiro1*, Jesús L. Jiménez1, Francesca Gizzi1, Petr Přikryl1,2, 
Jonathan S. Lefcheck3, Ricardo S. Santos4,5 & João Canning‑Clode1,6

Understanding the complex factors and mechanisms driving the functioning of coastal ecosystems 
is vital towards assessing how organisms, ecosystems, and ultimately human populations will cope 
with the ecological consequences of natural and anthropogenic impacts. Towards this goal, coastal 
monitoring programs and studies must deliver information on a range of variables and factors, from 
taxonomic/functional diversity and spatial distribution of habitats, to anthropogenic stress indicators 
such as land use, fisheries use, and pollution. Effective monitoring programs must therefore integrate 
observations from different sources and spatial scales to provide a comprehensive view to managers. 
Here we explore integrating aerial surveys from a low-cost Remotely Piloted Aircraft System (RPAS) 
with concurrent underwater surveys to deliver a novel approach to coastal monitoring. We: (i) map 
depth and substrate of shallow rocky habitats, and; (ii) classify the major biotopes associated with 
these environmental axes; and (iii) combine data from i and ii to assess the likely distribution of 
common sessile organismal assemblages over the survey area. Finally, we propose a general workflow 
that can be adapted to different needs and aerial platforms, which can be used as blueprints for further 
integration of remote-sensing with in situ surveys to produce spatially-explicit biotope maps.

Coastal habitats and the biodiversity they support have been declining at unprecedented rates, and with them 
critical ecosystem services that support human well-being and livelihoods1–4. Understanding the spatial distribu-
tion and function of different coastal habitats, the biodiversity and community structure, and their susceptibility 
to disturbances is essential towards effectively managing human impacts and ensuring the reliable provision 
of economically-valuable resources4–7. Under the EU Marine Strategy Framework Directive (2008/56/EC), for 
example, national monitoring programs of European Union Member States are expected to deliver information 
on a variety of variables from species diversity and habitat distribution, to anthropogenic stress indicators, such 
as land use, fisheries and pollution.

Acquiring information on coastal and shallow submerged habitats and resident biota has traditionally relied 
on Underwater Visual Census (UVC) and SCUBA diving8,9. Over the last decades, developments in scientific 
diving and underwater photography and video have increasingly enhanced the speed and accuracy of underwa-
ter data acquisition, annotation and analysis7,9–14. Despite such advances, there are still several constraints and 
limitations associated with underwater surveys by scuba divers: in addition to requiring high-level of expertise, 
SCUBA diving and UVC have limited bottom times and sampling areas, producing (geographically) discrete 
spatial data points. Additional challenges include difficulties in producing or extending high-resolution spatially 
explicit information in a highly dynamic, three-dimensional environment and mapping physiographic traits 
such as bathymetry and bottom nature. Most bathymetry assessments and maps rely on surveys with acoustic 
sensors (single-, multi-beam or side-scan sonar), which are generally costly, time consuming, require high-level 
of post processing expertise and have numerous operational constrains in nearshore areas6,8,15, often leading to 
the adoption of optical derived bathymetry and other remote sensing methods.

In recent years, satellite remote sensing technology has yielded considerable success in developing optical 
analysis approaches to derive bathymetry and to map near-shore environments such as coral reefs, marshes and 
mangroves15–19. However, acquiring satellite imagery with higher spatial resolution (e.g. < 1 m) than the publicly 
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available databases (e.g. Sentinel-2 at 10 m) and surveys with active sensor Light Detection and Ranging (LiDAR) 
can be prohibitively costly8,20. In addition, outputs from these approaches typically provide physiographic infor-
mation and general traits to classify different habitat types (e.g. rocky reef, sand, fore- and back-reef), but usually 
do not integrate information on how different biological assemblages are distributed over the mapped physi-
ographic habitats17,21–23.

The recent development of inexpensive commercial off-the-shelf (COTS) drones and other advanced 
Remotely Piloted Aircraft Systems (RPAS) has made high-tech aerial imagery platforms easily and widely acces-
sible. Automated flight ability at low altitudes enables RPAS to produce aerial imagery with higher resolution than 
that achieved by current satellites or by manned aerial platforms. Despite a broad range of terrestrial applications 
(from agriculture and architecture to wildlife monitoring and conservation24,25), RPAS have only recently started 
to be employed in the marine realm. Nevertheless, they have already demonstrated a variety of applications, 
including assessment of intertidal areas, shallow coral reefs and estuarine algal cover, the detection of fish nursery 
habitats and marine litter and the production of bathymetry maps20,26–31. Despite these advances, the studies 
have mostly been focused in delivering information on a key trait or feature (e.g. depth, algal cover), but have 
yet to combine and integrate such remote sensed data with biological data from underwater surveys enabling 
the extrapolation of biological communities’ distribution across physiographic habitats or varying conditions.

Tackling the trade-offs among methods and techniques to map and describe coastal habitats is a key chal-
lenge for monitoring programs to provide maximally useful information for marine spatial planning and 
management6,32. To that purpose, the present study explores the integration of scientific diving and underwater 
surveys with aerial surveys using a low-cost recreational RPAS to map and provide information on the distribu-
tion of sessile biotopes: distinct assemblages of sessile organisms occurring under specific environmental condi-
tions. We used underwater photoquadrat imagery to assess sessile benthic assemblages and RPAS based aerial 
surveys to construct a georeferenced ortho-photomosaic and a Digital Surface Model (DSM) of a small bay in 
Madeira Island (NE Atlantic). We then used multivariate statistical routines, aerial imagery photogrammetry, 
Object Based Imagery Analysis (OBIA) and automated classification to identify and provide information on 
the presence and distribution of distinct biotopes over different depth-substrate classes within the study area. 
We further discuss the limitations, benefits and possible improvements of such an approach, and propose some 
general guidelines for leveraging this strategy towards mapping local coastal habitats and associated biotopes.

Results
Mapping coastal habitat physiography from the sky.  Three aerial survey flights collected 213 images 
and allowed the construction of an ortho-photomosaic and a DSM33 covering over 10 ha of a sheltered bay, in the 
southeastern section of Madeira Island (Fig. 1, Supplementary Fig. S1), where shallow areas (< 13 m depth) are 
mostly comprised of rocky bottoms. Combining data on depth and substrate type collected during underwater 
surveys (Fig. 1) with a visual inspection of high-resolution aerial imagery, enabled to select a training set for 
supervised classifications of a target area of interest using eCognition Essentials (v1.3).

Based on the Digital Surface Model (DSM), on the reflectance index maps (Fig. 2a, b) and on the photo-
mosaic generated with Pix4D Mapper (average Ground Sampling Distance, GSD = 5.65 cm/pixel)33, we produced 
a baseline bathymetry map (Fig. 2c) and an optically derived bathymetry over rocky substrate, with 11 discrete 
depth classes (each ranging between 1 and 3 m) from the surface to 14 m depth (Figs. 1, 2c). Segmentation and 
substrate classification of individual discrete depth classes assured a low variation in reflectance due to depth-
related attenuation of different wavebands17,23,34,35, ensuring the classification process was focused on substrate-
related differences in reflectance. Merging information from all depth classes resulted in a map of the target area 
containing information with discrete depth classes and boundaries for three major categories of rocky substrate: 
"boulders" (mostly with rocks between 15 and 100 cm in diameter), "blocks" (rocks with 100 cm diameter or 
more) or "platforms" (horizontal or near horizontal rocky “plateau" (Fig. 3). 

Identifying biotopes.  The analysis of the photoquadrat samples (n = 14 sets of six photo-quadrats) identi-
fied four unique biotic assemblages (labelled from a. to d.) based on Bray–Curtis Similarities between samples 
and a SIMilarity PROFile routine (SIMPROF)36,37. A SIMilarity PERcentage analysis (SIMPER) revealed indi-
vidual taxa average abundance, similarity within each assemblage and contribution to ordination into the four 
assemblages (Table 1). These distinct organism assemblages were further corroborated by an ANalysis Of SIMi-
larities (ANOSIM) of the individual quadrats (R:0.637; p:0.01), revealing that the SIMPROF grouping is also 
significant when looking into similarities between each individual quadrat.

A visual inspection of a non-metric Multidimensional Scaling plots labelled with SIMPROF-generated organ-
ism assemblages (Fig. 4) revealed: (i) clear grouping of samples and quadrats; (ii) how major taxonomic groups 
varied between assemblages, and; (iii) a strong correlation between surveyed substrates and depth classes with 
identified biotic assemblages (Supplementary Table S1). Indeed, a Distance-Based Linear Model using Depth 
and Substrate categories (normalised) as predictor variables indicated that both were significant in shaping 
sample ordination (Fig. 5; Supplementary Table S2), with the best overall solution including both predictors and 
explaining 48% of the variation in sample ordination (and more than 32% of the variation when considering 
the individual quadrats). Having established that individual quadrats can be significantly grouped into the four 
assemblages (ANOSIM, R:0.637; p:0.01), we used Canonical Discriminant Analysis plot (CDA) to further illus-
trate how depth and substrate best correlate with quadrat grouping into the four organism assemblages (Fig. 5).

The matching and correlations between biological assemblages and substrate and depth conditions allowed 
the identification of four conspicuous biotopes38: Platforms at 4–6 m dominated by Turf and the canopy algae 
Asparagopsis sp. (Assemblage a.); Boulders at 9–11 m dominated by Biofilm with silt, Turf and the hydroid Macro-
rhynchia sp. (Assemblage b.); Boulders at 4-–6 m also dominated by Biofilm with silt and Turf but with Coralline 
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Crustose Algae (CCA​) being the third most abundant category and with some taxa being absent (Assemblage 
c.), and lastly; Blocks at 4–6 m and at 9–11 m with CCA​ being the most abundant category and dominating this 
substrate along with Biofilm with silt (Assemblage d.).

Overall, photoquadrat survey data and SIMPER analysis also revealed that the most common categories 
within the whole study site were Biofilm with silt (i.e. a microalgal and hydroid assemblage partially covered with 
silt) and Turf (i.e. a mixed algal assemblage with < 3 cm, mostly composed by small filamentous algae includ-
ing species such as species such as Ceramium sp., Polysiphonia sp. and Jania sp.), whereas erect and/or canopy 
forming algae were generally lacking and coralline crustose algae (CCA) were especially abundant over large 
blocks (Table 1).

Habitat mapping and biotope distribution.  Assuming biotopes as areas with uniform environmental 
conditions where particular organism assemblages occur38, we combined information on habitat physiography 
(“Mapping coastal habitat physiography from the sky” section) and conspicuous organism assemblages (“Iden-
tifying biotopes” section) to identify biotopes and extrapolate their spatial distribution based on matching con-
ditions and correlations (Fig. 5; Supplementary Table 1). Achieved by selecting merged segments of particular 
physiographic conditions and label them with matching biotope, the extrapolated distribution (Fig. 6) was then 
validated by analysing the similarity (ANOSIM) of independent, georeferenced, transect-based benthic survey 
data (n = 8, 10 m transects with 100-point intersections each). Very high congruence was found between the 
observed data ordination and the predicted biotope grouping (R:0.92; p:0.02).

This extrapolative approach produced a biotope map with the distribution of four distinct benthic assem-
blages (Fig. 6) over 53% of the rocky bottoms (1.8 ha of a total of 3.37 ha of rocky bottoms). Remaining rocky 
bottoms were outside of the target depth classes (i.e. 4–6 m and 9–11 m). Within the mapped area, Boulders at 
4–6 m dominated by Biofilm with silt and Turf (Assemblage c.) is the most common biotope, covering 0.65 ha. 
Inspecting estimated areas and relative cover (Table 1; Supplementary Table S1), reveals that biotopes where 
boulders are dominated by Biofilm with silt and Turf (Assemblages b. and c.) cover up to 44% of the assessed area. 
Large Blocks harbouring the least diverse and structurally complex assemblage (Assemblage d.) is estimated to 
be the second most common biotope in the area (34%). Platforms at 4–6 m with the most structurally complex 
assemblage (Assemblage a.) comes in third, with an estimated cover of 22% of the assessed area. This spatially 
explicit data is key to understanding how fauna and flora are distributed, how common different biotopes are, 
and to effectively strategize for marine spatial planning and management.

Figure 1.   Ortho-photo mosaic of study area in Madeira island (location on top-left box) with discrete 
boundaries for depth classes (white contours) over assessment target area (red-contour) and location of 
underwater surveys (shape and colour indicate dominant substrate; bottom-right label box). Map and figure 
generated in ESRI ArcGIS Desktop v10.3.1.
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Discussion
Despite all the technological and methodological advances in marine science during the last decades, ecology 
studies focusing in shallow marine habitats still overwhelmingly rely on manned underwater surveys to collect 
samples, assess ecological traits and examine biological responses7,9–14. Typically more accessible and with more 
direct pressure from humans, coastal shallow waters have been the target of extensive research and the stage for 
numerous studies, however, the ability to assess, produce maps or predict distribution of conspicuous organism 
assemblages residing within specific environmental conditions in coastal waters is still challenging and often 
limited6,8,39. In this work, we propose a strategy (Fig. 7) that extends the utility of underwater survey data by 
integrating it with remotely sensed imagery and multivariate statistics to generate maps of benthic assemblages 
at a small spatial scale (i.e. sub-meter). The strategy relies on well-established methodological principles and 
statistical approaches17,34–37,40, but combines them in a unique and novel fashion to assess key physiographic 
features from low-altitude aerial imagery and employ it to extrapolate the distribution of distinct biotopes to 
map them over a target survey area.

Previous studies have already explored the use of remote sensing from satellite and RPAS aerial imagery for 
shallow-water marine habitat mapping and assessments8,16,17,20,26,28,40–42, but they have thus far been limited in 
integrating data from biological communities, and have mostly included image classification to identify broad 
habitats categories based on reflectance and spectral profiles without assessing or describing the associated com-
munity. Recently, RPAS surveys have also been used to map coastal topographical features, to assess intertidal 
communities and shallow corals28,31,43,44, but there are not many cases of RPAS remote sensing being employed 
to map or model the distribution biological communities in shallow submerged habitats.

Despite the efforts to enhance the ability for aerial imagery to “penetrate” through water26 it is still not possible 
to use them to discriminate submerged communities. Until this becomes a reality, we provide here an alternate 

Figure 2.   Optically Derived Bathymetry estimation from aerial imagery mosaic and photogrammetric 
generated digital surface model (DSM); with: (a) DSM depth variation (m) over rocky bottom and DSM 
contours with 2-m interval (blue lines); (b) combined (normalized) ln-RED index and ratio of ln-Green to 
ln-Blue index and smoothed, contextually edited, depth contours used for Optically Derived Bathymetry 
estimation using OBIA (see above), and; (c) resulting estimated depth classes. Map and figure generated in ESRI 
ArcGIS Desktop v10.3.1.
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approach to leverage existing in situ data on community composition with physiographic maps generated from 
RPAS imagery to statistically identify biotopes and determine their distribution. Our approach provides several 
advantages over remote sensing alone: (i) additional detailed information on biota distribution, community 
structure and composition; (ii) an unbiased method towards identifying statistically different organism assem-
blages with no a priori determination, and; (iii) a path towards classifying biotope and organism assemblages 
distribution, based on their correlation with assessed and mapped environmental conditions.

To that purpose, having a discrete map for substrate and depth was essential, to which we opted to rely on 
eCognition supervised classification using both ln-RED and the ratio of ln-GREEN to ln-BLUE with ground 
truth data as samples. The inclusion of the ln-RED index, which has much less penetration in water34,35, allowed 
a better detection of shallow areas (0–3 m). The original use of Object Based Imagery Analysis (OBIA) to assess 
depth allowed to create segments and classify it into classes (each with 1 to 3 m range), enabling the generation of 
11 discrete depth classes that would sequentially be used to assess substrate based on reflectance variation8,17. This 
innovative strategy to map these physiographic habitat traits, that are of key importance for residing organisms, 
can be easily scaled up and/or adapted to fit other data sources (e.g. sonar surveys, existing bathymetry maps, 
satellite imagery) or additional spatially available variables or predictors (e.g. chlorophyll-a, pollution sources).

Despite being fairly simple to operate, multirotor RPAS similar to the one used in our approach require rea-
sonable conditions of weather and natural light in order to enable sensing sub-surface conditions. In general, 
multirotor drones can operate with up to 10 knot winds, however, to assess depth and submerged substrates, it 
is required to have winds and ocean conditions with a maximum of 2 under the modern Beaufort scale (with 
no waves or with small waves where crests have a glassy appearance and do not break). The time of the day and 
how high the sun is in the sky is another consideration that must be taken, for reducing sun glint20, with ideal 
conditions being clear skies and the sun at a low angle. One additional limitation in using RPAS as a remote 
sensing platform is linked to legal constraints and authorizations required to fly in some locations (e.g. protected 
areas, airport vicinities, high population density areas), which need to be considered when planning RPAS flight 
operations and aerial surveys. Finally, like any OBIA approach, depth estimation by imagery analysis is limited by 
color variation over depth, which generally limits it to a maximum of 30 m depth, in very clear waters15–17. More 
importantly, as mosaic construction and DSM generation requires individual images to overlap over common 
features, aerial surveys over water generally require that the shore-line is in-picture, which inevitably limits (to 
any given altitude) the maximum distance from the shore-line that an aerial survey flight-path can be used and 
included in depth estimation.

In spite of such limitations, RPAS-based aerial surveys and the approach we propose provide several advan-
tages over traditional satellite assessments. First, the resolution of the imagery obtained from RPAS is, at least 

Figure 3.   Substrate map derived from ortho-photomosaic analysis (coloured layers indicate substrate type; 
bottom-right label box) with location of underwater photoquadrat surveys, (shape indicates dominant substrate; 
colour indicates organism assemblage; top-left box). Map and figure generated in ESRI ArcGIS Desktop v10.3.1.
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Table 1.   Taxa composition and contribution to SIMPROF generated organism assemblages (OA) present at 
3–6 m and 9–11 m depth over rocky bottom: Average Abundance (Av. Abundance) based on Untransformed 
data; Average Similarity (Av. Sim.) and Individual (Ind. Cont.) and Cumulative (Cum. Cont.) Taxa 
Contribution (%), based on Square rooted transformed data.

OA Taxa

Untransformed Sq. root transformed

Av.Abundance (%) Av.Sim. (%) Ind.Cont. (%) Cum.Cont. (%)

a

Turf 41.11 26.88 34.02 34.02

Asparagopsis sp. 33.14 20.7 26.2 60.22

Biofilm w/ silt 11.88 11.11 14.05 74.28

Dictyota sp. 7.63 10.22 12.93 87.21

CCA​ 5.13 8.73 11.05 98.26

Spongionella sp. 0.2 0.36 0.46 98.72

Reptadeonella sp. 0.16 0.35 0.44 99.16

Crambe sp. 0.11 0.34 0.43 99.58

Macrorhynchia sp. 0.33 0.33 0.42 100

b

Biofilm w/ silt 48.68 28.37 34.53 34.53

Turf 19.01 16.84 20.5 55.03

Macrorhynchia sp. 13.04 14.03 17.08 72.11

CCA​ 9 9.19 11.18 83.29

Lobophora sp. 3.4 5.44 6.62 89.91

Asparagopsis sp. 4.14 3.74 4.55 94.47

Dictyota sp. 1.86 3.74 4.55 99.01

Rodolith 0.44 0.5 0.61 99.63

Crambe sp. 0.11 0.31 0.37 100

c

Biofilm w/ silt 38.23 25.38 34.08 34.08

Turf 38.37 23.85 32.03 66.11

CCA​ 7.94 8.65 11.61 77.72

Dictyota sp. 2.99 5.68 7.63 85.35

Asparagopsis sp. 4.41 4.74 6.37 91.71

Halopteris sp. 5.1 3 4.03 95.75

Ircinia sp. 2.67 2.83 3.81 99.55

Crambe sp. 0.11 0.33 0.45 100

d

CCA​ 45.6 27.97 63.94 63.94

Biofilm w/ silt 23.68 13.69 31.29 95.23

Turf 0.47 2.09 4.77 100

Figure 4.   Non-metric Multidimensional Scaling plots of Bray–Curtis similarity ordinations of samples and 
(left) and quadrats (right) labelled by organism assemblage (top right corner); (a) Photoquadrat Survey Samples 
(n = 14) with correlation vectors of major taxonomic groups (overlay in blue lines), and; (b) Individual Quadrats 
(n = 84) with correlation vectors of normalised variation in Depth and Substrate categories groups (overlay in 
red lines). Figure generated in PRIMER v7 (with PERMANOVA add-on).
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currently, much higher than most publicly-available satellite imagery (i.e. < 0.1 m vs 10 m for Sentinel-2), making 
it potentially easier to discriminate key features that might be obscured in lower resolution imagery. Second, 
satellites obtain a fixed set of images every day regardless of the local conditions. Thus, certain times and loca-
tions may be disrupted by high cloud cover, high surf, sun glare, or other conditions that obscure the benthos 
and prevent acquisition of useful imagery beyond the target dates. In contrast, RPAS—while requiring similar 
conditions—are highly flexible, and can therefore be deployed when conditions are most amenable during 
the desired study window. Thus, RPAS produces higher resolution outputs and can acquire more relevant and 

Figure 5.   Predicting assemblages (a–d) through DistLM and correlations of Depth and Substrate (blue 
vectors overlay) with ordinations; (a) correlations with dbRDA axes most explaining total variation in samples, 
illustrating best solution from a Distance based Linear Model (left), and; (b) correlations with Canonical axes 
(CAP1 and CAP2) best discriminating sample-derived SIMPROF grouping of individual quadrats (right). 
Figure generated in PRIMER v7 (with PERMANOVA add-on).

Figure 6.   Extrapolated biotope (a–d) distribution (coloured map) and estimated area of unique organism 
assemblages (lower right corner) over distinct rocky substrate categories within the surveyed depth classes 
(biotope similarity matrix between biotopes on top-left corner). Map and figure generated in ESRI ArcGIS 
Desktop v10.3.1.
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targeted imagery than publicly available satellite data, while maintaining a lower cost than other aerial survey 
platforms and commercial, high resolution satellite data (e.g. Worldview-3 and 4).

Like many other studies relying on modelling and statistics to predict species distribution and habitat suit-
ability, the present research and workflow has limitations inherent with the “translation” of complex natural 
processes and mechanisms into more or less complex models and mathematical expressions45,46. Modelling spe-
cies distribution is often limited by the quality of the data included but also due to lack of data or mismatching 
spatial scales between datasets and, the present study, is no exception. The future inclusion of additional layers 
of environmental data and other predictors, for example, could enhance the level of detail of predicted distribu-
tions. In our particular application, biotopes are classified based on statistically-validated “groupings” rather than 
truly predictive models: in other words, the classification is binary (either the environmental conditions match 
a particular assemblage or not). Consequently, there is no quantification of error or uncertainty as one might 
obtain from a statistical model, although we point out the high degree of agreement between the assigned group-
ings and the observed biotopes in our independent validation suggests that error is, at least in our case, minimal. 
On the other hand, grouping organisms into four biotopes based on two axes (depth and substrate type), as we 
have here, is simple, intuitive and requires less data and little experience in advanced modelling techniques, key 
characteristics that are likely to be attractive to managers who are often seeking simple and explainable solutions 
to enact effective management.

The present research sets a path for future studies to build up from and for further enhancing the integration 
of RPAS-based aerial surveys with other data sources, namely by:

i)	 using RPAS platforms with additional sensor payload that can be used to detect or characterise specific fea-
tures (i.e. multispectral or hyperspectral sensors for bathymetry or normalised difference vegetation index 
assessments18,30,47);

ii)	 standardising reflectance reads and combining optically derived bathymetry from shallow waters with sonar 
data (i.e. for integration of bathymetry of deeper waters) to improve shallow waters bathymetric surveys 
from aerial imagery;

iii)	 including additional information on biological and environmental conditions (e.g. biotopes with finer-scale 
taxonomy, temperature and turbidity, marine traffic and coastal development) can provide more detailed 
community structure or distribution data;

iv)	 including more sophisticated and complex Species Distribution Models, can provide intel on uncertainty, 
error quantification and provide probabilities on distribution predictions.

In an era where climate change, overfishing, marine litter, coastal development and other stressors are increas-
ingly threatening marine habitats and biodiversity2,3,48,49 there is an increased need for higher resolution and up 
to date information on marine habitats to enable effective action and management6,7,15,32,50. This need has also 
been driving a search for more efficient tools and methods to monitor key biological aspects and stress indicators, 
such as habitat integrity, physiography, abiotic conditions and biodiversity. Focused on temperate rocky shores, 
the present study contributes to that call by producing a blueprint (Figs. 2, 7) on how to better integrate low-
cost aerial remote sensing and field data to map biotopes and monitor shallow habitats in general (e.g. seagrass, 

Figure 7.   Workflow blueprint for implementing a coastal habitat mapping novel workflow integrating aerial 
RPAS based survey and underwater photo-based benthos surveys to identify and predict biotope distribution.
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coral reefs), which can be easily included in local, regional or national monitoring programs, international 
monitoring networks and assist nations in complying with national and international regulations (e.g. monitor 
progress towards UN Sustainable Development Goal 14, compliance with EU Directive 2008/56/EC) towards a 
sustainable management of the marine environment. By integrating local in situ data on species composition and 
discrete organism assemblages, this approach also contributes to increase the level of detail provided in general 
habitat type classification systems such as the European Nature Information System (EUNIS) habitat types, the 
EU Habitat Directive Annex I, and the US Coastal and Marine Ecological Classification Standard (CMECS). 
Finally, the repeated genesis of maps from temporally re-sampled locations can also improve our capacity to 
chart the change of coastal biotopes through time, a key deliverable in the monitoring of marine ecosystems.

Methods
Aerial survey and orthophoto mosaic construction.  For the present study a sheltered bay with an 
area of approximately 80,000 m2, in the southeastern section of Madeira Island (Fig. 1), was selected as a study 
site to test and demonstrate the integration of aerial imagery in ecological assessments and mapping of sub-
merged coastal habitats. The area, facing south, is fairly protected from prevailing northeast quadrant winds 
and north-west quadrant wave action51,52. The aerial survey of the study site was conducted with the DJI Phan-
tom Vision 2+ quadcopter and matching radio controller. Survey flights were planned and controlled through 
Pix4d Capture v1.3 for iOS and conducted in automated mode, using a U-pattern, at 100 m above ground with 
the camera set up at 90º to collect nadir imagery with 80% frontal overlap. Three survey flights, conducted in 
early light to reduce sunlight backscatter, produced a total of 212 images (with 4384 × 3288 pixels each) cover-
ing an estimated area of 10.4 ha. In the ground, GPS coordinates of easily identifiable features were collected 
with a handheld GPS (Garmin eTrex 10) to serve as Ground Control Points (GCPs). Compiled imagery was 
processed and analyzed with the photogrammetry software Pix4Dmapper Pro v4.3, employing advanced multi-
view imagery and Structure-from-Motion (SfM) algorithms, to construct an ortho-photo mosaic and compute 
a DSM (Digital Surface Model), a DTM (Digital Terrain Model) and RGB reflectance index33. Generated DSM 
and DTM rasters were used to produce contour layers with 2 m vertical and 1 m horizontal resolutions and a 
minimum of 200 vertices.

Optical estimation of depth classes.  Depth is a key factor in shaping biotopes and organism assem-
blages’ distribution in coastal waters12,38,53, but bathymetry acoustic surveys can be challenging and time con-
suming, especially in shallow waters8. In this study we devised a novel strategy and processing approach (Fig. 7) 
that provides general depth classes in shallow waters by combining photogrammetry (“Aerial survey and ortho-
photo mosaic construction” section) and optical bathymetry estimation. The optical based method consists on 
analysing imagery and relies on the principle of decreased water-leaving radiance with increasing depth34,35.

Initially, the submerged area of interest was manually selected in Pix4D Mapper and rasters with logarithmic 
(ln-) transformed reflectance indexes for RGB bands were generated (ln-Red, ln-Green and ln-Blue). The loga-
rithmic (ln-) transformation has the effect of approximately linearizing reflectance data with respect to depth35. 
Wavebands have different water absorptions and, as depth increases, wavebands with higher absorption (with 
larger wavelength) decrease faster than those with lower absorption23,34,35. Considering the shallow depth range 
of the study area, rasters for ln-Red index and the ratio of ln-Green to ln-Blue indexes were selected for esti-
mating depth. In parallel, DSM generated contours were smoothed, visually inspected and contextually edited 
in ArcGIS 10.3.154 to exclude convoluted portions of the contour lines and to match known depths (collected 
during underwater surveys).

To estimate discrete depth classes throughout the area of interest, we opted to use Object-Based Imagery 
Analysis (OBIA) and classification using eCognition Essentials (v1.3). Object classification of imagery employs 
spectral, texture, geometric and topological features as part of the process by relying on the segmentation of the 
images into homogeneous segments generated by one or more criteria (e.g. scale, shape, compactness). Segmenta-
tion was followed by a classification routine based on features (e.g. spectral values, form, size) calculated for each 
generated segment or object8,17,55. Within our approach, compiled rasters were segmented using the multiresolu-
tion algorithm over the selected study area (see above; Fig. 2a). Multiresolution segmentation is a bottom-up 
technique that starts by considering a single pixel as an object and merging it with neighboring ones based on 
homogeneity criterion17,56. Criteria include: a Scale parameter, which affects the size of generated objects; Com-
pactness vs Smoothness ratio, which affects the shape criteria, and; Shape vs Color ratio, which affects whether 
color or shape has more influence in generating an object. In this study, Scale was set to 65 (eCognition Essentials 
default setting), while Shape criteria and Shape vs Color ratio were both set to 0.5 to provide equal weight to each 
criterion. Previously edited DSM contours (produced in Pix4Dm Mapper) were used as reference samples of the 
logarithmic (ln-) transformed Red index and of the ratio of ln-transformed Green index to ln-transformed Blue 
index layers (see above; Fig. 2b). A K-Nearest Neighbors (KNN) classifier57 was employed to classify segments 
(i.e. generated objects), which were then merged by category (i.e. depth class) and smoothed (parameter set to 
0.25), producing a discrete depth class map of the study area (Fig. 2c). Generated depth classes were visually 
compared with depth values from georeferenced survey-transects to assess consistency.

Bottom nature and substrate classification.  Similarly to depth, bottom nature and substrate type are 
key traits in marine habitats that often act as important factors in shaping typical assemblages and biotopes12,38. 
Focused on sessile benthos living on rocky bottoms, a dominant substrate class was established for each under-
water survey as "boulders" (mostly with rocks between 15 and 100 cm in diameter), "blocks” (rocks with 100 cm 
diameter or more) or "platforms" (horizontal or near horizontal rocky "plateau”). Vertical and near vertical 
surfaces were not considered as they were not included during underwater surveys.
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As reflectance of the bottom varies with both depth and substrate type34,35, having depth-classes priory 
established (see above) assisted in the process of categorising substrate type. To that purpose, OBIA was used to 
individually classify substrate type on each of the different depth classes within the area of interest. This choice 
assured classification over different sub-areas (within a given depth class) that have lower variation and higher 
homogeneity in regard to depth-related attenuation of different wavebands, allowing the classification process 
to be more focused on substrate-related differences in reflectance.

Based on mean reflectance values of Red and Green bands as well as DSM and ln-Red Index and ln-Green to 
ln-Blue ratio rasters of each sub-area (within a discrete depth-class), segmentation was performed using eCogni-
tion multiresolution algorithm with the same criteria settings as previously described (scale: 65; compactness and 
shape: 0.5; shape and color: 0.5). For each considered depth range, samples were manually selected for different 
substrate categorical classes (i.e. Platforms, Boulders, Blocks, Sand and not-applicable) followed by the classifica-
tion of targeted area. Substrate classification was performed with KNN algorithm (k set to 1) using mean values 
of Normalized Difference Soil, Water and Vegetation Index (NDSI, NDWI and NDVI, respectively, modified by 
using the Red Index band instead of near infrared) as well as the RGB bands and the DSM raster. Resulting clas-
sification shapefiles were then manually inspected, merged by category (substrate) and smoothed (set to 0.25). 
The procedure was repeated for each of the considered depth categories and resulting shapefiles were compiled 
and merged into a single file in ArcGIS v10.3.154, with a classification of rocky substrate over the entire extent 
of the study area. Generated substrate classes were also visually compared with aerial imagery33 and with domi-
nant substrate data (from georeferenced survey-transects) to assess consistency and perform contextual editing.

Benthos surveys.  To assess the composition and distribution of conspicuous sessile organism assemblages 
within the study area, scientific divers conducted underwater surveys over rocky bottoms. Considering the 
depth-related zonation present in rocky reef58,59 and the limitations in assessing depth and bottom nature from 
aerial imagery8,29,31,60, underwater photoquadrat surveys targeting sessile organisms were conducted in two shal-
low depth ranges: 4–6 m and 9–12 m. During each survey a buoyant GPS logger was deployed and anchored to 
the bottom for georeferencing the sampling location where six haphazardly placed photoquadrats were collected 
(in an estimated 5-m radius from the anchoring point). Photographs were taken parallel to the quadrat frame 
with an Olympus OMD10 equipped with a Panasonic Lumix G 8 mm f/3.5 lens inside a Nauticam NA-ED10 
housing and with S&S YS-01 strobes. Additionally, georeferenced 10 m transects (n = 8), with 100 intersection 
points (one each 10 cm) were used to assess depth, substrate and benthos composition for independent valida-
tion of estimated biotope distribution (extrapolated from conspicuous assemblages identified in photo-quadrats, 
the depth and substrate conditions where they occur and the maps derived from aerial surveys).

Benthic community assessment.  Biota relative abundance and community structure at each sampling 
site (n = 14) was assessed by analysing all the eighty-four photoquadrats (six photoquadrats for each sample). 
Each photoquadrat image belonging to the fourteen samples was analysed in Coral Point Count with Excel 
extensions software (CPCe v4.161) using 100 points distributed in random-stratified fashion (25 points over 4 
cells). Intersection points were inspected and labelled with taxonomic categories and subcategories and percent-
cover was estimated for each quadrat58,61.

All sample data was compiled for further analysis in PRIMER v7 with PERMANOVA+ add on62, where rela-
tive abundance for each sample (set of six quadrats) was pruned of non-valid and non-living scores (i.e. shadow 
and frame for the former; sand, rock, rubble for the latter), standardized (i.e. to the sum of all pruned scores) and 
square-root transformed, for analysis of the sessile community structure36. Bray–Curtis similarity matrices were 
computed and used to determine significantly different grouping and ordination of samples based on a hierar-
chical clustering and a SIMilarity PROFile routine (SIMPROF)36,37,63,64. Non-metric Multidimensional Scaling 
(nmMDS) plots were produced for visual inspection and to assess potential patterns in assemblage occurrence 
and distribution. SIMilarity PERcentages analysis (SIMPER) was used to provide detailed information on the 
composition and taxa contribution towards ordination and grouping resulting from SIMPROF (i.e. organism 
assemblages)36,37,58,64.

Distance based Linear Modelling (DistLM), with a distance based Redundancy Analysis (dbRDA) plot, was 
used to assess the shaping of community structure (biota relative abundance in each sample and in each quadrat) 
by depth classes and substrate categories (normalised) and determine matching of identified biological assem-
blages to unique environmental conditions (i.e. depth and substrate)36,59,65. The influence of substrate and depth 
in the structuring of quadrat data was further confirmed by inspecting the correlation of normalised depth and 
substrate categories with axes of a Canonical Discriminant Analysis (CDA) designed to best discriminate data 
grouped by sample-generated SIMPROF grouping (i.e. organism assemblages)36,65. Thus, biotopes identified 
based on conspicuous organism assemblages matching unique depth and substrate conditions were corrobo-
rated by DistLM and provide a classification model for extrapolating biotope occurrence over specific depth and 
substrate conditions36,59,65.

The distribution of the four identified biotopes was extrapolated by selecting all discrete areas (i.e. merged 
segments) in the maps (produced from aerial imagery analysis and classification) where depth and substrate 
conditions matched those of each of the biotopes and labelling them accordingly (e.g. all segments with Boul-
ders between 3 and 6 m were labelled as Biotope with assemblage c.). For each biotope, new spatial layers were 
produced and merged to provide a distribution map and estimate their spatial extent (Supplementary Table S1).

Finally, in order to validate the Biotope predicted distribution, point-intersect data of georeferenced transects 
(independently collected) were labelled based on the biotope predicted to be present on their location. Following, 
a Bray–Curtis Similarity matrix was computed and an Analysis of Similarity (One-way ANOSIM) used to assess 
if the predicted grouping was significant in the data ordination.
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