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Repository scale classification 
and decomposition of tandem 
mass spectral data
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Various studies have shown associations between molecular features and phenotypes of biological 
samples. These studies, however, focus on a single phenotype per study and are not applicable to 
repository scale metabolomics data. Here we report MetSummarizer, a method for predicting (i) 
the biological phenotypes of environmental and host-oriented samples, and (ii) the raw ingredient 
composition of complex mixtures. We show that the aggregation of various metabolomic datasets 
can improve the accuracy of predictions. Since these datasets have been collected using different 
standards at various laboratories, in order to get unbiased results it is crucial to detect and discard 
standard-specific features during the classification step. We further report high accuracy in prediction 
of the raw ingredient composition of complex foods from the Global Foodomics Project.

Small molecules play a crucial role in the mechanisms behind diseases1. Untargeted tandem mass spectrometry 
provides an inexpensive way for capturing the fingerprints of known and novel small molecules and thus allows 
for the development of comprehensive mass spectral libraries such as Global Natural Product Social (GNPS) 
molecular networking infrastructure library2. GNPS has facilitated identification of all known small molecules 
from LC-MS/MS of complex samples through spectral library search. Moreover, GNPS has provided a repository 
for storing annotated metabolomics data and since its launch in 2016, over a million samples from five hundred 
laboratories have been uploaded to this repository. Currently, the majority of datasets from MetaboLights3 and 
NIH Metabolomics Workbench4 are imported to GNPS. In an effort to make metabolomics data as reusable as 
genomics data, Reanalysis of Data User Interface (ReDU) keeps record of the metadata for a subset of 34,087 
samples from publicly available datasets on GNPS5. Availability of these large scale annotated datasets paves the 
path toward a better understanding of the relationships between molecular features and biological phenotypes.

In the past, various studies have shown the associations between small molecules and phenotypes. However, 
these studies focus on a single phenotype and thus are not applicable to repository scale data. In this paper we 
apply various machine learning methods on metabolomics data for prediction of phenotypes annotated as part 
of the ReDU project5. These phenotypes include age, biological sex, life-stage, and also diseases such as sleep 
deprivation, obesity, inflammatory bowel disease, and hypertension. We show that by aggregating data from 
various labs, machine learning can achieve far more accurate predictions than what is possible from a single 
dataset and this in turn enables accurate predictions of hundreds of other biological phenotypes. A challenging 
problem is that datasets originating from different labs have different protocols and varying internal standards. 
We recruit an interpretable machine learning technique where the bias can be detected and removed. This tech-
nique is further capable of revealing the molecular mechanism of disease.

Another challenging task in summarizing metabolomics samples is predicting the raw ingredients of com-
plex mixtures. Inferring the compositions of mixtures is an important problem in domains such as water and 
air quality control6,7, microbiome analysis8, and food ingredient analysis. In the case of microbial community 
analysis, given metabolomics profile of a microbial community along with a reference database of the metabo-
lomic profiles of isolated microbial strains, the goal is to predict the abundance of each of the strains, along with 
their contribution to each molecular feature. In the case of food ingredient analysis, given a complex dish, the 
goal is to predict its ingredients along with their abundances. These tasks are challenging because the metabo-
lomic profile of various food ingredients (various isolated microbial strains) usually share many molecules. 
Therefore, it is not clear from which raw ingredient (which isolated microbial strain) the molecules in complex 
dishes (microbial communities) originate. Currently, computational techniques for predicting the ingredients 
of complex mixtures and their abundances based on mass spectral data are not available. We frame inferring 
ingredients of a complex mixture as an optimization problem, where the objective is to find a small number of 
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ingredients whose combination is most similar to the query. Benchmarking our method on data from the Global 
FoodOmics Project3–10 shows a remarkable consistency between the ingredients reported by MetSummarizer 
and the known ingredients.

Results
Outline of MetSummarizer.  MetSummarizer has two components, MetClassifier and MetDecomposer. 
MetClassifier predicts the phenotype of samples in the following steps (Fig.  1A): (i) reference mass spectra 
of environmental/host-oriented samples are collected, (ii) mass spectrometry feature and phenotype metadata 
matrices are formed, (iii) logistic regression classifier is trained for predicting phenotype from mass spectrom-
etry features, (iv) mass spectrometry feature vector is formed for query sample, and (v) the classifier predicts 
phenotypes for query sample. MetDecomposer, predicts the raw ingredient composition of complex foods in 
the following steps (Fig. 1B): starting from (i) complex and raw foods (ii) LC-MS-MS data is collected. Then 
(iii) matrices corresponding to the spectral features of raw and complex foods are formed. In order to find the 
ingredients of a complex food, (iv) construct a feature vector for the complex food sample and (v) train a logistic 
regression classifier to identify raw ingredients of the complex food. (vi) Large coefficients of the classifier cor-
respond to ingredients of the complex food (i.e if the ith coefficient of classifier is large, then the ith ingredient 
in raw food matrix is present).

Datasets.  MetClassifier is trained on the dataset of 34,087 samples from ReDU. Each sample contains a 
binary vector encoding the absence/presence of 13,211 molecular features5 and is accompanied with annotations 
of 27 environmental, biological, and clinical phenotypes including taxonomy, biological sex, and disease status 
in the case of host oriented samples and lattitude, longitude, and depth/altitude in the case of environmental 
samples. REDU also reports the standards used in each of the datasets. MetDecomposer is tested on a data-
set of 1852 raw and 1682 complex food samples coming from the Global FoodOmics Project (GFOP)10,11. We 
extracted 95,006 binary LC-MS-MS features from mass spectra of each food sample using MSCluster12. For each 
complex food sample, GFOP provides a list of raw ingredients.

Increasing accuracy of prediction by aggregation of datasets.  Test accuracy of several machine 
learning algorithms for phenotype predictions increased as more samples and datasets were incorporated in 
the training data. Here, accuracy refers to the fraction of the test dataset classified correctly. Figure 2a illustrates 
average test accuracy of Extra Trees, Naive Bayes, Decision Trees, and Logistic Regression for prediction of life 
stage (early childhood, adolescence, early adulthood, middle adulthood etc.) versus the number of datasets used 
for training. Here if a particular dataset is used in training then all the samples associated with the dataset are 
used in training. Training on 10 datasets, the machine learning algorithms have on average less than 25% accu-
racy. Training on 60 datasets, the machine learning algorithms attain on average atleast 32.5% accuracy.

Classification of clinical phenotypes.  Figure 2b illustrates the accuracy of MetClassifier’s disease predic-
tion from metabolomics data. Here we used 80% of human data from ReDU for training and 20% test. The data 
contains subjects with no disease (17206 subjects), Crohn’s disease (193 subjects), dental caries (24 subjects), 
diabetes mellitus (100 subjects), hypertension (20 subjects), inflammatory bowel disease (22 subjects), ischemic 
stroke (44 subjects), obesity (679 subjects), sleep deprivation (712 subjects), and ulcerative colitis (137 subjects). 
Supplementary Table S2 shows the predicted diseases and true diseases of samples from ReDU. Supplementary 
Table S3 shows the predicted life stage and true life stage of samples from ReDU.

Batch effects.  Datasets from the ReDU repository are acquired using various protocols from multiple labo-
ratories. These protocols differ in standard molecules added to the samples (e.g. sulfadimethoxine versus none), 
extraction methods (e.g. methanol versus ethyl acetate), mass spectrometry instrument (e.g. Q Exactive versus 
Impact), etc. Using data collected by various protocols can lead to bias, especially in cases where some biologi-
cal phenotypes are collected only using a single protocol. For example, MSV000083077 dataset contains data 
from obese subjects using sulfadimethoxine as a standard, while MSV000081832 contains data collected on 
healthy subjects without any standard. MetClassifier identified sulfadimethoxine, tris(2-butoxyethyl) phosphate, 
dehydroxynocardamine, and mucic acid as the top four biomarkers when classifying between MSV000083077 
spectra and MSV000081832 spectra. In particular, sulfadimethoxine was identified as a biomarker that indi-
cates samples are obese, which is an artifact of distinct data acquisition protocols. Such artifacts can not be 
detected unless an interpretable technique (e.g. logistic regression) is used. For example, when trained on 80% 
of MSV000083077 and MSV000081832 and tested on the other 20%, MetClassifier accuracy is 95%. However, 
when trained on the same datasets and tested on MSV000083462 (healthy data with sulfadimethoxine as inter-
nal standard), the accuracy drops to 20%. This is mainly because the classifier misclassifies all healthy data as 
obese due to the presence of sulfadimethoxine. There are several ways to avoid this bias. One way is to train the 
classifier on healthy/disease data from more diverse protocols. For example, if MSV000083462 were added to 
the training data, then the accuracy on test data increases to 94%. Another alternative is to encourage the com-
munity to standardize data acquisition protocols as much as possible. Finally, interpretable classification(i.e. 
logistic regression) allows for detection of the features that are significantly different between classes. MetClassi-
fier reports these features and allows for discarding features that cause bias.

Detecting raw ingredients of complex dishes.  We applied MetDecomposer to decompose complex 
dishes from the Global FoodOmics database. Currently, this database contains well curated samples of 1852 raw 
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Figure 1.   MetSummarizer pipeline. (A) MetClassifier, (i) starts with reference mass spectra of environmental/
host-oriented samples. (ii) Mass spectrometry feature and metadata matrices are formed. (iii) A logistic 
regression classifier is trained for predicting phenotype from mass spectrometry features. (iv) Mass 
spectrometry feature vector is formed for query sample. (v) The classifier predicts phenotypes for query sample. 
(B) In MetDecomposer, starting from (i) complex and raw foods, (ii) LC-MS-MS data is collected. (iii) Matrices 
corresponding to the spectral features of raw and complex foods are formed. Then in order to find composition 
of a complex food, (iv) construct a feature vector for the complex food sample. (v) Train a logistic regression 
classifier to identify raw ingredients of the complex food. (vi) Large coefficients of the classifier correspond to 
ingredients of the complex food (i.e if the ith coefficient of classifier is large, then the ith ingredient in raw food 
matrix is present).
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ingredients and 1682 complex dishes. For each complex dish, MetDecomposer predicts the five most likely raw 
ingredients. Supplementary Table S1 shows a comparison of MetDecomposer predictions with the ingredients 
reported in the Global FoodOmics database on all complex dishes, and Table 1 shows results for a randomly 
selected subset of dishes. In order to prove the accuracy of our ingredient prediction algorithm, we have to show 
that the predicted ingredients of each mixture match up with the actual ingredients. We observed that on aver-
age, 1.57 out of top five predicted ingredients are correct or in the annotated ingredient list. In order to assess 
whether this overlap is statistically significant, we developed a random predictor that assigns random ingredi-
ents to each complex food. These predictions have an overlap of 0.05 out of top five predicted ingredients with 
actual ingredients, showing that the accuracy of MetSummarizer is statistically significant.

Part of the discrepancy between reports between MetDecomposer and the Global FoodOmics database could 
be explained by the fact that for some of the dishes, the ingredients reported in the Global FoodOmics database 
are incomplete or inaccurate. For example, in the case of “carrot in chicken biryani”, the reported ingredients are 
carrot, rice, chicken, and peas while MetDecomposer also predicts tomato, a likely ingredient of chicken biryani. 
Another source of discrepancy between the predicted and reported ingredients is due to the fact that the Global 
FoodOmics database currently does not include many of the raw ingredients due to the enormous diversity of 

Figure 2.   (a) Average test performance of MetClassifier as data is aggregated. Figure a shows the average test 
performance of several machine learning algorithms in prediction of life stage (early childhood, adolescence, 
early adulthood, middle adulthood etc.) as the number of datasets in the training set increases. The average is 
taken over twenty trials where in each trial the test set is composed of twenty randomly chosen datasetsand the 
training set is composed of the remaining datasets. Here if a particular dataset is used in the training/test set 
then all the samples associated with the dataset are used in the training/test set. (b) Accuracy of MetClassifier 
predictions for clinical phenotypes. Note the largest confusion is between Crohn’s disease andulcerative colitis, 
which are known to have similar symptoms.
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dishes. In those cases, MetDecomposer usually predicts the raw ingredients available in the database that are 
most similar to the missing ingredients. For example, in the case of “gin”, the ingredients are gin, juniper berry, 
bulgarian rose and cucumber. None of these raw ingredients are available in Global FoodOmics database. In 
this case, MetDecomposer predicts buckwheat (a known ingredient of various alcohols) and acai berry, which 
are similar to the actual raw ingredients.

Discussion
Currently, fast and inexpensive diagnosis methods are not available for many diseases. Metabolomic data col-
lected from various body-sites has the potential for revealing the molecular mechanism of disease, providing the 
path toward diagnosis. However, the majority of studies are limited to linking a single disease to its molecular 
biomarkers. MetSummarizer is the first method for systematic prediction of clinical/biological phenotypes by 
training on over thirty thousand metabolomics samples aggregated from over eighty studies. Currently MetSum-
marizer predicts disease with accuracy of eighty percent or higher. As the amount of annotated metabalomics 
data is expected to grow in the future, we expect this accuracy to improve. This belief is supported by an experi-
ment in this paper showing machine learning accuracy of life stage prediction improved from 25 to 32.5% as 
the training data increased. As new datasets are added to ReDU, MetSummarizer will be periodically updated 
to increase the accuracy of predictions.

One of the main challenges of training on aggregate data is the bias introduced by using data acquired from 
different protocols. MetSummarizier alleviates this batch effect by using interpretable techniques capable of 
detecting biomarkers that support the classification, allowing for manual/automated exclusion of bias. MetSum-
marizer also features a technique for decomposing complex samples into their raw ingredients. Our results on 
the data from the Global FoodOmics project show that MetSummarizier correctly predicts 30% of the ingredi-
ents from complex dishes among its top five predictions. Currently MetSummarizer uses a rule based strategy 
for predicting the ingredients of complex foods. This rule based strategy is based upon the hypothesis that the 
molecular profile of complex food is nearly equal to the union of the molecular profile of its ingredients, and 

Table 1.   Results of applying MetDecomposer to complex foods in Global FoodOmics database. For each dish, 
five top raw ingredients are predicted.

Dish Dish ingredients Predicted ingredients

Rice and chicken rice, chicken Rice, chicken, cake, cow liver, anchovies

Toddler’s solution Nonfat milk, corn syrup, vegetable oil, sugar Bread, peas, cow milk, whole milk, corn

Rice and chicken biryani Rice, chicken Pasta sauce, white rice, brown rice, basmati rice, 
boiled rice

Pizza Tomato paste, grain, enriched flour, mozzarella 
cheese, pepperoni Bread, chicken, cheese, mushroom, beef

Carrot in chicken biryani Carrot, rice, chicken, peas Chicken breaset, persian cucumber, peas, carrots, 
tomato

Strawberry greek yogurt Pasteurized milk, cream, strawberry vanilla base Cream cheese, cheese, sour cream, mushroom, milk

Prosciutto Pig, salt, pepper, rice Black pig, commercial pig, bovine, chicken, trout

Tomato sauce Tomato, salt, basil, olive oil Grashopper body, laurel, hemp, olive, tomato puree

Macaronni and cheese Milk, cheese, macaronni Wheat, cheddar cheese, mushroom, carrot

Strawberry cream cheese Milk, cream, strawberry puree, whey protein,dried 
strawberry

Cream cheese, sour cream, strawberries, carrot, 
caviar

Lorimar Sangiovese grape, merlot grape Wine

Beet apple ginger juice Beet, lemon, apple, ginger Apple sauce, lemon peel, ginger, lime flesh

Strawberry jam Strawberry, apple pectin, cane sugar, ascorbic acid Granola bar, apple sauce, strawberry, banana

Primate mini biscuits Soybean, corn, oats, beet, apple Granola bar, apple sauce, soybean, grain mixture, 
edamame

Candied orange with chocolate Candied orange, dark chocolate, cocoa butter, soy 
lecithin, vanilla

Milk chocolate nuts, orange juice, chocolate icing, 
soy milk, cheerios

Mazuri Soybean, oat, beet, corn Apple sauce, yeast, strawberries, soybeans, beef

Peanut butter Milk chocolate, peanut butter, sugar, cornstarch, 
dextrose Peanut, chocolate

Juice Carrot, oranges, apple, lemon Naval orange, mandarin, blueberry

Garlic knot Dough, garlic, parmesan cheese, herbs Bread roll, butter, cheese

Mashed potatoes Potatoes, milk, butter, salt, pepper Potato chip, potato puree, cheese pasta, filling of 
pistachio macaroon, egg

Outside of lemon macaroon Sugar, almonds, egg white Almonds, chicken soup, filling of pistachio maca-
roon

Pressed juice Carrot, apple, spinach, romaine, parsley, ginger Carrot juice, lemon peel, lemon flesh, grapefruit 
meat

Gin Gin, juniper berry, bulgarian rose, cucumber Buckwheat, goat milk, orange juice, cocoa powder, 
acai berry
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thus it could be sensitive to mis-annotations. Recently extreme multiclass classification techniques have enabled 
accurate label prediction for datasets with multiple labels. These methods could potentially enable more accurate 
prediction of ingredients even in the presence of mis-annotations.

For both the task of disease prediction and ingredient prediction, MetSummarizer only uses the presence/
absence of small molecules. Our experiments show that MetSummarizer’s performance deteriorates if quantita-
tive information is used. This might be due to the bias induced toward abundant features.

Methods
Overview of MetSummarizer.  MetSummarizer consists of MetClassifier and MetDecomposer. MetClas-
sifier predicts biological phenotypes of a sample given its metabalome. MetDecomposer detects the raw ingre-
dients of complex samples.

Retrieving features from LC‑MS spectra.  MetClassifier and MetDecomposer use features extracted 
from the raw spectra. In case of MetClassifier, the features are extracted by spectral library search of known 
molecules2, while in case of MetDecomposer the features are extracted using MSCluster12. Both spectral library 
search (based on cosine similarity) and MSCluster take advantage of intensities in fragment mass spectra. In 
both cases, the features are binary, where 1 represents the presence of a metabolomics feature, while 0 represents 
its absence.

Training MetClassifier.  Logistic regression model with l1 norm regularization is trained on training data. 
l1 norm regularization is used to enforce sparsity. This sparsity regularization prevents overfitting and allows the 
model to be interpretable. In regular logistic regression, the optimization criteria is

where t indexes each training point, yt represents the true label of each training point, xt represents the features of 
each training point, f is a function that outputs a label given features xt , and L refers to a loss function that is low 
when f (xt) is equal to yt and high otherwise. Here we use T = 34,087 training samples from ReDU. Currently, 
the default option for MetSummarizer is logistic regression based on 11 regularization. While l2 regularization 
outperforms 11 regularization on the task of predicting stage of life, 11 regularization leads to sparsity of logistic 
regression coefficients (only a few of the coefficients are non-zero) leading to a significantly more interpretable 
model, and facilitating detection of bias. The choice of method can be adjusted by the user.

Currently there is an imbalance between different classes for various phenotypes in ReDU. For example, 
among host oriented samples, over 90% belong to healthy individuals. Such an imbalance could result in mis-
classification of disease subjects to healthy. To avoid this we use a “balanced” approach13. Notice that each 
training point in (1) contributes the same amount to the total loss. We modify the objective function in (1) to 
the following:

where bt is the number of training points with label yt . This way each disease or phenotype contributes the same 
amount to the objective function that we aim to minimize.

Removing artifacts from data.  In order to remove artifacts from the data, first an 11 logistic regres-
sion model is trained on the training data. Since the logistic regression coefficients are mostly zero due to 11 
regularization, only a few features will have non-zero coefficients. If any of these features correspond to internal 
standards or artifacts relevant to experimental conditions, then they are removed and the model is retrained.

Constructing raw ingredient and complex food matrices.  First, raw and complex food matrices are 
formed. Each column of the raw matrix corresponds to a binary vector of a raw food, and each column of the 
complex matrix corresponds to the binary vector of a complex food. Each matrix has T = 95,006 rows. The raw 
and complex matrices have 1852 and 1682 columns, respectively.

Finding ingredients of complex dishes.  In order to find the ingredient composition of a complex food 
we make two modelling assumptions. We assume that (i) each complex food is composed of only a few ingre-
dients, and (ii) the molecular profile of a complex food is nearly equal to the union of the molecular profile of 
its ingredients. Due to these two assumptions, we use an objective function exactly equivalent to that of logistic 
regression with 11 regularization:

where the minimization is over vector x, which approximates the abundance of raw ingredients in the complex 
dish. Here D is the raw ingredient matrix with 95,006 rows and 1852 columns, c is a binary vector of size 95,006 
corresponding to the metabalome of a complex food. � is a positive scalar value and |x|1 denotes the sum of the 
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absolute values of the entries in x . Sigmoid is a monotonically increasing function that takes as input a scalar 
value and outputs a value between 0 and 1. Its functional form is the following:

CrossEntropy between a binary variable y and a real value ŷ between 0 and 1 is defined as14:

Increasing � forces the minimizer of (3) to satisfy the sparsity assumption. The CrossEntropy term ensures the 
union assumption holds. Due to the fact that the majority of entries in c are zero, optimizing (3) may lead to a 
solution that has low CrossEntropy whenever ct = 0 but not when ct = 1 . This would result in the minimizer 
violating the union assumption. To avoid this, we use the “balanced” approach13 by defining the following 
optimization:

where bt is the number of entries in c with value ct . We solve (6) for increasing values of � until the minimizer 
of (6) has five non-zero entries. The algorithm then outputs the ingredients that correspond to these non-zero 
entries.
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