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Abstract. Oxaliplatin is effective for the treatment of advanced 
colorectal cancer; however, its application is restricted due to its 
dose-limiting toxicity. Liposomes are sphere-shaped vesicles 
consisting of one or more phospholipid bilayers. Liposomes 
as drug carriers are characterized by delayed release, lesion 
targeting and may be used as a drug-delivery system to 
decrease the side effects of cytotoxic drugs. Active targeting 
modification of liposomes may change the biological distri-
bution of the anticancer agents, reduce or reverse multidrug 
resistance of tumor cells and enhance the effects of anticancer 
therapy. Based on the characteristics mentioned above, the aim 
of the present review was to demonstrate that polyethylene 
glycol-liposomes containing oxaliplatin may offer advantages 
for the treatment of colorectal cancer in clinical practice.
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1. Introduction

Colorectal cancer (CRC) is currently the third most common 
malignancy worldwide. Radical resection is curative for only 
~50% of the patients (1), whereas for the majority of patients 

with advanced-stage or metastatic disease, or for those who 
cannot be treated with radical resection, chemotherapy is the 
main treatment of choice (2,3). The survival rate of patients 
with metastatic CRC has significantly improved with the 
application of molecularly-targeted drugs, such as oxaliplatin.

Oxaliplatin, a diaminocyclohexane platinum compound, 
interrupts the replication and transcription of DNA (4). 
Oxaliplatin is the third generation of platinum drugs after 
cisplatin and carboplatin and is effective in the treatment of 
CRC, particularly CRC that is resistant to 5‑fluorouracil (5,6). 
Oxaliplatin may also be effective for the treatment of tumors 
that do not respond adequately to cisplatin and carboplatin, as 
well as drug-resistant tumors. Oxaliplatin acts synergistically 
with other anticancer drugs, such as fluorouracil, topoisom-
erase inhibitors and microtubule inhibitors (7,8).

Satisfactory clinical results have also been achieved with 
the combined application of oxaliplatin and molecular-targeted 
drugs, such as bevacizumab and cetuximab, administered 
intravascularly, with a median survival time of 30 months in the 
majority of the patients and of >3 years in certain patients (9). 
Although a number of studies indicated that the combined 
application of oxaliplatin with other chemotherapeutics and 
molecular-targeted drugs may achieve good clinical results in 
the treatment of CRC, the associated toxicity and side effects, 
such as neurotoxicity, cardiotoxicity, gastrointestinal reactions, 
hemorrhage and hypersensitivity, may outweigh the benefits of 
the treatment (10-14).

The nature of the active species generated in vivo, uptake, 
efflux, intracellular trafficking or insufficient diffusion in 
tumor tissues, resulting in decreased curative effects and 
increased toxicity for certain chemotherapeutic agents (15). 
Oxaliplatin therapy based on a simple vesicular delivery 
system may reduce the potential side effects, target specific 
organs and improve the therapeutic effects.

2. Liposomes as anticancer drug carriers

Over the last few decades, liposomes have been widely accepted 
as agent nanocarriers. Liposomes are small, spherical artifi-
cial vesicles that consist of cholesterol and natural non-toxic 
phospholipids. Due to their size, biocompatibility and hydro-
phobic and hydrophilic properties, liposomes are promising 
drug delivery systems. Liposomes have a phospholipid bilayer 

Liposomal delivery and polyethylene glycol‑liposomal oxaliplatin  
for the treatment of colorectal cancer (Review)

CHUANG YANG1,2  and  ZHONG-XUE FU2

1Department of General Surgery, Third People's Hospital of Mianyang, Mianyang, Sichuan 621000;  
2Department of Gastrointestinal Surgery, The First Affiliated Hospital, 

Chongqing Medical University, Chongqing, Chongqing 400016, P.R. China

Received January 27, 2014;  Accepted February 25, 2014

DOI: 10.3892/br.2014.249

Correspondence to: Professor Zhong-Xue Fu, Department of 
Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing 
Medical University, 1 Friendship Road, Yuzhong District, 
Chongqing, Chongqing 400016, P.R. China
E‑mail: fzx990521@126.com

Key words: colorectal cancer, oxaliplatin, drug delivery system, 
liposomes



YANG  and  FU:  LIPOSOME DELIVERY SYSTEM AND PEG-LIPOSOMAL OXALIPLATIN FOR CRC TREATMENT336

structure that is compatible with cell membranes (16); there-
fore, they are among the most effective drug carriers into 
cells, with slow-releasing and targeting characteristics and the 
ability to reduce side effects (17,18). Drugs coated in liposomes 
are slowly released through infiltration or degradation of lipo-
somes, leading to a reduction in the metabolism and excretion 
of drugs by the body and prolonged time of action. Liposomes 
as exogenous substances may be devoured by macrophages; 
however, liposomal drugs administered intravenously may 
selectively act on the mononuclear macrophage system (19,20). 
The drugs delivered by surface-modified liposomes escape 
being taken up by the endodermis system, act specifically on 
target organs, increase drug concentration in these organs and 
improve the therapeutic effects, while reducing toxicity (21,22). 
In addition, drugs insulated by bilayer liposomes are stable; 
therefore, surface-modified liposomes exhibit advantages in 
the treatment of a number of diseases, particularly cancer.

The toxicity of drugs coated by ordinary liposomes may be 
reduced; however, the therapeutic effects are severely affected 
as the drugs lose their bioactivity. Previous studies demon-
strated that different types of liposomes may be obtained 
based on liposome modifiers (23,24) and modified liposomes 
may be more effective drug delivery systems.

Liposomes are broadly divided into the following 3 groups 
according to their different properties:

Long‑circulating liposomes (stealth liposomes). The 
surface conformation of the phospholipid bilayer struc-
ture is modified by adding gangliosides or a polyethylene 
glycol (PEG) derivative possessing a flexible chain that occu-
pies the space immediately adjacent to the liposome surface, 
tends to exlcude other macromolecules from this space (25,26), 
and prevent blood plasma opsonins binding to the liposome 
surface. Consequently, PEG decreases the recognition of 
liposomes by the mononuclear phagocyte system and enables 
liposomes to remain stable in the circulation and exhibit a 
prolonged half-life (27,28). This type of liposome has been 
applied in clinical practice and achieved satisfactory effects in 
individualized treatment, such as treatment for hepatocellular 
carcinoma with doxorubicin liposomes and ovarian carcinoma 
with paclitaxel liposomes (29-31).

Active targeting liposomes. Liposomes targeting anti-
bodies, peptides, glycoside residues, hormones and receptors. 
The ligands are constructed on the phospholipid bilayer 
structure (32-37); thus, the liposomes are able to identify and 
migrate to the target organ and release the anticancer agent.

Liposomes with special properties. This type of liposomes 
includes pH-sensitive, thermosensitive, magnetic and posi-
tive liposomes (38-41). There are several types of liposomes; 
however, there are currently no uniform standards regarding 
their application and these liposomes should be selected 
according to the different treatment or experimental require-
ments.

3. PEG‑liposomes with enhanced permeability and 
retention (EPR) effect

It is crucial to investigate PEG-liposomes with EPR effect, 
as the EPR effect of tumors on macromolecules is a common 
phenomenon. Previous studies reported that new vessel for-
mation is the basis of solid tumor growth (42,43). Compared 

to normal tissues, capillaries in tumor tissues exhibit the fol-
lowing characteristics: irregular wall structure, dilated lumen, 
defective wall and loosely arranged endothelial cells (44), 
incomplete lymphangiogenesis and defective lymphatic return. 
Therefore, these abnormalities may result in the penetration of 
macromolecules and lipid granules from the lumen into the 
surrounding tissues, which is referred to as the EPR of solid 
tumor tissues. The pathological characteristics of solid tumors 
may enable the macromolecular anticancer drugs to achieve a 
highly distributed concentration in tumor tissues (45,46).

Currently available evidence indicates that liposomes 
accumulate in solid tumor tissues and efficiently inhibit tumor 

Figure 2. Cell internalizaton of polyethylene glycol (PEG)-liposomes. The 
PEG-liposomes conjugated with SW480 cells after 2 h. The cells were incu-
bated with propidium iodide, which stained the nuclei red and DiO-labelled 
PEG-liposomes, which were stained green. A significant number of 
PEG-liposomes is aggregated within the cells (magnification, x400).

Figure 1. Scanning electron microscopy reveals polyethylene glycol 
(PEG)-liposome coherence to cells. The PEG-liposomes were incubated with 
SW480 cells at 4˚C to allow binding (30 min). The unbound PEG-liposomes 
were removed by extensively washing the cells with ice-cold phosphate-buff-
ered saline.
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growth (47,48), which is associated with the EPR effect. Due to 
the increased permeability of the solid tumor vessels to macro-
molecules and the incomplete lymphatic clearance, the lipid 
granules may remain in the tumor tissues for weeks or even 
months (49). Long-circulating liposomes, immune liposomes 
and liposomes with special properties may increase the drug 
cumulative effect in tumor tissues due to their active organ 
targeting (50,51).

4. PEG‑liposomal oxaliplatin for the treatment of CRC

Regular liposomes have a low encapsulation efficiency and 
poor stability. Long‑circulating liposomes modified by PEG 
are more stable in the plasma and have a longer circula-
tion time and relatively lower toxicity (52). Moreover, our 
previous in vitro study demonstrated the easy coherence of 
PEG-liposomes to cells (Fig. 1), their internalization and their 
subsequent intracellular route (Fig. 2). However, it is the size of 
the particles that determines the entry pathway (53).

As oxaliplatin has a different antineoplastic spectrum and 
no cross-resistance with cisplatin, it exerts a good curative 
effect on advanced CRC. Liposome studies on oxaliplatin 
and its derivatives are attracting increasing attention, particu-
larly regarding liposomes modified by PEG. The surface 
modification of PEG‑liposomes with specific ligands, such 
as monoclonal antibodies, peptides, folic acid and transferrin, 
may further improve the active targeting efficiency of lipo-
somes (25,30,54).

Considering the water solubility of oxaliplatin, the low 
encapsulation efficiency of liposomes is the main concern. A 
previous study reported that the encapsulation efficiency of 
oxaliplatin liposomes was ~30% (55), whereas PEG-liposomal 
oxaliplatin prepared with the film dispersion method by 
Zalba et al (56) exhibited an encapsulation efficiency of ≤35%. 
Liposomes prepared by optimizing the preparation technique, 
as described by Liu et al (57), exhibited an encapsulation 
efficiency of ≤69.1%. Our previous study demonstrated that 
the encapsulation efficiency of PEG‑liposomal oxaliplatin was 
~58% (58). These differences in the encapsulation efficiency 
may be associated with the different preparation techniques.

The action time of oxaliplatin coated with liposomes was 
significantly prolonged and its toxicity against normal cells was 
significantly reduced. High concentrations of oxaliplatin were 
obtained in the cytoplasm and then combined with nuclear DNA 
as >95% of PEG-liposomal oxaliplatin was internalized by CRC 
cells (59). Treatments for CRC with PEG-liposomal oxaliplatin 
are currently at the research phase. Doi et al (60) investigated 
the therapeutic effect of PEG-liposomal oxaliplatin in a mouse 
CRC model and demonstrated that PEG-liposomal oxaliplatin 
exerted a significant inhibitory effect on tumors compared to free 
oxaliplatin (>50%), with an increased drug content in tumors. 
Jain et al (61) coated oxaliplatin with hyaluronic acid-chitosan, 
administered the drug to nude mice bearing TH29 colorectal 
tumor xenografts and found that the drug concentration in the 
tumor tissues reached a peak value 24 h after administration. 
Radioisotope scanning revealed that the liposomes had accumu-
lated in the colorectal tumor 24 h after administration.

Abu Lila et al (62) recently reported a higher cumulative 
distribution effect of PEG-liposomal oxaliplatin in colorectal 
tumor tissues through a comparative study of CRC, lung cancer 

and melanoma. Different types of tumor cells can take up 
different amounts of drug-carrying liposomes, indicating that 
the permeability of different tumor vessels is a factor affecting 
tumor localization and the antitumor effects of drug-carrying 
liposomes (63). In our previous experiment, oxaliplatin was 
coated with DSPE-PEG2000-modified liposomes and the 
PEG-liposomes exerted a significant antitumor effect in vivo 
and in vitro (51,64). Further investigations revealed that 
Fas/Fas ligand and the caspase pathway may be involved in 
the apoptosis-inducing effects of PEG-liposomal oxaliplatin 
on CRC cells (65).

Tumors are unable to grow without vessels and capillaries 
are the foundation of tumor survival. Taking advantage of 
the properties of PEG-liposomes may allow drugs to migrate 
to the target organ by constructing a vascular-targeting 
substance, such as vascular endothelial growth factor (VEGF) 
and VEGF monoclonal antibody peptides, on the surface of 
liposomes (66). Therefore, the preparation of PEG-liposomal 
oxaliplatin is of great clinical significance.

5. Conclusion

Oxaliplatin exerts a good curative effect on CRC, fully 
embodying the advantages of platinum drugs. However, there 
is a need to reduce the toxic side effects of oxaliplatin. As a 
novel type of drug carrier, liposomes exhibit good targeting 
properties, slow-releasing potential, high stability and low 
toxicity following surface modification. The active targeting 
modifications are significant for altering the biological distri-
bution of antitumor agents, reducing or reversing the multidrug 
resistance of tumor cells and improving the efficiency of 
anticancer drugs. Further studies investigating the effects of 
PEG-liposomal oxaliplatin on CRC are required to establish 
the advantages of its application in clinical practice.
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