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Abstract

SLAMF1 is often overexpressed in Epstein Barr virus (EBV)-infected B cell tumors. How-

ever, its role in the pathogenesis of EBV-infected B cell tumors remains largely unknown.

Here, we generated SLAMF1-deficient EBV+ tumor cells and examined the effect of its defi-

ciency on cell proliferation and cell survival. There were no significant differences in cell pro-

liferation and cell cycle distribution for short periods between the SLAMF1-deficient and

wild-type cells. However, the deficient cells were more resistant to an AKT inhibitor (MK-

2206). When the both cells were co-cultured and repeatedly exposed to the limitations in

nutrition and growth factors, the SLAMF1-deficient cells were gradually decreased. We

observed that levels of phospho-AKT were differentially regulated according to the nutri-

tional status between the SLAMF1-deficient and wild-type cells. A decrease in phospho-

AKT was observed in SLAMF1-deficient cells as well as an increase in pro-apoptotic Bim

just before cell passage, which may have been due to the loss of SLAMF1 under poor

growth condition. Overall, SLAMF1 is not a strong survival factor, but it seems to be neces-

sary for cell survival in unfavorable growth condition.

Introduction

Signaling lymphocyte activation molecule family member 1 (SLAMF1/CD150) is a self-ligand

receptor that is expressed on activated T- and B-lymphocytes, dendritic cells and macrophages

[1, 2]. Ligation of SLAMF1 on B cells enhances cell proliferation and apoptosis triggered by

the activation of CD40 and Fas/CD95, respectively [3, 4]. SLAMF1 also serves as a receptor for

measles virus and a phagocytic element for bacterial killing [1, 5–7]. SLAMF1 was differentially

expressed according to B cell developmental stages [8], NF-κB activation [9], or the cell of ori-

gin [10]. For instance, it was positive in activated B-cell-like (ABC) DLBCL, but not in germi-

nal center B-cell-like (GCB) DLBCLs [10]. SLAMF1 is highly induced in the Epstein Barr virus

(EBV)-infected lymphoblastoid cell lines (LCL) and the latency type III EBV+ lymphoma [9,

11]. We reported the overexpression of SLAMF1 and recurrent copy number gain at 1q23.3

harboring SLAMF1 in EBV+ DLBCL [12]. This suggests that SLAMF1 might play a role in the

pathogenesis of EBV+ DLBCL.
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SLAMF1 is a type I glycoprotein that consists of two Ig-like extracellular domains and a

cytoplasmic tail. Its cytoplasmic domain contains two immunoreceptor tyrosine-based switch

motifs (ITSMs) (TxYxxI/V) [1]. These switch motifs interact with several molecules that initi-

ate cell signaling. They include adaptor molecules SH2D1A (SAP) and SH2D1B (EAT-2), the

phosphatases SHP-2 and SHIP and the Src-family kinases Fyn, Lyn, and Fgr [1]. Positive or

negative signaling through SLAMF1 depends on type of molecules bind to it. Ligation of

SLAMF1 could activate the ERK and AKT signaling pathways [10, 13]. In tumor cells, ligation

of SLAMF1 resulted in transient phosphorylation of Akt or dephosphorylation depending on

cellular context [10]. However, the significance of the activation of these signaling pathways

remains to be explored.

To understand the possible role of SLAMF1 in EBV+ DLBCL, we depleted SLAMF1 in

EBV+ Farage cells and tested its effect on cell proliferation and survival. SLAMF1 was not nec-

essary for cell survival when cultured in optimal growth conditions, but it might be necessary

under unfavorable growth condition.

Materials and methods

Cell culture and reagents

Farage cells are an EBV+ B cell lymphoma cell line, which were purchased from ATCC (Amer-

ican Type Culture Collection, Manassas, VA, USA) and cultured in RPMI 1640 media contain-

ing 10% fetal bovine serum (FBS) and antibiotics (100 μg/mL penicillin and streptomycin) at

37˚C under a 5% CO2 humidified atmosphere. Cell line authentication and mycoplasma test-

ing were performed periodically in our institute.

Generation of SLAMF1-deficient Farage cells

SLAMF1-deficient Farage cells were generated by using the Guided it-CRISPR/Cas9 System

(Clontech Laboratories, Inc., Mountain View, USA). Oligomers for custom sgRNAs that target

exon3 of SLAMF1 were designed using on-line tools (http://crispr.mit.edu/) and cloned into

the pGuide-it vector according to company’s manual.

The sequences of sgRNA were as follows: 5'- CG GGA CCT GCA CCT TGA TAC-3'
and 5'- AT TCC CAG ACC TTC AGC CCG-3'. The cloned vectors were mixed with T

buffer (Lonza, Allendale, NJ, USA) and transfected into Farage cells by electroporation with

Nucleofector (Lonza, program S-018). Farage cells expressing Cas9 were selected using FACS

Aria III (BD Life Sciences, San Jose, CA, USA) 2 days after electroporation and were cloned by

serial dilution and FACS-mediated selection. Insertion or deletion mutations were screened

with GeneArt Genomic Cleavage Detection kit (Thermo Fisher Scientific, Waltham, MA,

USA) after PCR amplification of exon 3. The primer sequences for PCR were as follows:

EX3-fw, 5'-CCA TGT GAA GAC TGA GCC CAT G-3'; EX3-rev, 5'-CCA GGG GTT
CAC TTC AGT GAT G-3'. To identify nonsense or missense mutations, the PCR products

were directly sequenced or cloned using TOPO TA cloning kit and sequenced.

Fluorescence-activated cell sorting (FACS) analysis

SLAMF1-deficient and wild-type Farage cells were seeded at a density of 2 × 105/mL cells in

T25 flasks and cultured for 2 days. Then, 1 × 106 cells were then washed, and their Fc receptors

were blocked with TruStain (Biolegend, San Diego, CA, USA). Cells were labeled with FITC-

conjugated IgG or anti-human SLAMF1/CD150 antibody (Cat# 306306, Biolegend, San

Diego, CA, USA) and were subject to fluorescence-activated cell sorting (FACS) analysis by a

Becton-Dickinson FACS Calibur (Franklin Lakes, NJ, USA).

PLOS ONE SLAMF1 regulates the AKT signaling pathway

PLOS ONE | https://doi.org/10.1371/journal.pone.0238791 September 4, 2020 2 / 11

Competing interests: The authors have declared

that no competing interests exist.

http://crispr.mit.edu/
https://doi.org/10.1371/journal.pone.0238791


Drug inhibition experiments

SLAMF1-deficient and wild-type Farage cells were seeded at a density of 2 × 104 cells in

96-well plates. Cells were treated with various concentrations of MK-2206 (Selleckchem,

Houston, TX, USA) for 3 days. Cell proliferation and viability were measured using the WST-

1 reagent according to the manufacturer’s protocols (Roche, Indianapolis, IN). Optical density

was measured at 450 and 600 nm 4 h after the addition of the WST-1 reagent. The concentra-

tion to reduce cell viability by 50% (IC50) was calculated using package drc (http://cran.r-

project.org/web/packages/drc/). We used the 3-parameter logistic function standard curve

analysis for dose response.

Cell proliferation and cell cycle analysis

Cell proliferation was accessed by counting viable cells at 1, 3, and 5 days after seeding at

1 × 105/mL cells. For the cell cycle analysis, Farage cells were washed with cold 1 × PBS and

then fixed with 70% cold ethanol for more than 30 min at -20˚C. Cells were washed with

1 × PBS and incubated with a staining solution including 50 μg/mL propidium iodide (PI) and

200 μg/mL RNase A for 15 min at 37˚C. DNA content was analyzed using a Becton-Dickinson

FACS Calibur flow cytometer. Data were analyzed with CellQuest software (Becton Dickinson,

Heidelberg, Germany).

Immunoblot analysis

The SLAMF1 wild-type and mutant Farage cells were lysed with M-PER buffer (Pierce Bio-

technology, Rockford, IL) containing a 1× protease and phosphatase inhibitor cocktail

(Roche). Then, 20–40 μg of lysate was separated on 4–15% or 12% precast sodium dodecyl sul-

fate-polyacrylamide gels and transferred onto polyvinylidene fluoride membranes (Bio-Rad

Laboratories, Hercules, CA). The membranes were blocked with 5% non-fat dry milk and

incubated with appropriate primary and secondary antibodies. Signals were detected using the

SuperSignal West Pico Chemiluminescent Substrate (Pierce Biotechnology). The following

antibodies were used in this study: phospho-NF-kB p65 (3033), BCL-XL (2764), MCL1 (5453),

Bcl-2 (4223), Bim (2933), HSP70 (4782), phospho-AKT (4060) and panAKT (4691) were pur-

chased from Cell Signaling Technologies (Beverly, MA); LMP1 (CS1-4, M0897) from Dako

(Glostrup, Denmark); GAPDH (sc-25778), and goat anti-rabbit IgG (sc-3837) from Santa

Cruz Biotechnology (Santa Cruz, CA, USA). We developed an anti-SLAMF1 rabbit polyclonal

antibody for western blotting.

Analysis of apoptosis

SLAMF1 mutant and wild-type Farage cells were seeded at 2×105 cells/mL and cultured for 5

days. Cells were washed with 1× PBS and stained with fluorescein isothiocyanate (FITC)-con-

jugated anti- Annexin V antibody (BD Biosciences, Heidelberg, Germany) and propidium

iodide (PI) (Sigma Aldrich, St. Louis, MO, USA). Detection of early apoptotic (Annexin

V-FITC+ and PI-) and late apoptotic cells (Annexin V-FITC+ and PI+) was performed using a

FACS Calibur (Becton and Dickinson). Data were analyzed with CellQuest software (Becton

Dickinson).

Statistical analysis

All data were analyzed with the statistical program GraphPad Prism 6.0 (San Diego, CA). Stu-

dent’s t-test was used to determine the statistical significance of differences between groups.
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Results

Generation of SLAMF1-deficient Farage cells

SLAMF1 was highly expressed in Farage cells, which is an EBV positive B cell lymphoma cell

line. To generate SLAMF1-deficient Farage cells, we designed two sgRNAs targeting exon 3 of

SLAMF1 by using CRISPR/Cas9 technology (Fig 1A). The two sgRNAs coupled with Cas9

expression vectors were transfected, and three cell lines named 3C, 8C and 4E were obtained

by serial dilution and mutational analysis (Fig 1B). As shown in Fig 1B, two bands were

observed in 4E after PCR amplification, indicating a deletion of exon 3 in one allele (Fig 1B).

Sub-bands appeared after cleavage of heteroduplex in 3C, 8C and 4E, indicating the presence

of at least one indel mutation (Fig 1B). We next tested whether expression level of SLAMF1

was decreased at the cell surface by using FACS analysis. SLAMF1 was almost negative in the

three cell lines compared with SLAMF1 wild-type Farage cells (Fig 1C). This result was further

confirmed by western blot analysis with the anti-human SLAMF1 antibody, which was a

Fig 1. SLAMF1-deficient Farage cells were cloned by using CRISPR/Cas9. (A) The two regions on exon 3 indicate two sgRNA

sites of SLAMF1. The two regions outside of exon 3 indicate two primer sites for PCR amplification (upper panel). Indel mutations

were confirmed with sequencing and are depicted in the lower panel. (B) Genomic DNA isolated from the selected clones was

PCR-amplified. The PCR products were denatured and digested after allowing for the formation of duplexes. Cleaved DNAs were

analyzed on 2% agarose gel. (C) SLAMF1 on the cell surface of wild-type and mutant Farage cells were analyzed by FACS. The left

peak indicates Farage cells labeled with FITC-anti-IgG antibody, whereas a right peak indicates Farage cells labeled with a FITC-

anti-SLAMF1 antibody. The SLAMF1 mutant Farage cells overlap with the left peak (depicted in red). (D) A depletion of SLAMF1

was confirmed by western blot for SLAMF1, LMP1, phosphor-AKT (S473) and GAPDH.

https://doi.org/10.1371/journal.pone.0238791.g001
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different clone than that used for FACS analysis. SLAMF1 was not detected or remarkably

decreased in mutant cell lines, whereas LMP1 had no discernable change between SLAMF1

wild-type and mutant cells (Fig 1D). Of note, phospho-ATP was variable between them, sug-

gesting that the deficiency of SLAMF1 disturbs the AKT signaling pathway.

Differential response to an AKT inhibitor

SLAMF1 was implicated as a co-stimulatory molecule for cell proliferation and cell death.

Therefore, we performed cell proliferation assay by counting cells for 5 days (Fig 2A). There

was no significant difference in cell proliferation among the four cell lines. Next, cell cycle

analysis was performed by using FACS. Similarly, there was no significant difference in cell

cycle distribution among the cell lines (Fig 2B). We observed overexpression of SLAMF1 at the

cell surface of drug resistant Farage cells [14]. We therefore tested whether SLAMF1-deficient

Farage cells responded differentially to drugs targeting several pathways. A differential

response was observed only in cells treated with an AKT inhibitor (MK-2206) among the

Fig 2. Comparison of SLAMF1 wild-type and SLAMF1-deficient cell proliferation. (A) The effect of SLAMF1 on cell proliferation

was assessed by counting viable cells for 5 days. (B) The cell cycle distribution was analyzed by using FACS. Cells fixed with 70%

ethanol were stained with propidium iodide (PI) and subject to FACS analysis based on the DNA content. (C) Cells were incubated

with various concentrations of AKT inhibitor MK-2206 for 3 days. Cell proliferation was assessed with WST-1 reagent. The Y-axis

indicates viability (%). IC50 of the 3C, 8C, 4E and WT cells were 7.6, 7.9, 3.7 and 1.05 μM.

https://doi.org/10.1371/journal.pone.0238791.g002
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drugs tested. For MK-2206, IC50 of the mutant cells 3C, 8C and 4E were 7.6, 7.9 and 3.7 μM,

respectively, whereas IC50 of WT cells were 1.05 μM (Fig 2C). The mutant cells exhibited more

resistance to MK-2206 compared with WT cells. In addition to variable phospho-AKT levels

(Fig 1D), this result suggested that loss of SLAMF1 might affect the AKT signaling pathway.

Loss of SLAMF1 affects AKT and Bim

When we were trying to clone the SLAMF1-deficient Farage cells, we observed that SLAMF1

wild-type Farage cells often out-competed the SLAMF1-deficient cells (Fig 3A). Therefore, we

mixed both wild-type and mutant SLAMF1 Farage cells and cultured them together for more

than one month with repeated passages every 5 and 7 days. One mutant cell (8C) was gradually

out-competed after the 5-day cell passages for one month, whereas two other mutant cells (3C

and 4E) were more clearly out-competed by the 7-day cell passages by wild-type cells, which

then dominated the mixed cell population (Fig 3B). We observed that before the cell passages

wild-type cells were kept aggregated together, whereas a part of the SLAMF1-deficient cells

became separated (Fig 4A). We hypothesized that some SLAMF1-deficient cells might be less

tolerant to nutritional deficiency or acidic microenvironment and undergo programmed cell

death. We analyzed apoptotic cells with FACS after labeling cells with Annexin V plus 7-AAD.

We found that late apoptotic cells were increased in all SLAMF1-deficient cells (Fig 4B). We

then performed a western blot analysis for phospho-AKT and anti- or pro-apoptotic genes at 2

and 5 days after passaging. Interestingly, phospho-AKT was higher in SLAMF1-deficient cells

than in wild-type cells at day 2 (3C and 8C) (Fig 4C), whereas it was much lowered at day 5

(Fig 4C). The level of phospho-NF-kB p65 was greatly decreased at day 5 when compared to

day 2, but no apparent differences were seen between wild-type and mutant cells. The pro-apo-

ptotic gene Bim seemed to be counterbalanced by MCL1 and Bcl-XL as shown in the 3C line

at day 2. Bim was increased in SLAMF1-deficient cells without an increase in MCL1 at day 5.

The balance between anti- or pro-apoptotic genes seemed to shift towards pro-apoptosis due

to the increased Bim at day 5, which might be responsible for the increased apoptosis in the

mutant cells.

Discussion

In this study, we observed that under optimal growth conditions, a deficiency of SLAMF1

made no discernible differences in cell proliferation and cell cycle distribution in EBV+ Farage

cells. However, when the Farage cells were exposed to limited nutrition and growth factors,

SLAMF1 was required to evade apoptosis through the activation of AKT.

Evading apoptosis is one of the characteristics acquired by cancer cells [15]. EBV suppresses

apoptosis of EBV-infected B cells by several mechanisms. First, the EBV latent membrane pro-

tein LMP1 activates classical or non-classical NF-κB pathway, which results in an increase of

the anti-apoptotic gene Bcl-xL and survivin [16]. Secondly, EBV down-regulates the pro-apo-

ptotic gene Bim. EBV-infected B cells down-regulate Bim [17]. Especially, EBV nuclear pro-

teins EBNA3A and 3C repress the transcription of Bim by recruiting polycomb repressive

complex 2 (PRC2) [18] and chromatin remodeling. EBV’s clustered multiple miRNAs attenu-

ate Bim [19]. Bim was significantly downregulated in EBV-positive compared to EBV-negative

posttransplant lymphoproliferative disorders (PTLD) [20]. The reason why Bim is a target of

EBV is that Bim is responsible for cell death by depriving survival factors as demonstrated in

many cells originating from the hematopoietic lineage [21–26]. Therefore, loss of Bim renders

cells resistant to apoptosis induced in vitro by cytokine or growth factor deprivation even in a

B cell lymphoma model [27]. In Fig 4, we observed increased Bim levels in SLAMF1-deficient

cells at day 5 when cytokines or growth factors were not be sufficient for survival, but not in
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SLAMF1 wild-type Farage cells. We also observed a reverse relationship between phospho-

AKT and Bim, which provided clues for how Bim might be regulated in Farage cells [22, 28].

The activated AKT phosphorylates FOXO3, which renders FOXO3 sequestered in cytosol,

thereby inhibiting transcription of a pro-apoptotic gene Bim by FOXO3. Taken together, we

Fig 3. Outgrowth of SLAMF1 wild-type cells over mutant cells during long-term co-culture. (A) Proportion of

wild-type cells that were gradually increased when 4E cells had been contaminated with wild-type cells at the initial

cloning stage. (B) SLAMF1 wild-type cells and mutant cells were mixed at a 1:1 ratio at day 0. During the first one

month, the cells were subcultured every 5 days, and then the next month, the cells were subcultured every 7 days.

Wild-type cells became dominant in all three mutant cell lines as the interval between cell passages increased.

https://doi.org/10.1371/journal.pone.0238791.g003
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speculate that SLAMF1 regulates the AKT pathway, which leads to suppression of Bim to

evade apoptosis under unfavorable growth conditions.

SLAMF1 was known to costimulate proliferation of activated B cells [3]. In a previous study

[14], we used SLAMF1 as a surrogate marker for LMP1 and observed that the SLAMF1high

cells grew faster than the SLAMF1low cells. However, loss of SLAMF1 itself did not obviously

alter cell proliferation and cell cycle distribution at the exponential growth phase. This indi-

cated that other factors such as LMP1, which is epistatic to SLAMF1, play a major role in the

proliferation of Farage cells. Unexpectedly, we repeatedly observed that the SLAMF1 mutant

cells (3C and 8C) proliferated faster in the presence of an allosteric AKT inhibitor (MK-2206)

at a low dose compared to SLAMF1 wild-type cells (Fig 2C). We cannot fully explain this

result; however, different levels of activated AKT might explain the underlying mechanism of

this result. The greater amount of activated AKT was seen in 3C and 8C mutant cells compared

to wild-type cells at day 2 (Figs 1 and 4). Therefore, MK-2206 might not fully inhibit AKT

phosphorylation at the same amount that can inhibit AKT in wild-type cells. This result

implies that SLAMF1 might down-regulate the AKT pathway under optimal growth

conditions.

The relative amount of phospho-AKT in SLAMF1 mutant vs. wild type cells was reversed

between days 2 and 5 in our experiment (Fig 4). It was questioned how SLAMF1 functions as a

costimulatory molecule in opposite cellular events of cell proliferation and apoptosis [11]. This

contradictory function is thought to be attributable to its cytoplasmic domain with two ITSM

Fig 4. Increase of Bim might underlie slightly increased apoptosis in SLAMF1 mutant cells at day 5. (A) Cell images of SLAMF1 wild-

type and mutant (8C) cells at day 5. Wild-type cells were kept aggregated together, whereas mutant cells became separated. (B) Analysis of

apoptotic cells using FACS after staining cells with anti-Annexin V and propidium iodide (PI). Double positive region (upper right) indicates

late apoptotic cells (Annexin V-FITC+ and PI+). (C) SLAMF1 mutant and wild-type Farage cells were seeded at 2×105 cells/mL and lysed 2

and 5 days after culture. Western blotting for phospho-AKT (S473), phospho-NF-kB p65, BCL2, MCL1, BCL-xL, and Bim at days 2 and 5.

https://doi.org/10.1371/journal.pone.0238791.g004
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that interact with several molecules such as the adaptors SAP and EAT-2, SHIP, SHP-1, Lyn,

and PI3K [1, 10]. Although the molecules that are recruited to these motifs at days 2 and 5

have not yet been identified, SLAMF1 might recruit phosphatases such as SHP-2 and SHIP or

kinases to its cytoplasmic tail to maintain optimal strength of the AKT signaling pathway

required for proliferation and survival in Farage cells. In conclusion, SLAMF1 is not a strong

survival factor, but it might be necessary for cell survival under unfavorable growth condition.

Supporting information

S1 Raw images.

(PDF)

Acknowledgments

We thank Drs. Kyoungsook Park and So-Hyun Shin for their help.

Author Contributions

Conceptualization: Heejei Yoon.

Data curation: Heejei Yoon.

Formal analysis: Heejei Yoon, Young Hyeh Ko.

Funding acquisition: Heejei Yoon, Eung Kweon Kim, Young Hyeh Ko.

Investigation: Heejei Yoon, Young Hyeh Ko.

Resources: Eung Kweon Kim.

Supervision: Young Hyeh Ko.

Validation: Heejei Yoon.

Visualization: Heejei Yoon.

Writing – original draft: Heejei Yoon.

Writing – review & editing: Heejei Yoon, Young Hyeh Ko.

References
1. Cannons JL, Tangye SG, Schwartzberg PL. SLAM family receptors and SAP adaptors in immunity.

Annual review of immunology. 2011; 29:665–705. https://doi.org/10.1146/annurev-immunol-030409-

101302 PMID: 21219180

2. Ma CS, Deenick EK. The role of SAP and SLAM family molecules in the humoral immune response.

Annals of the New York Academy of Sciences. 2011; 1217:32–44. https://doi.org/10.1111/j.1749-6632.

2010.05824.x PMID: 21091715

3. Sidorenko SP, Clark EA. Characterization of a cell surface glycoprotein IPO-3, expressed on activated

human B and T lymphocytes. J Immunol. 1993; 151(9):4614–24. PMID: 8409422

4. Mikhalap SV, Shlapatska LM, Berdova AG, Law CL, Clark EA, Sidorenko SP. CDw150 associates with

src-homology 2-containing inositol phosphatase and modulates CD95-mediated apoptosis. J Immunol.

1999; 162(10):5719–27. PMID: 10229804

5. Sintes J, Engel P. SLAM (CD150) is a multitasking immunoreceptor: from cosignalling to bacterial rec-

ognition. Immunology and cell biology. 2011; 89(2):161–3. https://doi.org/10.1038/icb.2010.145 PMID:

21102539

6. Berger SB, Romero X, Ma C, Wang G, Faubion WA, Liao G, et al. SLAM is a microbial sensor that regu-

lates bacterial phagosome functions in macrophages. Nature immunology. 2010; 11(10):920–7. https://

doi.org/10.1038/ni.1931 PMID: 20818396

PLOS ONE SLAMF1 regulates the AKT signaling pathway

PLOS ONE | https://doi.org/10.1371/journal.pone.0238791 September 4, 2020 9 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0238791.s001
https://doi.org/10.1146/annurev-immunol-030409-101302
https://doi.org/10.1146/annurev-immunol-030409-101302
http://www.ncbi.nlm.nih.gov/pubmed/21219180
https://doi.org/10.1111/j.1749-6632.2010.05824.x
https://doi.org/10.1111/j.1749-6632.2010.05824.x
http://www.ncbi.nlm.nih.gov/pubmed/21091715
http://www.ncbi.nlm.nih.gov/pubmed/8409422
http://www.ncbi.nlm.nih.gov/pubmed/10229804
https://doi.org/10.1038/icb.2010.145
http://www.ncbi.nlm.nih.gov/pubmed/21102539
https://doi.org/10.1038/ni.1931
https://doi.org/10.1038/ni.1931
http://www.ncbi.nlm.nih.gov/pubmed/20818396
https://doi.org/10.1371/journal.pone.0238791


7. Tatsuo H, Ono N, Tanaka K, Yanagi Y. SLAM (CDw150) is a cellular receptor for measles virus. Nature.

2000; 406(6798):893–7. https://doi.org/10.1038/35022579 PMID: 10972291

8. De Salort J, Sintes J, Llinas L, Matesanz-Isabel J, Engel P. Expression of SLAM (CD150) cell-surface

receptors on human B-cell subsets: from pro-B to plasma cells. Immunology letters. 2011; 134(2):129–

36. https://doi.org/10.1016/j.imlet.2010.09.021 PMID: 20933013

9. Takeda S, Kanbayashi D, Kurata T, Yoshiyama H, Komano J. Enhanced susceptibility of B lymphoma

cells to measles virus by Epstein-Barr virus type III latency that upregulates CD150/signaling lympho-

cytic activation molecule. Cancer science. 2014; 105(2):211–8. https://doi.org/10.1111/cas.12324

PMID: 24238277

10. Mikhalap SV, Shlapatska LM, Yurchenko OV, Yurchenko MY, Berdova GG, Nichols KE, et al. The

adaptor protein SH2D1A regulates signaling through CD150 (SLAM) in B cells. Blood. 2004; 104

(13):4063–70. https://doi.org/10.1182/blood-2004-04-1273 PMID: 15315965

11. Nagy N, Cerboni C, Mattsson K, Maeda A, Gogolak P, Sumegi J, et al. SH2D1A and SLAM protein

expression in human lymphocytes and derived cell lines. International journal of cancer Journal interna-

tional du cancer. 2000; 88(3):439–47. PMID: 11054674

12. Yoon H, Park S, Ju H, Ha SY, Sohn I, Jo J, et al. Integrated copy number and gene expression profiling

analysis of Epstein-Barr virus-positive diffuse large B-cell lymphoma. Genes, chromosomes & cancer.

2015; 54(6):383–96.

13. Gordiienko I, Shlapatska L, Kholodniuk V, Sklyarenko L, Gluzman DF, Clark EA, et al. The interplay of

CD150 and CD180 receptor pathways contribute to the pathobiology of chronic lymphocytic leukemia B

cells by selective inhibition of Akt and MAPK signaling. PloS one. 2017; 12(10):e0185940. https://doi.

org/10.1371/journal.pone.0185940 PMID: 28982149

14. Yoon H, Ko YH. LMP1+SLAMF1high cells are associated with drug resistance in Epstein-Barr virus-

positive Farage cells. Oncotarget. 2017; 8(15):24621–34. https://doi.org/10.18632/oncotarget.15600

PMID: 28445949

15. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646–74. https://

doi.org/10.1016/j.cell.2011.02.013 PMID: 21376230

16. Ersing I, Bernhardt K, Gewurz BE. NF-kappaB and IRF7 pathway activation by Epstein-Barr virus

Latent Membrane Protein 1. Viruses. 2013; 5(6):1587–606. https://doi.org/10.3390/v5061587 PMID:

23793113

17. Clybouw C, McHichi B, Mouhamad S, Auffredou MT, Bourgeade MF, Sharma S, et al. EBV infection of

human B lymphocytes leads to down-regulation of Bim expression: relationship to resistance to apopto-

sis. J Immunol. 2005; 175(5):2968–73. https://doi.org/10.4049/jimmunol.175.5.2968 PMID: 16116183

18. Paschos K, Parker GA, Watanatanasup E, White RE, Allday MJ. BIM promoter directly targeted by

EBNA3C in polycomb-mediated repression by EBV. Nucleic acids research. 2012; 40(15):7233–46.

https://doi.org/10.1093/nar/gks391 PMID: 22584624

19. Marquitz AR, Mathur A, Nam CS, Raab-Traub N. The Epstein-Barr Virus BART microRNAs target the

pro-apoptotic protein Bim. Virology. 2011; 412(2):392–400. https://doi.org/10.1016/j.virol.2011.01.028

PMID: 21333317

20. Ghigna MR, Reineke T, Rince P, Schuffler P, El Mchichi B, Fabre M, et al. Epstein-Barr virus infection

and altered control of apoptotic pathways in posttransplant lymphoproliferative disorders. Pathobiology:

journal of immunopathology, molecular and cellular biology. 2013; 80(2):53–9.

21. Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F, et al. Proapoptotic Bcl-2 relative

Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity.

Science. 1999; 286(5445):1735–8. https://doi.org/10.1126/science.286.5445.1735 PMID: 10576740

22. Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ. Expression of the pro-apoptotic Bcl-

2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Current biology: CB.

2000; 10(19):1201–4. https://doi.org/10.1016/s0960-9822(00)00728-4 PMID: 11050388

23. Granato A, Hayashi EA, Baptista BJ, Bellio M, Nobrega A. IL-4 regulates Bim expression and promotes

B cell maturation in synergy with BAFF conferring resistance to cell death at negative selection check-

points. J Immunol. 2014; 192(12):5761–75. https://doi.org/10.4049/jimmunol.1300749 PMID:

24835393

24. Shinjyo T, Kuribara R, Inukai T, Hosoi H, Kinoshita T, Miyajima A, et al. Downregulation of Bim, a proa-

poptotic relative of Bcl-2, is a pivotal step in cytokine-initiated survival signaling in murine hematopoietic

progenitors. Molecular and cellular biology. 2001; 21(3):854–64. https://doi.org/10.1128/MCB.21.3.

854-864.2001 PMID: 11154272

25. Villunger A, Scott C, Bouillet P, Strasser A. Essential role for the BH3-only protein Bim but redundant

roles for Bax, Bcl-2, and Bcl-w in the control of granulocyte survival. Blood. 2003; 101(6):2393–400.

https://doi.org/10.1182/blood-2002-07-2132 PMID: 12433687

PLOS ONE SLAMF1 regulates the AKT signaling pathway

PLOS ONE | https://doi.org/10.1371/journal.pone.0238791 September 4, 2020 10 / 11

https://doi.org/10.1038/35022579
http://www.ncbi.nlm.nih.gov/pubmed/10972291
https://doi.org/10.1016/j.imlet.2010.09.021
http://www.ncbi.nlm.nih.gov/pubmed/20933013
https://doi.org/10.1111/cas.12324
http://www.ncbi.nlm.nih.gov/pubmed/24238277
https://doi.org/10.1182/blood-2004-04-1273
http://www.ncbi.nlm.nih.gov/pubmed/15315965
http://www.ncbi.nlm.nih.gov/pubmed/11054674
https://doi.org/10.1371/journal.pone.0185940
https://doi.org/10.1371/journal.pone.0185940
http://www.ncbi.nlm.nih.gov/pubmed/28982149
https://doi.org/10.18632/oncotarget.15600
http://www.ncbi.nlm.nih.gov/pubmed/28445949
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
https://doi.org/10.3390/v5061587
http://www.ncbi.nlm.nih.gov/pubmed/23793113
https://doi.org/10.4049/jimmunol.175.5.2968
http://www.ncbi.nlm.nih.gov/pubmed/16116183
https://doi.org/10.1093/nar/gks391
http://www.ncbi.nlm.nih.gov/pubmed/22584624
https://doi.org/10.1016/j.virol.2011.01.028
http://www.ncbi.nlm.nih.gov/pubmed/21333317
https://doi.org/10.1126/science.286.5445.1735
http://www.ncbi.nlm.nih.gov/pubmed/10576740
https://doi.org/10.1016/s0960-9822%2800%2900728-4
http://www.ncbi.nlm.nih.gov/pubmed/11050388
https://doi.org/10.4049/jimmunol.1300749
http://www.ncbi.nlm.nih.gov/pubmed/24835393
https://doi.org/10.1128/MCB.21.3.854-864.2001
https://doi.org/10.1128/MCB.21.3.854-864.2001
http://www.ncbi.nlm.nih.gov/pubmed/11154272
https://doi.org/10.1182/blood-2002-07-2132
http://www.ncbi.nlm.nih.gov/pubmed/12433687
https://doi.org/10.1371/journal.pone.0238791


26. Alfredsson J, Puthalakath H, Martin H, Strasser A, Nilsson G. Proapoptotic Bcl-2 family member Bim is

involved in the control of mast cell survival and is induced together with Bcl-XL upon IgE-receptor activa-

tion. Cell death and differentiation. 2005; 12(2):136–44. https://doi.org/10.1038/sj.cdd.4401537 PMID:

15592435

27. Egle A, Harris AW, Bouillet P, Cory S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Pro-

ceedings of the National Academy of Sciences of the United States of America. 2004; 101(16):6164–9.

https://doi.org/10.1073/pnas.0401471101 PMID: 15079075

28. Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in Health and Disease. Oncotarget. 2015; 6

(27):23058–134. https://doi.org/10.18632/oncotarget.5492 PMID: 26405162

PLOS ONE SLAMF1 regulates the AKT signaling pathway

PLOS ONE | https://doi.org/10.1371/journal.pone.0238791 September 4, 2020 11 / 11

https://doi.org/10.1038/sj.cdd.4401537
http://www.ncbi.nlm.nih.gov/pubmed/15592435
https://doi.org/10.1073/pnas.0401471101
http://www.ncbi.nlm.nih.gov/pubmed/15079075
https://doi.org/10.18632/oncotarget.5492
http://www.ncbi.nlm.nih.gov/pubmed/26405162
https://doi.org/10.1371/journal.pone.0238791

