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Background: Natural history models of breast cancer progression provide an opportunity to evaluate and identify optimal
screening scenarios. This paper describes a detailed Markov model characterising breast cancer tumour progression.

Methods: Breast cancer is modelled by a 13-state continuous-time Markov model. The model differentiates between indolent and
aggressive ductal carcinomas in situ tumours, and aggressive tumours of different sizes. We compared such aggressive cancers,
that is, which are non-indolent, to those which are non-growing and regressing. Model input parameters and structure were
informed by the 1978–1984 Ostergotland county breast screening randomised controlled trial. Overlaid on the natural history
model is the effect of screening on diagnosis. Parameters were estimated using Bayesian methods. Markov chain Monte Carlo
integration was used to sample the resulting posterior distribution.

Results: The breast cancer incidence rate in the Ostergotland population was 21 (95% CI: 17–25) per 10 000 woman-years.
Accounting for length-biased sampling, an estimated 91% (95% CI: 85–97%) of breast cancers were aggressive. Larger tumours,
21–50 mm, had an average sojourn of 6 years (95% CI: 3–16 years), whereas aggressive ductal carcinomas in situ took around half a
month (95% CI: 0–1 month) to progress to the invasive p10 mm state.

Conclusion: These tumour progression rate estimates may facilitate future work analysing cost-effectiveness and quality-adjusted
life years for various screening strategies.

Decision analytic models have become a cornerstone in assessing
costs and benefits of pharmaceutical and health technology
interventions (Brennan and Akehurst, 2000), allowing the benefits
of an intervention evaluated in clinical trials to be estimated
relative to standard care, as well as to determine the implications
for modification of an intervention’s use (Sun and Faunce, 2008).
For breast cancer, a number of randomised controlled trials have

highlighted that biennial mammographic screening reduces
mortality due to breast cancer among women aged 50–69 years
(Independent UK Panel on Breast Cancer Screening, 2012).
However, the number of women who need to be screened to
prevent one death has become an issue of debate (Independent UK
Panel on Breast Cancer Screening, 2012). Detailed natural history
models of breast cancer progression provide an opportunity to
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evaluate modification to screening programmes to identify optimal
screening scenarios while minimising screening’s negative effects,
such as unnecessary biopsies following false positive tests and
treatment of indolent cancers (Kobrunner et al, 2011).

A number of breast cancer natural history models have been
developed. Three-state Markov models developed by Tabar et al
(1995), Duffy et al (1995), Duffy et al (1997) and Wu et al (2010)
permit simulation of the natural history of breast cancer by
characterising the disease process, starting from non-diseased to
preclinical cancer, then clinical cancer states. More complex
models evolved from these, including a five-state Markov model,
which differentiates localised from non-localised tumours (Wu
et al, 2010) and a model by Duffy et al (1997) which includes nodal
involvement for preclinical and clinical disease. However, although
these models provide a broad overview of the natural history of
breast cancer, the heterogeneous nature of breast cancer, in terms
of treatment and prognosis, at different stages of its growth may
lead to these not being sufficient for detailed health economic
evaluation of the impact of modified breast screening scenarios.

Breast cancer size is highly predictive of survival (Narod, 2012)
and strongly influences the mode of treatment (Kurian et al, 2012),
so health economic models that invoke earlier detection at
smaller sizes combined with survival analysis of outcomes
need reliable estimates of the growth rates of tumours of varying
sizes. A detailed understanding of tumour progression could serve
as a starting point to evaluate refined screening algorithms (Duffy
et al, 1995; Plevritis et al, 2007). Our aims in this paper are to
develop a detailed model characterising breast cancer tumour
progression utilising a randomised controlled trial in a population
without pre-existing exposure to breast screening and to evaluate
the effects on the distribution of tumour sizes at detection of
screening strategies varying in screening frequency and breast
cancer incidence.

MATERIALS AND METHODS

Data sources. In 1978, all women aged 40 years or more in the
county of Ostergotland, Sweden, were randomised to either
invitation to participate in screening or to what was then the
standard care (no screening) (Fagerberg et al, 1985). Figure 1 (and
Supplementary Material Table 7) outlines the observed screening
pathway and detected tumour sizes.

In the screening arm, 38 496 women were invited to participate,
excluding those older than 74, who had participation rates that
were not as complete as younger women. The time from
randomisation to first screen was B1 month, whereas the average
interval between the first and second screen was 27 months. The
model categorised women in the screening arm into one of 10
outcome scenarios (Figure 1A) accounting for: detection (by the
patient or a clinician), detection at screening, attendance at the two
screens, and the time frame of detection (before screen 1, between
the screens, or at either screen). Diagnosed tumours are categorised
by size: ductal carcinomas in situ (DCIS), p10 mm, 11–20 mm,
21–50 mm, and X51 mm. The data do not, however, differentiate
results at screen 2 by attendance at screen 1, necessitating data
augmentation techniques (see Supplementary Material for details).
The model used (see next section) implicitly defines the probability
of each tumour size in each of these 10 scenarios. In the control
arm, there were 37 936 women (under 75) for whom there were
two outcomes: asymptomatic or symptomatic disease (by size) by
the end of the study period.

Data on screening sensitivity, that is, the probability of positive
test results in a woman with an undiagnosed tumour, by tumour size,
were taken from a study in northern California (Kerlikowske et al,
1996). In addition, we used the proportion of detected DCIS

that were invasive in a review of eight studies (Leonard and
Swain, 2004).

Breast cancer natural history model structure. We constructed a
13-state continuous-time Markov model with 10 transition
parameters (Figure 1C; a full list of parameters may be found in
Supplementary Materials Table 4). The model differentiates
between indolent and aggressive DCIS tumours, and aggressive
tumours of different sizes. Here we use the term indolent to mean a
DCIS that never progresses, and aggressive to mean a DCIS that
will progress. The transition states begin from ‘no cancer’ to
‘indolent DCIS’ or ‘aggressive DCIS’, with subsequent progression
from ‘aggressive DCIS’ to larger tumour sizes. Rates of progression
for each stage of disease depend on the current size of the tumour
(DCIS, p10, 11–20, 21–50, and X51 mm), and the corresponding
four parameters, which define mean sojourn times in each size
class, permit a range of behaviours, including some that mimic
exponential or Gompertzian growth. In the absence of mammo-
graphy, symptomatic disease is detected at certain stages of disease
at rates that also depend on current tumour size. At the point of
detection, the woman enters an absorbing diseased state.

The transition parameters and model framework allow
‘absorption probabilities’ of tumours at different sizes (i.e. the
proportion of individuals who would end in one of the
symptomatic diagnosed states, given an infinite period of time)
to be characterised (Figure 1C), along with the steady-state
proportions of women with undiagnosed cancer, in which we
condition on no diagnosis over an infinite time horizon, which
corresponds to the equilibrium distribution of cancer presence, and
size if present, among asymptomatic women. These proportions
allow the long-run distribution of tumour sizes in asymptomatic
and symptomatic women to be derived from the individual
components of the model.

Mammography model structure. Overlaid on the natural history
model is the effect of screening on diagnosis. Women without
symptomatic disease have a specific probability of attending
screening, assumed to be the same for those with no or
asymptomatic disease. Those with cancer are diagnosed with a
probability that depends on the size of the tumour, and are
removed from the natural history model if cancer is diagnosed,
whereas those with no detected cancer continue through the model
until symptomatic detection or detection at the second screen. Test
characteristics for screening by tumour size were derived from
Kerlikowske et al (1996).

Parameter estimation. Parameter estimates for the model were
obtained directly, and primarily, from the Ostergotland trial using
Bayesian methods, with other data entering the analysis via an
informative prior distribution. We used Markov chain Monte
Carlo integration (Albert, 2007) to sample the resulting, non-
analytically tractable, posterior distribution for the 36 parameters,
(listed in Table 2 in Supplementary Material).

Likelihood function. The likelihood function was calculated for
both the screening and control study arms, as the product of two
multinomial probability masses. For each arm, there was one
outcome for each scenario and tumour size, the probabilities of
which, as functions of the parameters, were derived directly from
the Markov model formulation. Specifically, a 13� 13 transition
rate matrix Q(y) was formed, and the distribution of the model
state, Xt, at time t years after the start of the study, as a function
of the parameters y was derived using the relationship
p(Xt|y)¼ p(X0|y)exp{Q(y)t}, where exp{ } is the matrix exponential
function (Zwillinger, 2011). Using this relationship, along with the
average time intervals between randomisation to first screen (T01),
first screen to second (T12) and randomisation to second screen
(T02), the probabilities of being in different scenarios, and tumour
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sizes, in screened and control groups were calculated as a
deterministic function of the unknown parameters.

For the control arm, the probabilities of symptomatic disease by
size, or no symptomatic disease, were extracted from relevant
entries of p XT02 j yð Þ: For the screening arm, the derivation was

more complicated and involved conditioning the probability of
subsequent states upon previous ones and integrating over
unknown past states. In all, including the different size distribu-
tions, there are 43 equations to derive the likelihood function,
detailed in full in Supplementary Material.

Data : study group
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Figure 1. Flow diagrams of the data used in the study and 13-state Markov model in the absence of screening. (A) Ten outcomes are marked in
thickly bordered rectangles with tumour sizes, in order DCIS, p10, 11–20, 21–50 and X51 mm, underneath. Data were extracted from tables
and text of Fagerberg et al (1985). The publication did not distinguish screening results at the second screen by attendance at the first screen: the
merged data are provided in the dashed rectangles at the foot. (B) Asymptomatic and symptomatic controls at end of the study, with data for each
tumour size group given underneath. (C) Greek letters indicate transition rates from one state to another. The detection states are absorbing: once
a woman enters those, she goes for treatment and does not progress within this model.
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Prior distributions for parameters. Informative prior distribu-
tions for tumour-dependent screening sensitivity (Table 6 in
Supplementary Material) were developed by fitting a beta
distribution to the sample size and number of cases in each
tumour size stratum (Table 3 in Supplementary Material),
exploiting conjugacy between the beta and binomial distributions
(Gelman et al, 2004). We incorporated external information on the
prevalence of indolent DCIS using Bayesian melding (Poole and
Raftery, 2000) by setting the prior distribution for the probability
of getting aggressive breast cancer to be non-informative
(i.e. U(0,1)) and incorporating an additional term in the posterior
for each screen in which DCIS could be detected (see Supplementary
Material), with a parameter characterising the prevalence of aggressive
DCIS on screening, with an informative prior distribution derived
from Leonard and Swain (2004). Transition rates – that is, for
incidence, growth, symptomatic disease – had Exp(0.01) prior
distributions to ensure identifiability, whereas all other parameters –
that is, for attendance at screening and initial proportions in each
state – had uniform prior distributions over the parameter support
(see Supplementary Material).

Posterior distributions for parameters and initial conditions.
The posterior distribution for the model parameters was sampled
using the Metropolis–Hastings algorithm (Metropolis et al, 1953;
Hastings, 1970), with univariate proposal distributions for all
parameters except the initial states, which used a multivariate
normal proposal distribution. Tuning parameters were selected on
pilot studies. Four independent chains, of 52 000 iterations each,
were run in parallel, with 2000 iterations dropped as burn-in. Point
estimates are posterior means, and intervals are equal-tailed
credible intervals, unless otherwise noted. The 95% credible
interval for each parameter, shown in Table 1, was determined
by taking the 2.5th and 97.5th centiles from the posterior sample.
Convergence of the Markov chain Monte Carlo samplers was
assessed graphically and using the Gelman–Rubin diagnostic
(Gelman and Rubin, 1992) in the CODA package (Plummer
et al, 2006). The software used was R Version 2.15.2 (Venables
and Ripley, 2002; Goulet et al, 2012; R Core Team, 2012); an
R script to fit the 13-state model is provided in the Supplementary
Material.

Varying mammographic screening frequency and breast cancer
risk. We assessed how the posterior predictive distribution of
tumour sizes changed with the frequency of mammographic
screening over a 10-year time horizon, from no screening to
annual, biennial or quinquennial. Holding screening fixed at a
biennial frequency, we also varied the underlying risk of breast
cancer, by scaling the breast cancer incidence rate, and derived the
tumour size distribution. Low (50% of baseline), normal (100%),
moderate (150%) and high (200%) risk were considered. Different
risk levels were explored to inform follow-on studies that
extrapolate to other populations with different incidence rates or
assess tailored screening programmes for different risk groups.

Sensitivity analysis. A sensitivity analysis was performed using an
11-state Markov model, which does not differentiate indolent DCIS
from aggressive. In this smaller model, all DCIS cases are assumed
able to progress to invasive, with all other states remaining the
same (Figure 1C). This was done to assess the sensitivity of our
findings to the assumption that some DCIS are indolent and never
progress to aggressive tumours.

RESULTS

Model validation. Internal validation of the 13-state Markov
model was done by plotting the posterior predictive (i.e. modelled)

distribution of proportions against the data with their 95% classical
Wald confidence intervals (Figure 2), indicating the close fit.

Parameter estimates. Based on the 13-state Markov model
(Table 1a), the breast cancer incidence rate in the women of
Ostergotland aged 40–74 was 21 (95% CI: 17–25) per 10 000
woman-years, with 2 (95% CI: 1–3) and 19 (95% CI: 16–23) per
10 000 woman-years for indolent and aggressive breast cancers,
respectively. An estimated 91% (95% CI: 85–97%) of breast cancers
were aggressive. Larger tumours had longer sojourn times, with an
average sojourn of 6 years (95% CI: 3–16 years) between 21 and
50 mm, whereas aggressive DCIS took an estimated mere half a
month (95% CI: 0–1 month) to progress to the invasive p10 mm
state. The mean time spent in p10, 11–20, and X51 mm before
progression (or detection) was about 10 months (95% CI: 7–13
months), 2 years (95% CI: 2–4 years), and 5 months (95% CI: 1–11
months: n.b. this corresponds to detection only), respectively.
Almost no aggressive DCIS were detected before progression (0%;
95% CI: 0–1%) but the probability of detecting p10 mm before it
progressed to 11–20 mm was 12% (95% CI: 8–15%), from 11–20 to
21–50 mm was 51% (95% CI: 43–60%), and from 21–50 to
X51 mm was 87% (95% CI: 79–95%). The estimated screening
sensitivity ranged from 88 to 93% (Table 1a). In the absence of
screening, with all breast cancers detected by other means, the
proportion detected with a DCIS was 9% (95% CI: 4–15%),
p10 mm was 10% (95% CI: 8–14%), 11–20 mm was 41% (95% CI:
35–48%), 21–50 mm was 34% (95% CI: 28–41%), and X51 mm
was 5% (95% CI: 2–9%). At any instant of time, of those with
asymptomatic cancer, 30% (95% CI: 12–53%) will have indolent
DCIS, 2% (95% CI: 0–4%) aggressive DCIS, 24% (95% CI: 15–33%)
p10 mm, 33% (95% CI: 21–47%) 11–20 mm, 10% (95% CI:
5–18%) 21–50 mm, and 1% (95% CI: 0–2%) X51 mm. Histograms
of the marginal posterior distributions may be found in
Supplementary Materials Figure 7.

Different mammographic screening frequencies (Figures 3A–D)
and breast cancer risks (Figures 3E–H) were explored indepen-
dently. Under different screening frequencies, the more significant
impacts are observed in the proportions of p10 mm and
21–50 mm tumours. Over a 10-year time horizon, the proportion
of women aged 40–74 diagnosed early, that is, with a p10 mm
tumour, increases from 0.3% to 0.4%, 0.7%, and 1.0% as the
programme moves from no screening, to quinquennial, biennial,
and annual screening, respectively. Similarly, the respective
proportion of women diagnosed with a 21–50 mm tumour
decreases from 0.8 to 0.7, 0.4, and 0.3%. By introducing annual
screening, there is a much higher proportion of women diagnosed
with p10 mm tumour (from 0.3 to 1.0%) and a substantially lower
proportion of women diagnosed with 21–50 mm tumour (from 0.8
to 0.3%), as compared with no screening. Comparing no screening
and biennial screening, there is also an increase in proportion of
women having p10 mm tumour and decrease in proportion of
women having 21–50 mm tumour, but both the increase (from 0.3
to 0.7%) and the decrease (from 0.8 to 0.4%) are lower than that
obtained when comparing annual screening to baseline. For
quinquennial screening, although the proportion of small tumours
(p10 mm) rises from 0.3 to 0.4% and the proportion of larger
tumours (21–50 mm) falls from 0.8 to 0.7%, the clinically
significant difference in the distribution of tumour sizes observed
for more frequent screening is not realised. In contrast, varying the
underlying level of breast cancer risk (Figures 3E–H) does little to
the distribution of tumour sizes discovered.

Sensitivity analysis. Internal validation indicated that the 11-state
model (Figure 4 in Supplementary Material) also provides a good
fit to the data. There are few differences between corresponding
parameters in the two models, the main being longer average
sojourns in the DCIS class under the model with no indolent DCIS
(0.04 years in 13-state model vs 0.2 years in 11-state model).
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Table 1. List of parameter and derived parameter estimates from (a) 13-state model and (b) 11-state model

(a) 13-state model (b) 11-state model

Parameters Estimates 95% CI Estimates 95% CI

Probability (%) of getting aggressive
breast cancer

91 85–97 — —

Incidence rate (per 10 000 woman-years)

Breast cancer 21 17–25 21 17–25
Indolent breast cancer 2 1–3 — —
Aggressive breast cancer 19 16–23 — —

Initial probability (%)

No cancer 99.23 99.13–99.32 99.24 99.14–99.33
Indolent DCIS 0.06 0.03–0.09 0.10 0.05–0.15
Aggressive DCIS 0.13 0.01–0.32 0.10 0.05–0.15
p10 mm 0.21 0.02–0.35 0.29 0.22–0.37
11–20 mm 0.26 0.20–0.33 0.25 0.20–0.32
21–50 mm 0.10 0.07–0.14 0.10 0.10–0.14
X51 mm 0.02 0.00–0.03 0.02 0.00–0.03

Average sojourn time, in years, for different tumour sizes

Aggressive DCIS 0.0 0.0–0.1 0.2 0.1–0.4
p10 mm 0.8 0.6–1.1 0.8 0.6–1.1
11–20 mm 2.4 1.6–3.5 2.4 1.6–3.4
21–50 mm 6.4 2.5–15.6 6.4 2.6–15.5
X51 mm 0.4 0.1–0.9 0.5 0.1–0.9

Probability (%) of detecting breast cancer before progression in tumour size

Aggressive DCIS - p10 mm 0 0–1 3 1–4
p10 mm - 11–20 mm 12 8–15 11 8–15
11–20 mm - 21–50 mm 51 43–60 51 43–59
21–50 mm - X51 mm 87 79–95 87 78–95

Probability (%) of attending screenings

First screening 89 88–89 89 88–89
Both screenings 87 86–87 87 86–87
Second screening but not first screening 17 16–19 17 16–19

Sensitivity (%) of mammography for different tumour sizes

DCIS 88 83–92 88 83–92
p10 mm 90 86–93 90 87–93
11–20 mm 91 88–94 91 88–94
21–50 mm 92 89–95 92 89–95
X51 mm 93 90–96 93 90–96

Absorption probability of different tumour sizes

DCIS (indolent or aggressive) 9 4–15 3 1–4
p10 mm 10 8–14 11 8–14
11–20 mm 41 35–48 44 37–51
21–50 mm 34 28–41 37 30–44
X51 mm 5 2–9 6 2–10

Steady-state proportion of women with undiagnosed cancer

No cancer 99.4 99.1–99.6 99.5 99.4–99.6
Indolent DCIS 0.2 0.1–0.4 0.0 0.0–0.1
Aggressive DCIS 0.0 0.0–0.0 0.0 0.0–0.1
p10 mm 0.1 0.1–0.2 0.1 0.1–0.2
11–20 mm 0.2 0.1–0.3 0.2 0.1–0.3
21–50 mm 0.1 0.0–0.1 0.1 0.0–0.1
X51 mm 0.0 0.0–0.0 0.0 0.0–0.0

Steady-state proportion of women with undiagnosed cancer (conditional on some cancer)

Indolent DCIS 30 12–53 10 6–16
Aggressive DCIS 2 0–4 10 6–16
p10 mm 24 15–33 30 22–39
11–20 mm 33 21–47 44 34–56
21–50 mm 10 5–18 14 7–23
X51 mm 1 0–2 1 0–3

Abbreviations: CI¼ confidence interval; DCIS¼ductal carcinomas in situ.
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DISCUSSION

(Additional discussion can be found in the Supplementary
Material.)

The aim of this analysis was to present a detailed natural history
of breast cancer. The data from the Ostergotland study have several
characteristics that make it an invaluable resource to understand
breast cancer tumour progression. First, at the time of the study,
mammography for detection of asymptomatic breast cancer had
not yet become established and so the results of the study reflect a
relatively ‘clean’ asymptomatic population without interference
from past screens. Second, because it was such an early study, the
non-programmatic uptake of mammographic screening during the
trial was low (7.5%) in the control arm, which, to a good
approximation, can therefore be treated as unscreened. Third, a
high proportion of women invited to screening took up the offer
(89%), in contrast to the difficulties seen in other populations in
getting women to go for routine screening (Fagerberg et al, 1985).
Finally, the study design had two rounds of screening which allow
the prevalence of existing cancers to be determined in the first
round, whereas the second round provided information on the
incidence of newly developed tumours.

Previous papers have focused on models of other characteristics
such as age (Tabar et al, 1995; Duffy et al, 1997; Straatman et al,

1997) and node status (Duffy et al, 1997; Chen et al, 1998), rather
than tumour sizes (see Supplementary Material Table 5). Our
modelled breast cancer incidence rate (21 per 10 000 woman-years)
is higher (by around 5 per 10 000 woman-years) than the empirical
breast cancer incidence in Swedish woman, aged 40–79, during the
time period 1978–1984 (Haukka et al, 2011), but comparable to
estimates from less-complex models applied to Fennoscandian data
(Duffy et al, 1997; Wu et al, 2010). One argument that has been put
forward to explain higher long-term breast cancer incidence in
screened populations is the potential spontaneous regression of
tumours (Kopans et al, 2011). Another is the difference in
definitions: incidence in our analysis related to ‘cryptic’ incidence
of unobserved tumours, which the empirical incidence of
diagnosed tumours will lag behind.

Some insights provided by our model are ostensibly counter-
intuitive. Average progression rate of DCIS to aggressive cancer has
been reviewed (Leonard and Swain, 2004) and found to be B43%,
whereas in our model, we estimated a 91% chance of breast cancers
to be aggressive – using the same dataset as a prior distribution.
The apparent discrepancy is due to our accounting for length-
biased sampling (Blumenthal, 1967). This is important, and
necessary, as an indolent DCIS, which never progresses, has a
substantially greater chance of being detected than a DCIS that is
aggressive and has only a short time window to be identified as a
DCIS before it grows to an invasive tumour. In fact, to determine
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Figure 2. Data vs predictive distribution of tumour sizes, based on 13-state model. Bars with lines represent data with their 95% classical
confidence intervals based on binomial errors. Points with lines represent modelled proportions and their 95% credible intervals. A close fit
between the data and posterior predictive distribution of proportions can be observed, for the various outcomes observed in the data structure
(Figure 1A and B).
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the true proportion of DCIS that are indolent requires an approach
that, like ours, accounts for the duration in which the tumour can
be detected as a DCIS. There are few differences in parameter
estimates between our 13 and 11-state (i.e. excluding indolent
DCIS, see Supplementary Material) models, and both exhibit close
concordance to the data, therefore our analysis does not provide
evidence to support either hypothesis preferentially, although other
studies support the existence of indolent DCIS (Leonard and
Swain, 2004). If no DCIS are indolent, then to fit the data, the
typical duration with a DCIS before progression to invasive cancer
is estimated to be very brief (B2 months). On the other hand, if
some DCIS are in fact indolent, never to progress, then those that
do progress would have to do so almost instantly to agree with the
data from this trial. This has implications for ‘over diagnosis’, that
is, the criticism of mammography that it increases the proportion
of detected DCIS that never would progress (Kerlikowske, 2010).
Although both models we considered describe the data almost
equally well, the simpler one, which excludes non-progressive
cancers, necessarily cannot characterise the over diagnosis of

non-progressive cancers, which is a major limitation and one of the
motivations for introducing an indolent class of tumours in the
main model.

Monte Carlo simulation of the fitted model suggests that
screening once every 5 years is not appreciably better than not
screening at all, with no clinically significant differences in the
tumour size distribution (Figures 3A–D). However, annual and
biennial screening do lead to a marked reduction in sizes: over a
10-year period, for 100 women with cancer, annual screening
would pick up 16 at a smaller size class, and biennial screening 8,
but these would involve an additional eight and three screens,
respectively, compared with quinquennial screening. It is therefore
important that the cost-effectiveness of these alternative screening
frequencies be evaluated in future studies.

An important limitation of our model is that we provide average
estimates over all ages in the range 40–74, which was necessary
as the original publication does not differentiate outcomes by age.
It is, however, necessary to understand the distribution of sojourn
times in the targeted age group when formulating screening policy
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Figure 3. Tumour size distribution for different mammographic screening frequencies and different rates from no cancer to DCIS, based on
13-state model. Different mammographic screening frequencies – (A) no screening, (B) annual screening, (C) screening every 2 years, and (D)
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(Duffy et al, 1995), and so future work accounting for different age
groups, analysing the cost-effectiveness and looking into women’s
quality-adjusted life years for various screening strategies, would be
valuable. Similarly, mortality due to other causes is not
distinguished in the data, and hence in our model, from non-
attendance at screens (for the screened arm) or being asympto-
matic over the 2 years of the study (in the control arm). This is not
a severe limitation due to the short time horizon and age range
considered, but for other studies in which follow-up is longer,
mortality would need to be incorporated explicitly.

How might our findings generalise – both to the present and to
other, especially non-European, populations? Screening technolo-
gies have advanced markedly since this early trial, so the screening
sensitivities estimated here are no longer relevant. Attendance rates
in the Swedish study were higher than those observed since
(Lagerlund et al, 2000), and self-examination rates may also vary
across cultures and over time, thus both mammography uptake
and self-detection rates may not generalise well. Transition rates –
because they represent a biological process – are, we believe,
relevant to both the present and to other settings, though
additional validation would be necessary to confirm whether
observed differences in breast cancer between ethnic groups affect
this (Leong et al, 2010). One limitation is that the correlation
between age and outcomes was not provided, so our results are
averaged over women in the 40–74 age group, but there are known
biological differences between premenopausal and postmenopausal
cancers, with a quicker progression of disease in younger women
(Buist et al, 2004). Additional research is needed to account for
differing incidence rates and, potentially, probability of getting
aggressive breast cancer (Leonard and Swain, 2004). It is also
unclear to what extent detection rates, in between screens, will
apply to other cultures, as, for example, in developing countries,
women tend to present late, at a more advanced disease state
(Hortobagyi et al, 2005).

Clinical trials of the effectiveness of mammographic screening
programmes in reducing mortality were carried out using older
technologies, would have led to surgical and medical interventions
with poorer prognosis than at present, and were predominantly
among ethnic Europeans in whom incidence rates are higher than,
say, ethnic East Asians. They also by necessity considered a single
frequency of screening (from annual to triennial), from which
extrapolation to other frequencies is challenging. In silico
experimentation allows the evaluation of the effectiveness and
cost-effectiveness of screening programmes in settings in which
clinical trials have not yet been performed, in women who differ in
underlying risk and in acceptance of screening, and in health
systems that differ in treatment options and consequent survival.
Modelling also permits the evaluation of tailored screening in
which women at higher risk within a population are offered more
frequent screening, for although we find the distribution of tumour
sizes to be rather invariant to incidence in the screened group
(Figures 3E–H), the number of cancers found did vary, with
implications for cost-effectiveness. The current model focuses
entirely on events prior to diagnosis, and future modelling work to
evaluate the effectiveness and cost-effectiveness of screening
programmes, and to optimise screening strategies accordingly,
should extend this to outcomes after diagnosis.
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