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Abstract
Background: Knowledge of the subcellular location of a protein is critical to understanding how that
protein works in a cell. This location is frequently determined by the interpretation of fluorescence
microscope images. In recent years, automated systems have been developed for consistent and objective
interpretation of such images so that the protein pattern in a single cell can be assigned to a known location
category. While these systems perform with nearly perfect accuracy for single cell images of all major
subcellular structures, their ability to distinguish subpatterns of an organelle (such as two Golgi proteins)
is not perfect. Our goal in the work described here was to improve the ability of an automated system to
decide which of two similar patterns is present in a field of cells by considering more than one cell at a
time. Since cells displaying the same location pattern are often clustered together, considering multiple
cells may be expected to improve discrimination between similar patterns.

Results: We describe how to take advantage of information on experimental conditions to construct a
graphical representation for multiple cells in a field. Assuming that a field is composed of a small number
of classes, the classification accuracy can be improved by allowing the computed probability of each pattern
for each cell to be influenced by the probabilities of its neighboring cells in the model. We describe a novel
way to allow this influence to occur, in which we adjust the prior probabilities of each class to reflect the
patterns that are present. When this graphical model approach is used on synthetic multi-cell images in
which the true class of each cell is known, we observe that the ability to distinguish similar classes is
improved without suffering any degradation in ability to distinguish dissimilar classes. The computational
complexity of the method is sufficiently low that improved assignments of classes can be obtained for fields
of twelve cells in under 0.04 second on a 1600 megahertz processor.

Conclusion: We demonstrate that graphical models can be used to improve the accuracy of classification
of subcellular patterns in multi-cell fluorescence microscope images. We also describe a novel algorithm
for inferring classes from a graphical model. The performance and speed suggest that the method will be
particularly valuable for analysis of images from high-throughput microscopy. We also anticipate that it will
be useful for analyzing the mixtures of cell types typically present in images of tissues. Lastly, we anticipate
that the method can be generalized to other problems.
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Background
The location (or locations) of a protein within cells is an
important attribute that can be largely independent of its
structure, enzymatic activity, or level of expression. Sys-
tematic and comprehensive analysis of subcellular loca-
tion is therefore needed as part of systems biology efforts
to understand the behavior of all expressed proteins.
Work in this area can be divided into experimental deter-
mination and computational prediction. Of course, the
accuracy and utility of prediction methods is dependent
on the accuracy, coverage and resolution of determination
methods. This is because experimentally determined loca-
tions are the starting point for the machine learning meth-
ods at the heart of prediction systems [1-3]. Subcellular
location is most frequently determined by visual interpre-
tation of fluorescence microscope images, but such inter-
pretations can be highly variable from observer to
observer. We have therefore developed automated sys-
tems to recognize major subcellular patterns [4-6] and to
learn new patterns directly from fluorescence microscope
images [7,8]. These systems utilize high resolution images
and have been shown to be able to distinguish similar pat-
terns better than visual examination [9].

Automated interpretation of subcellular patterns in 
micrographs
The automated location determination systems consist of
machine classifiers (such as neural networks or support
vector machines) and sets of informative numerical fea-

tures (which we term SLFs for Subcellular Location Fea-
tures) to describe protein distributions in the cell. This
process is illustrated in Figure 1a. The starting point is the
collection of many images of two (or more) different pro-
tein patterns. Regions containing single cells are identified
either automatically or manually, and background fluo-
rescence is subtracted. A number of different types of SLF
are then calculated for each cell, including morphological
features that describe the number, distribution, size and
shape of fluorescent objects in the cell and texture features
that describe the pixel-to-pixel variation in intensity. A
feature matrix is then created in which each row shows the
values of each feature for a given cell along with the type
(or "class") of the protein that was labeled in that cell.
This matrix is used to train a classifier so that it can learn
a mapping between the SLF and the classes. For each new
(test) cell, the process of segmentation, background sub-
traction, and feature calculation is repeated, and the fea-
ture vector is supplied to the classifier to assign the cell to
one of the known classes.

Using large collections of HeLa cell images containing ten
distinct subcellular patterns, our systems have achieved
classification accuracies as high as 92% and 98% for 2D
and 3D single cell images, respectively [10,11]. The pat-
terns of dissimilar classes can be distinguished quite well;
however, there is still room to improve the classification
accuracy for similar classes (such as endosomal and lyso-
somal proteins and different Golgi proteins).

Illustration of classification approaches to single cellsFigure 1
Illustration of classification approaches to single cells. A) Basic approach to feature-based classification of single cell 
images. B) Majority-voting classifier.
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In order to improve the classification accuracy, one strat-
egy is to incorporate additional or improved features and
another is to combine more than one classifier using vot-
ing methods. The performance improvements we have
obtained for 2D HeLa images, from 83% using a library of
84 features and a neural network classifier [6] to 92%
using a library of 180 features and a majority-voting
ensemble [10], resulted from implementing both of these
strategies. A majority-voting ensemble combines the
results from many different classifiers into a single deci-
sion, as illustrated in Figure 1b.

These improvements were obtained while considering the
classification of patterns in single cells. An additional
strategy is to utilize information from more than one cell
from the same sample. For example, when sets of HeLa
cells from the same slide were individually classified and
allowed to vote for a single classification for the entire set,
overall accuracy improved from 83% to 98% [6]. The pen-
alty for this improvement is that we give up the ability to
identify more than one pattern in a given set. A possible
improvement on this approach is therefore to first esti-
mate the number of classes that are present from the fre-
quencies of the classes (by ruling out classes that have a
low frequency), and then assign each cell to one of the
remaining classes. (If we rule out all but one class, this
approach reduces to the previous one.) So that we can
decide which classes to rule out, we assume that the "true"
classes are present in roughly equal proportions. In this
paper, we first evaluate this simple strategy. We then
describe more sophisticated approaches that construct a
graphical model representing pattern information for
more than one cell in a field so that improved classifica-
tion accuracy can be achieved while retaining the ability to
classify each cell individually (and without the assump-
tion that classes are present in equal frequencies).

Graphical models
Graphical models have been extensively applied to prob-
lems in the computer vision field, such as image segmen-
tation and object recognition, where the pixels in an
image can be segmented or classified into two (fore-
ground and background) or more classes [12]. Many clas-
sification problems where the labels of related objects
must be consistent with each other, such as hypertext clas-
sification [13] and identification of protein functions in
the protein-protein interaction network [14], can also uti-
lize graph-based methods. To our knowledge, graphical
models have not previously been applied to the recogni-
tion of subcellular patterns in multi-cell images. Large
numbers of such images are increasingly being acquired
both in projects aimed at determining the subcellular
location of all proteins [8,15-17] and in drug screening by
high-throughput microscopy [18]. Part of the motivation
behind the work we describe here is the need to classify

fields of cultured cells that may be expressing different
tagged proteins (such fields arise when a population of
cells is randomly tagged). An additional motivation is the
desire to classify individual cell patterns in tissues that
may consist of more than one cell type.

The problem to be solved using a graphical model is to
infer the posterior probability of each class for each node
(cell) using information about the likely classes of other
nodes (cells). For some graphical models, an exact solu-
tion can be found using the belief propagation (BP) algo-
rithm [19]. However, BP can only calculate the posterior
probability correctly on trees or forests, that is, on graphs
where there is at most one path between any two nodes. If
there are loops in the graph, the junction tree algorithm
[20] can be used to convert a loopy graph into a tree by
clustering nodes together. Exact inference can then be
achieved by applying BP on the converted tree, but the
running time is exponential in the size of the largest clus-
ter in the converted graph. We therefore need approxi-
mate inference methods for cases where the size of the
largest cluster is large. A commonly used approximate
method is loopy belief propagation (LBP), which itera-
tively applies belief propagation updates on a graph with
loops. LBP often gives good approximate inference when
it converges [21], and often runs very quickly, but can fail
to converge on some graphs. Other approximate inference
algorithms, such as variational methods [22] and Monte
Carlo methods [23], are also widely used. Running times
for these approximate inference methods can be prohibi-
tive for large graphs.

A graphical model consists of an algorithm for construct-
ing the graph itself and an algorithm for making infer-
ences given the graph. In this paper we describe how to
construct graphs for the problem of subcellular location
classification, and also present a novel algorithm, which
we term prior updating, that permits inferences to be
made for the (often large) resulting graphs.

Results
Problem Statement: At the outset, we formalize our prob-
lem by describing our assumptions about the process used
to create cell images. We assume that the process of creat-
ing a slide (or a well, plate or chamber) for imaging starts
by creating a mixture of any number of cells from each of
many possible classes. We further assume that cells are
randomly distributed over the slide at some time tplate
before imaging, that the cells divide with an average gen-
eration time of tg, and that the class of a cell is stably inher-
ited by its daughters (the latter assumption can be relaxed
slightly to allow for mutation without substantially
changing our treatment). Lastly, we assume that we have
accurate methods for segmenting multi-cell images into
regions containing single cells, and classification methods
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that provide a likelihood for each possible class for each
segmented cell. The task is: Given an image of a field con-
taining a number of cells meeting the assumptions above,
assign a class to each cell as accurately as possible.

Equal-sized class model
As discussed above, performance of a single cell classifier
on a multi-cell image can be improved if the assumption
can be made that all cells in the field should show the
same pattern. This can be done by assigning the most fre-
quent class in the image to all cells [6]. While this assump-
tion may be true in some cases, it is quite restrictive. The
goal of the work in this paper is to improve the analysis of
multi-cell images without the drastic assumption of
homogeneity. We begin by considering a variation on this
assumption, namely that each multi-cell image is com-
posed of a small number of classes with roughly equal
numbers of cells. In this case, one strategy is to decide
upon the number of classes using a threshold on the
observed frequencies of each class. We define Tn = 1/(1 +

n) + β, where n is the number of classes and β is an adjust-
able parameter that ranges from -0.5 to 0.5. To find the
number of classes, we find the smallest n for which the fre-
quencies of exactly n classes are greater than Tn and record
which classes those are. This definition is based on the
assumption that the true classes are present in roughly
equal proportion, and hence that the percentage of each
should be greater than the expected frequency of a class if
one more true class was present (plus a tolerance control-
led by β). We consider an example to illustrate the
approach. Using β = 0.1 results in T1 = 0.6 and T2 = 0.43.
Given a field with three classes with frequencies
(0.7,0.2,0.1), we would choose n = 1. However, if the fre-
quencies were (0.45,0.5,0.05), n = 2 would be chosen.
Once n is chosen, each cell in the trial field is assigned to
the one of those classes that has the largest likelihood for
that cell (as assigned by the single cell classifier). Note that
this might not be the class with the highest likelihood if
that class was not retained during the selection of the
number of classes. If no n meets the criterion, we simply
keep the classification results from the single cell classi-
fier. Note that as β decreases to -0.5, we increasingly favor
finding only one class, and as β approaches 0.5 we
increasingly favor making no changes to the original class
assignments.

Evaluation scheme
To illustrate and test approaches to multi-cell classifica-
tion, we need multi-cell images in which the class of each
cell is known with certainty. Since it is nearly impossible
to collect such images (without, for example, using micro-
manipulation to spot cells on a slide), we have simulated
them by combining images from a large library of single
cell images (the 2D HeLa cell image collection described
in the Methods). The library contains images of ten sub-
cellular pattern classes, and to classify individual cells we
have used a multi-class support vector machine classifier
whose outputs were converted to probabilities for each
class.

For the first tests, we created synthetic images consisting of
12 cells randomly drawn from only two classes such that
the number of images in one class varied from 6 to 12.
Average accuracies over 10 repeated trials were deter-
mined for the (base) single-cell classifier and for the
equal-size class model described above. This process was
repeated for all possible pairs of classes and for different
mixtures of images from the two classes, and the average
classification accuracy across all of these conditions was
determined for various values of β. Figure 2a compares the
overall classification accuracy across all mixtures between
the base classifier and the equal-sized class model. The
best average accuracy (90.4%) is obtained for β = -0.4. Fig-
ure 2b compares the classification accuracy for β = -0.4
between the base classifier and the equal-sized class

Classification Accuracy for simulated fields of cells using the equal-sized class modelFigure 2
Classification Accuracy for simulated fields of cells 
using the equal-sized class model. Simulated fields con-
sisting of N1 cells from one class and N2 cells from a different 
class were generated as described in the text, with N1 + N2 = 
12. A) The average accuracy across all N1 values are shown 
for the equal-sized class model (❍ ) as a function of the model 
parameter β. The accuracy of the base single cell classifier is 
shown by the dashed line. The best accuracy (90.4%) of the 
equal-sized class model is obtained when β = -0.4. B) The 
improvement in average classification accuracy over the base 
single cell classifier is shown as a function of N1. Each point 
shows the average classification accuracy over 10 repeated 
trials for 12 cells for all possible pairs of classes for β = -0.4. 
The average accuracy of the equal-sized class model (❍ ) and 
base classifier (�) are shown. The classification accuracy is 
better than that of the base classifier only when N1 = 0, the 
case when the set consists of just one class.
Page 4 of 13
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:90 http://www.biomedcentral.com/1471-2105/7/90
model as a function of N1, the number of cells in one of
the two classes. The classification accuracy is only better
than that of the base classifier for the set consisting of only
one class, but in all other cases the classification accuracies
are either lower or equal. The results also indicate that
cases of different mixtures need different optimal β s to
achieve the best accuracy improvement (data not shown).
For example, when N1 = 0, the accuracy can be improved
up to 9.8% over the base classifier for β = -0.05, but the
average accuracy across all mixtures is much worse
(78.9%). The best accuracy improvements for cases with
N1 = (1, 5, 6) are (1.1%, 1.9%, 2.7%) with β = (-0.15, -
0.20, -0.20). However, for cases with N1 = (2, 3, 4), no
matter how the β is tuned, the best possible average accu-
racy can only be the accuracy from the base classifier. This
is expected since the assumption used to derive the
method was that whatever classes are present are approxi-
mately equal in frequency. All these results suggest that
the equal-size method should not be used when the mix-
ture of classes is unknown.

Construction of graphical models
We next consider what information may be available
about the likely class of a cell given information about its
neighbors in the field, and how we can construct a graph-
ical model to use that information. Two limit cases can be
considered. These limits are based on the relative magni-
tudes of the constants tplate and tg defined in the problem
statement above.

Feature space model
The first possibility is that tplate is short relative to tg such
that cells would not have time to undergo significant cell
division prior to their being imaged. In this case, the prox-
imity of cells does not provide any information about
their likely similarity (i.e., whether they are derived from
the same class). The only clues that we have about the
number of classes present (and the number of cells in
each) are the similarities between cells in the SLF feature
space. In this case, we initially construct an undirected
graph in which each cell is represented by a node and
edges are created between each pair of nodes with length
equal to the z-scored Euclidean distance between the fea-
ture vectors of the corresponding cells.

Physical space model
If, however, the amount of time that elapses between plat-
ing and imaging is significantly greater than the genera-
tion time (tplate Ŭ tg), each original cell is expected to have
divided a number of times and we may consider it likely
that the class of cells adjacent to one another is the same.
The rate (vtrans) at which daughter cells move away from
each other relative to the rate at which they divide
becomes the determining factor. Thus, if vtrans is high, we
may consider physical proximity to be of little predictive

value and are forced to use the feature space model
described above. If, on the other hand, vtrans is low, we can
construct an undirected graph using the Euclidean dis-
tance between the centers of cells in the field.

Pruning
Initially, the graphs for both model types are fully con-
nected. Each edge suggests the two nodes it connects
should influence each other's labels. Since we can assume
that they should not influence each other if the distance
between them is too large (and to improve computational
efficiency), edges whose length is greater than a free
parameter dcutoff are removed. Note that the units of dcutoff
are different for the two types of models.

Inference by prior updating
Given a graphical model of either of these types, the task
becomes inferring the class labels. This requires an algo-
rithm to describe how the label at each node is influenced
by information from each of its nodes. As described in the
introduction, exact and even approximate inference meth-
ods can be extremely compute intensive for models with
many connected nodes. Since our goal is to apply graphi-
cal models to fields with many cells, we need an efficient
method for inferring the most likely class for each cell
given the results of the single cell classifier for it and its
neighbors. We therefore developed a new method, which
we term prior updating (PU), that we believed could give
improved classification accuracy in realistic compute
times. The principle behind the method is simple: we
allow each cell to have its own set of prior probabilities for
all possible classes and adjust them to reflect the likely
classes of its neighbors. We start by setting all prior prob-
abilities equal, and then determine the posterior probabil-
ity of each class for each cell using the output of the SVM
classifier and Bayes rule. We then iteratively adjust the
prior probabilities of all classes for each cell based on the
labels of its neighbors and recalculate the posterior prob-
abilities (Figure 3). A free parameter α controls the extent
to which the prior probabilities are adjusted at each itera-
tion (for α = 0, no adjustment is made). The method ter-
minates when no class labels change during an iteration.
Each cell is allowed to change its label at most once, and
its confidence is set to zero after the label changes. We
designed this strategy because cells whose labels are easily
changed are expected to have high uncertainty, and
should not influence other cells after their labels change.
This strategy also guarantees that the iteration will con-
verge in constant time. Similar results are obtained if pri-
ors for each node are initialized outside the loop and if
labels are allowed to change more than once (data not
shown).
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Feature space model
To evaluate the accuracy of the graphical models and the
prior updating method, we used synthetic multi-cell
images as described above. We first consider the feature
space model, which is directly comparable to the equal-
size scheme since neither considers physical position of a
cell. We calculated classification accuracy for various val-
ues of the two free model parameters: α and dcutoff. Figure
4 shows results for fields of 6 cells each for two classes for
the best dcutoff for each of various values of α. The best
results were obtained with α = 0.15 and dcutoff = 8. We eval-
uated three metrics: overall accuracy (average of all 10
classes), average accuracy for similar classes (the endo-
somal and lysosomal proteins and the two Golgi pro-
teins), and accuracy for dissimilar classes (the remaining
classes). Compared with the results for the base classifier

(without inference), the accuracy of similar classes is
much improved (by 9 percentage points, from 82.2% to
91.3%), and the accuracy of dissimilar classes is also
improved (by 3 percentage points, from 95.3% to 98.5%).
The overall accuracy is improved by over 5 percentage
points (from 90.1% to 95.7%). The overall accuracy of
95.7% obtained with an SVM classifier combined with PU
is higher than the best previous accuracy for the 2D HeLa
collection of 92.3%, which was obtained using a much
more complicated majority-voting classifier [10].

When α is zero, the priors are not updated so that cells do
not influence each other. As α increases, the priors of
classes that are present in the field are increased while oth-
ers are decreased. As seen in Figure 4, classification accu-
racy also increases as α increases but roughly plateaus at α
near 0.2. The results suggest that a large α usually gives
good improvement in classification accuracy; however,
the best α has to be found by applying cross-validation
methods.

The dcutoff parameter is designed to determine the neigh-
bors of a cell. If dcutoff is very small, the cell does not have
any neighbors to influence and be influenced by. As dcutoff
gets larger, the cells start to be influenced by other similar
cells, and so the classification accuracy can be improved.

Improvement of classification accuracy using feature space graphical modelFigure 4
Improvement of classification accuracy using feature 
space graphical model. Each point shows the average clas-
sification accuracy over 10 repeated trials for 12 cells for 
fields of six cells each from two classes. The average accuracy 
for pairs of similar classes (❍ ), dissimilar classes by (�), and 
all classes (�) are shown. The best accuracies are obtained 
with α = 0.15 and dcutoff = 8. The accuracy of similar classes is 
improved by 9% (from 82.2% to 91.3%), while the accuracy 
of dissimilar classes is also improved 3% (from 95.3% to 
98.5%). The overall accuracy is improved by the prior updat-
ing method by over 5%(from 90.1% to 95.7%).

The prior updating algorithmFigure 3
The prior updating algorithm. A) Pseudo-code for the 
algorithm is shown. A free parameter α in the updating equa-
tion is used to determine the degree of change of priors. 
When α is zero, the priors do not change and the graphical 
model results are the same as the results of the base classi-
fier. The priors are pushed harder to the majority classes in 
the field as α increases. B) Illustration of the PU algorithm for 
a graphical network of seven cells and three classes.
Page 6 of 13
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:90 http://www.biomedcentral.com/1471-2105/7/90
If dcutoff is set to infinity, all the cells are connected to each
other in the graph and so contribute to the updates of each
other's priors. In this case, some dissimilar cells will affect
each other's priors and the classification accuracy could be
worse than when the best dcutoff is used. The best dcutoff can
be found by applying cross-validation methods.

Encouraged by these results, we evaluated trial fields with
two classes of varying numbers of cells in the feature space
field (Figure 5). For the N1 = 0 case, where there is only
one class of cells present in the field, the best dcutoff and α
are both infinite, so that all the cells can be classified into
one class just as the equal-sized class scheme does. The
best dcutoff is 8 for all other cases. This implies that the z-
score distances among similar cells of 2D HeLa images in
the SLF16 feature space are on average less then 8, no mat-
ter how many cells the classes are composed of. The best
α ranged from 0.2 to 0.5 for different cases (data not
shown). The results in Figure 5 were obtained with α set
to 0.5, and this value was used for all subsequent experi-
ments. As the sizes of the two classes become more asym-
metric (from N1 = 6 to N1 = 2 case), the accuracy
improvement of similar classes still remains in the range

of 8 to 9 percentage points, while the accuracy improve-
ment of dissimilar classes decreases from 1 to 3 percentage
points. This is because smaller numbers of "minority"
classes affect the estimated priors to a lesser degree, and a
small change in priors is more likely to affect the labels of
similar classes than of dissimilar ones. For the N1 = 0 and
N1 = 1 case, the accuracy of similar classes are higher than
for the other cases, which confirms that it is easier to
determine which of similar classes a cell is more likely to
be when the cells are more homogeneous in the field.

Physical space model
We also evaluated a model in which the physical positions
of cells in the field are used to influence classification.
Synthetic fields of cells were created by simulating the
processes of cell division and movement for clones
derived from two cells of different classes initially at a dis-
tance D from each other. Figure 6 shows results for apply-
ing the graphical models on fields generated with various
values of D. When D = 0, the two clones overlap in space
but in most cases, the accuracies for similar and dissimilar

Improvement in classification accuracy for simulated fields of cells using a physical space graphical modelFigure 6
Improvement in classification accuracy for simulated 
fields of cells using a physical space graphical model. 
Simulated fields containing clones of cells consisting of N1 
cells from one class and N2 cells from a different class were 
created as described in the text for various values of D, the 
distance between the initial cells of each class. A class label 
was assigned to each cell in the simulation using the physical 
space graphical model described in the text. The improve-
ment in average classification accuracy over the base single 
cell classifier is shown as a function of N1, where N1+N2 = 
12. Each point shows the average classification accuracy over 
10 repeated trials for 12 cells for all possible pairs of classes 
for fields generated with D = 0 (❍ ), D = 6 (�), D = 12 (�), 
and D = 400 ( ). Results except for N1 = 0 are for a dcutoff 
value of 6, the best value of those tested. Note that, as 
expected, the accuracy improves with increasing D.

Improvement in classification accuracy for simulated fields of cells using a feature space graphical modelFigure 5
Improvement in classification accuracy for simulated 
fields of cells using a feature space graphical model. 
Simulated fields consisting of N1 cells from one class and N2 
cells from a different class were generated as described in 
the text. A class label was assigned to each cell in the simula-
tion using the feature space graphical model described in the 
text. The improvement in average classification accuracy 
over the base single cell classifier is shown as a function of 
N1, where N1+N2 = 12. Each point shows the average classi-
fication accuracy over 10 repeated trials for 12 cells for all 
possible pairs of classes. The average accuracy for pairs of 
similar classes (❍ ), dissimilar classes by (�), and all classes 
(�) are shown. Results except for N1 = 0 are for a dcutoff 
value of 8, the best value of those tested.
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classes are still improved over the base classifier. This is
expected, since this case is very similar to the feature space
model evaluated above. The classification accuracy
improves as the separation of the two clones increases (D
> 0), also as may be expected. The results demonstrate the
important conclusion that our graphical models can result
in significant improvement in classification accuracy for
the task of classifying a mixed population of cells under a
variety of test conditions.

Multiple classes test
Given that our method performed well for multiple cells
from two different classes, we next examined the cases
where more than two classes of cells were present. We
therefore performed experiments using the feature space
model on one to five classes with each class having six
cells. The results are shown in Table 1. As the number of
classes increases, the overall accuracy decreases from
around 9 percentage points above to around 2 percentage
points below that of the base classifier. Since it is more
likely that there are cells from both of two similar classes
in the field as the number of classes increases, this is
expected. The observation that the transition from
improvement to degradation occurs after 4 out of 10
classes are present loosely suggest that the maximum
number of classes that can be simultaneously present in a
field and still see improvement from a graphical model is
around 40% of the number of possible classes.

Effect of training set size
We also examined the effect of training set size on the
prior updating scheme as a way of examining the
improvement possible for a less accurate base classifier.
Various training set sizes were used to train base classifier
SVMs and then these were applied to fields of two classes
of equal sizes. The results in Table 2 show that the base
SVM classifier decreases its accuracy with fewer training
data (as expected), but that the prior updating scheme can
still improve its accuracy by between 5 and 8 percentage
points. The smaller the amount of the training data, the
more the prior updating method can improve and com-

pensate the accuracy. It is especially impressive that the
combination of the prior updating scheme and the SVM
classifier with only 10 training data per class can do a sim-
ilar job to the SVM classifier alone with 50 training data
per class. The results also indicate that at least for this sub-
cellular pattern classification task, the SVM classifier
joined with the prior updating scheme does not need a lot
of training data in order to attain a fair classification per-
formance.

Discussion
Our work has particular implications for classification of
patterns in images obtained by high-throughput micros-
copy. Since high-throughput systems typically use low
magnification, the number of cells per field is often high
and the accuracy of single-cell classifiers is usually not per-
fect. By applying this method on multi-cell images made
of real single cells and synthesized locations, we are able
to verify that our scheme can be used for such systems to
achieve significantly better performance.

Since we have proposed a new approximate inference
algorithm, it is important to identify when this method
works better than other approximate inference methods.
This method is very fast compared to previously described
graphical model algorithms: its runtime is linearly pro-
portional to the number of cells in each trial field and to
the number of classes it needs to choose from. Whether
this method has better classification performance under
different circumstances will be examined in future work.
We anticipate that the method can be made more general
so that it can be used for other applications, both for bio-
medical applications like classification of cell types in tis-
sue images and for other applications like Internet link
analysis.

Conclusion
This paper addresses a supervised learning problem in the
domain of protein subcellular location determination.
We have proposed a novel graphical representation where
multiple cells in a field influence each other. Assuming

Table 1: Results for multiple classes.

Classification Accuracy (%)

No. of classes Similar Classes Dissimilar Classes All Classes

1 96.7 99.8 98.6
2 91.3 98.5 95.6
3 86.4 97.3 92.9
4 82.0 96.0 90.4
5 78.2 94.8 88.1

Base Classifier 82.2 95.3 90.1

The accuracy of classification using feature space graphical models were evaluated for all possible mixtures composed of various numbers of classes 
drawn from ten classes. Results shown are averages over 10 trials.
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that these cells are only composed of a small number of
classes, the classification accuracies are improved by
manipulating the prior distributions of classes. The
improvement is largest for groups of classes which would
be difficult for the base classifier to distinguish from one
another.

We have also shown the robustness of our prior updating
scheme. The accuracies for different classes were always
improved under different assumptions about the distribu-
tion of cells in the field, different sizes of the two classes
of cells present in the field, different numbers of classes,
and different training set sizes.

The results are very encouraging since the prior updating
method improves the overall accuracy from the base clas-
sifier by around 5 percentage points and the accuracy of
similar classes by around 9 percentage points. The combi-
nation of the prior updating method and the base single
cell classifier outperforms the majority voting classifier
that with an accuracy of 92.3% had the best prior reported
performance on this dataset [10].

Methods
2D HeLa cell image collection
The 2D HeLa cell image collection was created by intro-
ducing antibodies and molecular probes against proteins
in major subcellular organelles [6]. This data set contains
862 single-cell images consisting of ten classes, each of
which contains from 73 to 98 images. Figure 7 shows typ-
ical images from each class. Every image has a resolution
of 382 × 512 pixels and each pixel represents 0.23 × 0.23
µm in the sample plane. In parallel to each protein image,
an image of the DNA distribution was obtained using a
DNA-specific fluorescent probe. These parallel images
provide a common reference framework for describing the
distribution of each protein.

Subcellular Location Features (SLF)
We have developed several sets of informative features to
describe protein subcellular patterns. These features,
termed Subcellular Location Features (SLFs), are of several
types, including Zernike moment features, Haralick tex-
ture features, morphological features and wavelet features.
The details for different versions of SLFs are reviewed in
[10]. The best classification results obtained to date for the
2D HeLa dataset were with feature set SLF16 [10], and we
have therefore used the SLF16 feature set in this work.
Each cell in the dataset is thus represented by a feature vec-
tor x of length d = 47.

Bayesian decision theory
Bayesian decision theory is a fundamental statistical
approach to pattern classification problems [24]. The
Bayes formula can be expressed as:

where wj is the class with index j, p(wj), termed the prior
probability, is the probability of class j being observed in
the absence of any other information, p(x | wj), termed the
likelihood probability, is the probably density function
for an observed feature vector x given that the class is wj,
p(wj | x), termed the posterior probability, is the probabil-
ity of the class being wj given that x has been observed, and
p(x), termed the evidence, is just a normalization to guar-
antee that the posterior probabilities sum to one. For n
classes, the evidence can be formulated as

A probabilistic classifier assigns an observation x to class i
if

p w x
p x w p w

p xj
j j

( | )
( | ) ( )

( )
=

p x p x w p wj j
j

n
( ) ( | ) ( ).=

=
∑

1

Table 2: Results for different training set sizes.

Classification Accuracy (%)

No. of training 
data

Similar Classes Dissimilar Classes All Classes

No updating With updating No updating With updating No updating With updating

50 82.2 91.3 95.3 98.5 90.1 95.6
40 80.8 90.2 94.9 98.3 89.2 95.1
30 78.9 88.9 94.2 98.4 88.1 94.6
20 76.3 87.5 93.2 98.0 86.4 93.8
10 71.2 80.8 90.6 96.6 82.9 90.3

Base SVM classifiers were trained using various numbers of cells for each of ten classes. Graphical models using those base classifiers were then 
tested on fields containing six cells each from two classes and results were averaged over 10 trials each for all possible pairs.
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Typical images from the 2-D HeLa cell image collection used in this studyFigure 7
Typical images from the 2-D HeLa cell image collection used in this study. Images are shown for cells labelled with 
antibodies against an ER protein (A), the Golgi protein giantin (B), the Golgi protein GPP130 (C), the lysosomal protein LAMP2 
(D), a mitochondrial protein (E), the nucleolar protein nucleolin (F), transferring receptor (H), and the cytoskeletal protein 
tubulin (J). Images are also shown for filamentous actin labelled with rhodamine-phalloidin (G) and DNA labelled with DAPI 
(K). Scale bar = 10 µm. From [6].
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p(wi | x) > p(wj | x)  ∀j ≠ i

That is, the classifier assigns x to the class with the maxi-
mum posterior probability.

In our previous work, each cell was classified independ-
ently. Since the priors were not known in advance, they
were assumed to be equal. In this case, the classification
with the "Maximum a Posteriori Probability" (MAP) is
equivalent to the "Maximum Likelihood" (ML).

Classifier – Support Vector Machine
Support Vector Machines (SVM) were originally designed
for binary classification by finding a maximum margin
hyperplane between two classes [25]. They can be
extended to solve multi-class classification problems by
combining several binary classifiers. There are several
commonly used methods, such as one-against-all, one-
against-one, and directed acyclic graph. Here we adapt the
one-against-all method [26,27], which constructs n SVM
classifiers where n is the number of classes. The ith SVM is
trained using all of the examples in the ith class with posi-
tive labels and all others with negative labels. The test
example is fed into these n SVMs and the one with the
highest output score is selected as the final class. Each
SVM used an exponential radial basis function kernel with
C = 20 and σ = 7, where C mediates the trade-off between
maximizing the margin and minimizing the training
error, and σ is the parameter in the expression:

The kernel function K is a distance function for two fea-
ture vectors x and y. The multi-class SVM produces uncal-
ibrated scores that are expected to be positively correlated
with the confidence of the assignment but which are not
directly comparable between classes. Thus, we use a sig-
moid function to calibrate the output scores of the SVM.
The parameters of the function can be found by minimiz-
ing the negative log likelihood of the training data [28].
The resulting probabilities are then comparable between
different classes. We associate with each node an evidence
vector consisting of the probabilities for each class and a
label corresponding to the class with largest evidence. The
confidence of this label is defined as the difference
between the two highest class probabilities.

Creation of synthetic multi-cell images
To synthesize multi-cell images, we used the 2D HeLa
image set composed of 10 classes of major subcellular
location patterns (described above). To meet the assump-
tions that cells are only composed of a small number of
classes, we constructed trial fields consisting of cells
drawn from all possible pairs of the 10 classes in the 2D

HeLa dataset. For each trial, N1 and N2 cells were ran-
domly picked from two different classes with total
number of 12 cells. Separate trials were conducted for N1
from 0 to 6.

For cross-validation, we split the data into five folds: one
fold for the testing pool and the other four folds for the
training pool. In the training pool, 50 images from each
class were randomly chosen and for each trial, N1 and N2
cells were randomly picked from all possible pairs of
classes out of the testing pool. Each of the five folds was in
turn used for testing and the remaining four for training a
multi-class SVM classifier. The classification accuracies
were averaged for each pair of classes over all five folds.
Some of the images are used neither for training nor for
testing in any one fold, but the testing images may be used
more than once overall due to lack of data. Because of this
reuse, this evaluation method is similar to the usual five-
fold cross validation procedure but not the same. In
expectation it will report the correct accuracy for the clas-
sifier, but the variance of its reported accuracy is difficult
to compute. To reduce this variance as much as possible
we average 10 trials by randomly assigning images in the
testing and training pools.

Since the 2D HeLa images were originally collected for
single cells without recording their position on the slide,
we simulated the positions of the cells according to a sim-
ple model of cell growth and movement. The pseudo-
code of the simulation is shown in Figure 8. Once the
positions were simulated, a randomly-chosen cell from a
specified class of the HeLa images was assigned to each
position. To simulate the presence of more than one class
on a slide, two (or more) simulated clones from different
classes were generated with a separation parameter D rep-
resenting the distance between their origins. An example
for two clones of six cells each is shown in Figure 9, with
edges drawn between cells that are less than 6 units apart
(i.e., dcutoff = 6).

Code availability
The data and source code used for the work described in
this paper is available from http://murphy
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Simulation of cell positions for two classesFigure 9
Simulation of cell positions for two classes. Two simu-
lated clones from different classes were generated with a 
separation parameter D defining the distance between the 
initial cell positions. An example of the distribution for two 
simulated clones of six cells each is shown for D = 12. Edges 
connect cells that are less than 6 units apart. Note that some 
of these edges connect cells from different classes.

Algorithm for simulating cell fieldsFigure 8
Algorithm for simulating cell fields. The algorithm simu-
lates the formation of a clone of N cells from a single cell and 
incorporates cell growth and movement. u[d,d] represents a 
two dimensional uniform distribution from -d to d (e.g., a cell 
can move to anywhere within the square with length of the 
side equals to 2d). d1 and d2 describe how much cells spread 
apart after cell division. td corresponds to the average gener-
ation time of tg, and tm indicates the average time a cell 
moves. If the d1 and d2 are the same, large td and small tm will 
result a more compact colony, while small td and large tm will 
result a sparser colony.
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