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Personality disorder symptomatology (PD-Sx) can result in personal distress and
impaired interpersonal functioning, even in the absence of a clinical diagnosis, and
is frequently comorbid with psychiatric disorders such as substance use, mood,
and anxiety disorders; however, they often remain untreated, and are not taken into
account in clinical studies. To investigate brain morphological correlates of PD-Sx,
we measured subcortical volume and shape, and cortical thickness/surface area,
based on structural magnetic resonance images. We investigated 37 subjects who
reported PD-Sx exceeding DSM-IV Axis-II screening thresholds, and 35 age, sex,
and smoking status-matched control subjects. Subjects reporting PD-Sx were then
grouped into symptom-based clusters: N = 20 into Cluster B (reporting Antisocial,
Borderline, Histrionic, or Narcissistic PD-Sx) and N = 28 into Cluster C (reporting
Obsessive–Compulsive, Avoidant, or Dependent PD-Sx); N = 11 subjects reported PD-
Sx from both clusters, and none reported Cluster A (Paranoid, Schizoid, or Schizotypal)
PD-Sx. Compared to control, Cluster C PD-Sx was associated with greater striatal
surface area localized to the caudate tail, smaller ventral striatum volumes, and greater
cortical thickness in right prefrontal cortex. Both Cluster B and C PD-Sx groups also
showed trends toward greater posterior caudate volumes and orbitofrontal surface area
anomalies, but these findings did not survive correction for multiple comparisons. The
results point to morphological abnormalities that could contribute to Cluster C PD-
Sx. In addition, the observations parallel those in substance use disorders, pointing
to the importance of considering PD-Sx when interpreting findings in often-comorbid
psychiatric disorders.
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Introduction

Personality disorders [PD; Axis II of the DSM-IV (APA,
2000)] are enduring, pervasive, and inflexible patterns of
inner experience and behavior that deviate from cultural
expectations and lead to distress or impairment. Even in the
absence of a formal PD diagnosis, personality traits reflecting
PD symptomatology (PD-Sx) can lead to emotional and
interpersonal problems (e.g., Daley et al., 2000; Rosenthal et al.,
2005; Dick et al., 2013; Gervais et al., 2013), and are often
comorbid with major psychiatric conditions (DSM-IV Axis
I disorders), particularly substance use, mood, and anxiety
disorders (Daley et al., 1999; Chabrol et al., 2004; Hallquist
and Lenzenweger, 2013). For this reason, PD symptoms are
more prevalent in psychiatric populations (Bagby et al., 2008;
Grant et al., 2012), and can present risk factors for emergence
of additional psychiatric disorders and/or barriers to treatment.
A better understanding of PD-Sx can therefore improve not only
the management of PDs, but potentially also that of comorbid
psychiatric disorders.

Personality disorders pathology has traditionally been
grouped into three symptom-based clusters (an approach that has
clinical utility and was recently confirmed empirically, Cox et al.,
2012): Cluster A (odd/eccentric), including Paranoid, Schizoid,
and Schizotypal PD; Cluster B (dramatic/emotional/erratic),
including Antisocial, Borderline, Histrionic, and Narcissistic
PD; and Cluster C (anxious/fearful), including Obsessive–
Compulsive, Avoidant, and Dependent PD. Despite the shared
symptomatology within clusters, however, shared neurobiology
has not been extensively investigated.

Cluster B personality traits are characterized by emotion
dysregulation, poor response inhibition, and impulsive and
externalizing behaviors, and are strongly associated with
substance use disorders (Charney et al., 2010; Jahng et al.,
2011; Ersche et al., 2012). Accordingly, neuroimaging studies
examining Cluster B PD-Sx (Matsuo et al., 2009; Bjork
et al., 2010; Schilling et al., 2013; Castellanos-Ryan et al.,
2014), as well as diagnosed Cluster B PDs (Borderline and
Antisocial PD; BPD, ASPD), have found abnormalities in
fronto-limbic circuitry, including ventral striatum, amygdala,
and hippocampus, along with orbitofrontal and prefrontal
cortex (OFC, PFC), cingulate cortex, and insula (Anderson
and Kiehl, 2012; O’Neill and Frodl, 2012; Sato et al., 2012;
Frodl and Skokauskas, 2014). Of note, whereas cortical and
limbic regions are often associated with deficits in structure
and function (Matsuo et al., 2009; Nunes et al., 2009; Yang
and Raine, 2009; Ruocco et al., 2012; Schulze et al., 2013;
Castellanos-Ryan et al., 2014), striatal volumes tend to be
enlarged in individuals with Cluster B PD-Sx (Ersche et al.,
2012) and Cluster B PDs (Brambilla et al., 2004; Glenn and
Yang, 20121). This parallels, and could potentially contribute
to, the frequent finding of striatal enlargement in stimulant
addiction (Chang et al., 2007; Kish, 2011; Mackey and Paulus,
2013).

1Note that this review combines ASPD and Psychopathy, which have similarities
but also important distinctions.

Cluster C personality traits are characterized by a focus on
avoiding the experience of anxiety, and are also highly comorbid
with mood, anxiety, and substance use disorders (DeJong et al.,
1993; Preuss et al., 2009; Langås et al., 2012). A Cluster C PD,
obsessive–compulsive PD (OCPD), is the most prevalent PD
in the US population (∼8%, Grant et al., 2012), yet little is
known about the neurobiology underlying its traits. However, like
Axis I Obsessive–Compulsive Disorder (OCD), rigid behavioral
patterns implicate cortico-basal-thalamic loops involved in
cognitive flexibility and behavioral adaptation (Fineberg et al.,
2010). In line with this view, recent studies of individuals
with compulsive traits showed enlarged striatal and OFC/PFC
volumes (Ersche et al., 2012; Montigny et al., 2013), paralleling
findings from OCD patients and their unaffected siblings (Shaw
et al., 2015). Beyond compulsivity, however, the neurobiology of
Cluster C traits remains largely unexplored.

The present study used magnetic resonance imaging (MRI)
in combination with a novel automated method for subcortical
segmentation and surface-based shape analysis (MAGeT Brain,
Chakravarty et al., 2013, 2015; Raznahan et al., 2014) to
examine brain morphological features associated with Cluster
B and C PD-Sx. Based on the fronto-striatal abnormalities
recently revealed using the same methodology in individuals
with OCD and their unaffected siblings (Shaw et al., 2015),
and the above-reviewed findings of cortical thinning and striatal
enlargement in Cluster B PDs, we examined the striatum and
PFC/OFC of PD-symptomatic individuals, with the hypothesis
that cluster-level differences echoing findings in PDs would
emerge.

Materials and Methods

Participants
All procedures were approved by the Centre for Addiction
and Mental Health Research Ethics Board (Toronto, ON,
Canada), and complied with ethical standards of the Declaration
of Helsinki. Volunteers were recruited from the community
through flyers and Internet advertisements. After complete
description of the study, all volunteers gave written informed
consent.

Volunteers completed screening for study inclusion/exclusion
with the following criteria: (1) 18–55 years old; (2) no current
Axis I disorder (as per SCID for DSM-IV, First et al., 2002); (3)
no lifetime history of alcohol or substance dependence (except
nicotine) and no recent use of recreational drugs, confirmed with
urine and hair analysis (light cannabis use was permitted); (4) no
medical conditions likely to affect the brain; (5) no current use
of psychotropic medications; and (6) no MR contraindications.
The sample described here has previously been included in other
published articles (Kish et al., 2010; Boileau et al., 2012, 2013;
Payer et al., 2013), where they formed the comparison groups in
studies of addiction.

Measures and Procedures
For each subject, PD-Sx was assessed using the SCID-II
Personality Questionnaire (SCID-II/PQ, First et al., 1997), which
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has confirmed validity and reliability, and is widely used in
personality research (Ball et al., 2001). The questionnaire consists
of 119 yes/no questions describing diagnostic features of each
PD (as per the DSM). Endorsing a criterion number of items
(i.e., exceeding a symptom threshold defined by the DSM) results
in a positive screen for a given PD. Although a positive screen
indicates a possible PD diagnosis, a follow-up clinical interview is
necessary to finalize the diagnosis; the questionnaire alone only
establishes (potentially clinically significant) symptomatology
(i.e., PD-Sx).

Based on SCID-II Personality Questionnaire results, study
participants were divided into those endorsing a number of
symptoms exceeding threshold for at least one PD (PD-Sx group)
and a Control group endorsing no symptoms exceeding threshold
for any PD. The PD-Sx group was then further divided into those
endorsing Cluster B and/or Cluster C PD-Sx (Table 1).

Brain images were acquired on a Signa 1.5 Tesla MRI
scanner (General Electric Medical Systems, Milwaukee, WI,
USA), using a high-resolution T1-weighted spoiled gradient
recalled acquisition sequence. Scan parameters were: repetition
time = 8.9–12 ms; echo time = 5.3–15 ms, flip angle = 45◦;
slice thickness = 1.5 mm, 0 gap; 124 slices; field of view
22 cm × 16 cm; matrix = 256 × 256, resulting in
1.5 mm × 0.78 mm × 0.78 mm voxels.

Image Processing
Subcortical Segmentation
Striatal morphology was estimated using MAGeT Brain
(Chakravarty et al., 2013, 2015; Raznahan et al., 2014), a novel
multi-atlas technique that bootstraps segmentation using
Multiple Automatically Generated Templates. This technique
has been optimized and validated for striatal structures, so that
analyses focused on bilateral caudate, putamen, and ventral
striatum (nucleus accumbens). However, since a recent variant
of the MAGeT Brain algorithm was shown to reliably segment
the hippocampus and amygdala using additional high-resolution
atlases as input (Winterburn et al., 2013; Pipitone et al., 2014;
Treadway et al., 2014), these structures were additionally
examined in exploratory analyses.

All segmentations were manually checked by an expert
observer (MTMP) prior to analysis. Outcome measures were
(voxel-based) volume and vertex-wise measures of shape and
surface area (SA; only volume was available for the exploratory
hippocampus and amygdala analyses). Shape is measured as a
series of surface displacement metrics that describe the inward
or outward displacement along a surface normal required for
the atlas (Chakravarty et al., 2006) to match each subject (see
Chakravarty et al., 2015; Janes et al., 2015) and corresponding
local SA differences (as recently reported in Raznahan et al., 2014
and Shaw et al., 2015). SA at each vertex was divided by the total
SA of each given structure in an individual to account for global
effects of volume on local vertex-wise measures.

For volume normalization, total brain volume (TBV) was
obtained using the brain extraction based on non-local
segmentation technique (BEaST) pipeline (Eskildsen et al., 2012),
which allows for accurate and robust brain extraction. TA
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Cortical Measures
To determine prefrontal/orbitofrontal contributions to PD-Sx,
cortical thickness (CT) and cortical SA were estimated on the
T1-weighted images using the fully automated CIVET 1.1.10
pipeline (Lyttelton et al., 2007). In brief, the images were linearly
registered to standard stereotaxic space defined by the MNI
ICBM 152 model (Collins et al., 1994; Mazziotta et al., 2001).
The images were then corrected for intensity non-uniformity
using non-parametric non-uniform intensity normalization (N3,
Sled et al., 1998) and a non-linear registration to the model
was applied. Tissue classification was then performed using
INSECT (Zijdenbos et al., 1998), classifying each voxel as white
matter (WM), gray matter (GM), or cerebrospinal fluid (CSF).
The images were then mapped to a probabilistic atlas using
the ANIMAL algorithm (Automatic Non-linear Image Matching
and Anatomical Labeling, Collins et al., 1995). Finally, the WM
surface was generated by using an ellipsoid polygonal model
that deforms to fit the WM/GM interface and the pial surface
(Lerch and Evans, 2005). To generate the GM surface, the WM
surface was expanded until it reached the GM/CSF interface
(Kim et al., 2005). The resulting surfaces were composed of
40,962 vertices for each hemisphere, and CT was estimated
as the distance, in mm, between homologous vertices in the
WM and GM matter surfaces. SA was estimated at each vertex
as the average value of all adjoining vertices. CT and SA
data were blurred using a surface-based diffusion smoothing
kernels of 20 and 40 mm full-width at half-maximum (FWHM),
respectively, to preserve the concordance between quantitative
values and cortical topology (Chung et al., 2003) and non-
linearly aligned with a surface-based registration (Lyttelton et al.,
2007).

Region-of-interest (ROI)-based CT and SA were also
estimated, using the intersection of the cortical surfaces
estimated by CIVET (above) and the LPBA40 atlas (Shattuck
et al., 2008), resulting in a total of 40 cortical regions per
hemisphere providing a single output value per region (see, e.g.,
Wheeler et al., 2015). Among these, we focused on a priori PFC
and OFC ROIs, as these have been consistently linked to PD-Sx,
along with additional exploratory analyses in less consistently
identified but potentially relevant ROIs: cingulate cortex and
insula.

Statistical Analysis
To examine differences in striatal and cortical morphology,
vertex-wise analyses were conducted using the RMINC package
(https://github.com/Mouse-Imaging-Centre/RMINC). Prior to
analysis of subcortical structures, SA at each vertex was divided
by the total SA of the given structure to account for global effects.
A general linear model including Cluster B and Cluster C PD-
Sx as factors (specifying presence/absence of symptomatology
exceeding threshold for a PD in that cluster), and age, sex,
education, and smoking status as covariates, was applied at each
vertex. Covariates were included because they were previously
shown to impact morphometry (particularly smoking, see Janes
et al., 2015; Vafaee et al., 2015; also see Raz et al., 1995)
and/or differed between groups in our sample (see Table 1).
Follow-up analyses then individually compared Cluster B and C

PD-Sx groups to the Control group. Results were corrected for
multiple comparisons using false discovery rate (FDR) correction
(Genovese et al., 2002).

To complement the vertex-wise analysis, volume/SA in
subcortical structures and CT/SA in cortical ROIs were entered
into SPSS, and analyzed using omnibus MANCOVAs paralleling
the vertex-wise analysis (i.e., Cluster B and C PD-Sx as
factors, and age, sex, education, smoking status, and TBV
[for subcortical volume and cortical SA] as covariates). Two
follow-up ANCOVAs then individually compared Cluster B
and C PD-Sx groups to the Control group. Analyses were
corrected for multiple comparisons to account for the number
of striatal subregions (bilateral anterior and posterior caudate
and putamen, and ventral striatum) and the number of
PFC/OFC ROIs (bilateral inferior, middle, and superior frontal
gyrus; medial and lateral orbitofrontal cortex), using FDR
correction (Benjamini and Hochberg, 1995). Given previous but
less consistent associations with PD-Sx, exploratory analyses
additionally examined effects in the anterior cingulate cortex and
insula.

Results

Participant Characteristics
A total of 72 participants were included in the study, see
Table 1 for demographic characteristics. Of the 72 participants,
37 endorsed symptoms exceeding threshold for at least one PD
(PD-Sx group): 20 endorsed symptoms consistent with a Cluster
B PD, and 28 endorsed symptoms consistent with a Cluster
C PD; of these, 11 endorsed symptoms from both Clusters B
and C. None of the participants endorsed a criterion number
of symptoms for Cluster A. The remaining 35 subjects did not
self-report any symptoms meeting PD thresholds, and comprised
the control group. The two groups were matched for age, sex,
current cigarette smoking status, and past-month cannabis use,
but subjects in the PD-Sx group had completed fewer years of
education (15.5 vs. 16.5 years, p = 0.02) and had greater brain
volumes (adjusted for age and sex, p = 0.05). Education and TBV
were therefore included as covariates in analyses, as described in
Section “Statistical Analysis.”

Striatal Morphology
Vertex-wise analysis in the striatum revealed greater regional
SA localized to the caudate tail in individuals with Cluster
C PD-Sx when compared to Control (Figure 1). In addition,
the volumetric analysis revealed significant effects in ventral
striatum, reflecting lower volumes in the Cluster C PD-Sx
compared to the Control group (right p = 0.007, left p = 0.043;
Table 2).

We found no significant effects associated with Cluster B PD-
Sx, although a trend emerged for posterior caudate enlargement
(p = 0.02, uncorrected; see Supplementary Materials).

Cortical Morphology
In PFC/OFC, the ROI-based omnibus MANCOVA identified CT
effects associated with Cluster C PD-Sx in right PFC, reflecting
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FIGURE 1 | Significant associations between Cluster C symptomatology
and greater striatal surface area, localized to the caudate tail, as
identified by vertex-wise analysis. (A) Colored regions indicate vertices with
significant t-statistics (as noted by the color bar) after FDR correction (q = 0.05).

(B) To demonstrate that the observed differences are persistent across the age
range and do not interact with age, surface area is plotted against age at
vertices of peak significance. Statistics indicate results of multiple linear
regression at peak vertices, with effects of Cluster C noted by p and β.

TABLE 2 | Striatal volume and cortical thickness effects associated with Cluster C PD-Sx.

Omnibus analysisa Cluster C vs. Control analysis

Cluster C effect Marginal mean (SE)

p Cohen’s d Control (N = 35) Cluster C (N = 28) p η2
p

Striatal volume

Ventral striatum (R) 0.01b 0.02 892.60 (11.35) 841.60 (12.88) 0.007b 0.122

Ventral striatum (L) 0.06 0.12 1045.11 (13.74) 999.48 (15.59) 0.043 0.071

Cortical thickness

Middle frontal gyrus (R) 0.01b 0.72 9.52 (0.07) 9.81 (0.08) 0.016b 0.097

Superior frontal gyrus (R) <0.001b 0.80 3.41 (0.03) 3.51 (0.03) 0.017b 0.096

Lateral OFC (R) 0.04 0.51 3.49 (0.04) 3.62 (0.04) 0.028b 0.082

Inferior frontal gyrus (R) 0.05 0.50 3.50 (0.03) 3.56 (0.03) 0.118 –

Superior frontal gyrus (L) 0.03 0.56 3.45 (0.03) 3.53 (0.03) 0.054 –

aModel includes Cluster B and Cluster C as factors, and age, sex, education, smoking status, and total brain volume (for striatum analysis) as covariates; bSurvives
false-discovery-rate correction for multiple comparisons. L, left; R, right; OFC, orbitofrontal cortex. Bold values represent significant or approaching significance at
α = 0.05.

greater CT in the Cluster C PD-Sx group than Control (all
p < 0.028; Table 2). This pattern was reflected in the vertex-
wise analysis at a relatively lenient threshold (see Supplementary
materials), but did not survive FDR correction at q = 0.05.

No CT effects were observed for Cluster B PD-Sx, although
the ROI-based omnibus MANCOVA analyzing SA pointed to

an effect of Cluster B PD-Sx in lateral orbitofrontal cortex
(p = 0.02, uncorrected), reflecting lower SA in Cluster B PD-
Sx than Control subjects (p = 0.036, uncorrected; Cohen’s
d = 0.62; see Supplementary Table S1); however, these effects did
not survive correction for multiple comparisons across a priori
ROIs.
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Exploratory Analyses
No other results survived correction for multiple comparisons.
However, all relevant comparisons and effect size estimates
are presented in Supplementary Table S1. Exploratory results
include greater posterior caudate volumes in both Cluster B
and C PD-Sx groups compared to control, along with greater
hippocampal volumes. Amygdala volumes showed no differences
from control in either PD-Sx group. For cortical measures, results
revealed greater cingulate CT in Cluster C PD-Sx, and lower
lateral but greater medial orbitofrontal SA in both Cluster B and
C PD-Sx.

Discussion

The present study used a novel morphometry method to
characterize fronto-striatal features associated with PD
symptomatology. The results reveal differences in striatal
shape and volume, and greater prefrontal cortical thickness, in
subjects endorsing Cluster C PD-Sx (primarily OCPD), while no
consistent pattern was observed in subjects endorsing Cluster B
PD-Sx.

To our knowledge, the findings associated with Cluster C
PD-Sx are the first cluster-level morphological findings to be
reported in otherwise healthy individuals, although the subject
was recently addressed in the context of substance use disorders
(Albein-Urios et al., 2013, 2014; Moreno-López et al., 2014).
It should be noted that nearly 90% of our Cluster C PD-Sx
sample endorsed OCPD symptomatology, which is thought to
stem from abnormalities in fronto-striatal circuitry (Fineberg
et al., 2010), and consistent with this view, we observed smaller
ventral striatum volumes, greater SA in the caudate tail, and
greater PFC/OFCCT in our Cluster C PD-Sx sample. The finding
of greater SA in caudate tail (Figure 1) is remarkably in line
with a recent study using the same methodology to investigate
OCD patients and their unaffected siblings, which identified a
similar (albeit larger) effect as a candidate endophenotype likely
reflecting genetic vulnerability (Shaw et al., 2015).

The cortical findings associated with Cluster C PD-Sx
extend previous evidence that self-reported compulsive behavior
correlates with greater PFC and OFC GM volume in adolescents
(Montigny et al., 2013), and that individuals with social anxiety
disorder exhibit greater CT in dorsolateral PFC (Brühl et al.,
2014). Greater CT could reflect more complex and/or abundant
circuitry (i.e., greater number of neurons, intracortical axons,
dendrites, synaptic elements, or glia), perhaps due to inefficient
pruning during maturation (Lotfipour et al., 2009), suggesting
that this feature, in combination with possible enlargement
in posterior caudate, could contribute to fronto-striatal hyper-
connectivity, as has been suggested for OCD (Beucke et al., 2013;
Shaw et al., 2015).

It is somewhat surprising that our analyses found no
morphological features that were significantly associated with
Cluster B PD-Sx, despite effect sizes similar to our Cluster
C findings. Cluster B PDs involve emotion dysregulation,
impulsive behavior, and aberrant motivation, often manifesting
as criminality, aggression, self-harm, and substance use/relapse

(Charney et al., 2010; Jahng et al., 2011), and these behaviors
and traits (even when sub-clinical) have been strongly linked
to the integrity of PFC and medial temporal structures (Matsuo
et al., 2009; Yang and Raine, 2009; Bjork et al., 2010; Sato et al.,
2012; Wallace et al., 2012; Montigny et al., 2013; Schilling et al.,
2013; Castellanos-Ryan et al., 2014). Our failure to detect group
differences in amygdala and hippocampus volumes was therefore
unexpected (see Supplementary Materials for data and further
discussion). Moreover, OFC abnormalities are consistently noted
in clinically diagnosed BPD and ASPDs (Yang and Raine, 2009;
Sato et al., 2012), but here, we only found preliminary evidence
that lateral OFC SA may be lower in subjects with Cluster B PD-
Sx (see Supplementary Materials). Interestingly, the evidence also
points to enlargement of the posterior caudate in the present
Cluster B PD-Sx sample (see Supplementary Materials), which
would be consistent with previous evidence in PD-Sx individuals
(Brambilla et al., 2004; Ersche et al., 2012; Glenn and Yang,
2012). Striatal enlargement is one of the cardinal findings in
the stimulant use disorder literature, and although it could
indicate gliosis (Chang et al., 2007; Kish, 2011; Mackey and
Paulus, 2013), it has also been suggested that it could reflect a
genetically determined predisposing feature (Ersche et al., 2012).
Our findings would support the latter, but the study was not
powered to definitively detect an effect.

Several limitations of the study should be noted. First,
although cluster-based grouping of symptomatology allowed for
investigation of consistencies across an entire cluster, this made
the groups heterogeneous, and important nuances may have been
lost. On the other hand, a significant percentage of PD patients
show symptoms from more than one PD (DeJong et al., 1993),
so that investigating shared features can identify more relevant
cluster-level targets. The present sample size did not allow for
further division than the cluster level, but future studies with
larger samples will be able to address individual PDs, and evaluate
effects that were observed only at trend levels in the present
study. Second, assignment to the PD-Sx group in this study relied
on self-report, as the Axis II questionnaire was not followed
up with a clinical interview. Based on the questionnaire alone
(which is sensitive, but not specific), subjects would have received
more “diagnoses” than actually warranted, so that participants
could not be diagnosed per se. Subjects who would have met
vs. not met clinical criteria in the follow-up interview therefore
had to be considered as a single group. Finally, many PDs are
preceded by a history of abuse or other traumatic circumstances
that could influence their trajectory, but this information was not
collected in the present study. Similarly, no data on functional
status or behavioral performance were collected, so that direct
conclusions about functional relevance of morphological findings
cannot be drawn. Although this limits our ability to determine the
clinical relevance of our findings, the results can help guide future
investigations.

These limitations notwithstanding, our results point to
subcortical and cortical morphological features associated with
Cluster C PD symptomatology that can guide future research
into the etiology of PDs (especially OCPD). The findings
further suggest that morphological features associated with
PD-Sx should be taken into account in clinical studies of
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often-comorbid Axis I psychiatric disorders (e.g., substance use,
mood, or anxiety disorders). Together, the findings present
potential neurobiological targets to pursue in addressing PD
symptomatology.
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