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Diabetic nephropathy (DN) is a major complication of diabetes mellitus. Clinic reports indi-
cate cigarette smoking is an independent risk factor for chronic kidney disease including DN;
however, the underlying molecular mechanisms are not clear. Recent studies have demon-
strated that nicotine, one of the active compounds in cigarette smoke, contributes to the
pathogenesis of the cigarette smoking-accelerated chronic kidney disease. One of the char-
acteristics of DN is the expansion of mesangium, a precursor of glomerular sclerosis. In the
present study, we examined the involvement of Wnt/β-catenin pathway in nicotine-mediated
mesangial cell growth in high glucose milieu. Primary human renal mesangial cells were
treated with nicotine in the presence of normal (5 mM) or high glucose (30 mM) followed by
evaluation for cell growth. In the presence of normal glucose, nicotine increased both the
total cell numbers and Ki-67 positive cell ratio, indicating that nicotine stimulated mesangial
cell proliferation. Although high glucose itself also stimulated mesangial cell proliferation,
nicotine further enhanced the mitogenic effect of high glucose. Similarly, nicotine increased
the expression of Wnts, β-catenin, and fibronectin in normal glucose medium, but further
increased mesangial cell expression of these proteins in high glucose milieu. Pharmacologi-
cal inhibition or genetic knockdown of β-catenin activity or expression with specific inhibitor
FH535 or siRNA significantly impaired the nicotine/glucose-stimulated cell proliferation and
fibronectin production. We conclude that nicotine may enhance renal mesangial cell pro-
liferation and fibronectin production under high glucose milieus partly through activating
Wnt/β-catenin pathway. Our study provides insight into molecular mechanisms involved in
DN.

Introduction
Diabetic nephropathy (DN) is a chronic kidney disease that manifests in the form of progressive pro-
teinuria, decline in glomerular filtration rate (GFR), hypertension, and a higher risk of cardiovascular
morbidity and mortality. Kidney pathology is characterized by thickening of the glomerular and tubular
basement membrane, mesangial expansion, and tubulo-interstitial fibrosis. As of 2017, an estimated 425
million people (1 in 11 adults) had diabetes worldwide, and 12% of global health expenditure is spent on
diabetes ($727 billion) [1]. In U.S.A. and China, the estimated diabetes people were 30.3 and 110 mil-
lion, respectively [2,3]. Amongst the causes of end-stage kidney disease (ESKD) in the world, diabetes
mellitus accounted for 30–47% [4]. Since causes and molecular mechanisms of DN are still not clear,
therefore, it is difficult to prevent and treat; moreover, the existing management of diabetic kidney pa-
tients constitutes a tremendous socioeconomic burden on society [1]. Therefore, improving mechanistic
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Figure 1. Nicotine increases mesangial cell proliferation in high glucose milieu

Human mesangial cells were cultured in serum-free medium with 5 mM glucose for 24 h, and then were incubated in medium

containing nicotine (10 μM) and high glucose (30 mM) for 72 h. Nuclei were stained with Hoechest 33342, and cell numbers were

counted under microscope (A,B). Representative microphotographs are displayed to show cell growth (A). The cell numbers were

calculated from three independent experiments (B). Cells were immunolabeled for Ki-67; representative microfluorographs are

displayed (C,D). Ki-67 positive cells are indicated by arrows (C). Ki-67 positive cell ratios were calculated from three independent

experiments (D). *P<0.05 in comparison with control (5 mM glucose, 0 μM nicotine) and #P<0.05 in comparison with nicotine

treatment (5 mM glucose, 10 μM nicotine). Scale bars = 100 and 20 μm for (A,C).

understanding of DN and developing new and effective therapeutic approaches to prevent or delay the progression
of DN are needed.

Cigarette smoking is amongst the top ten contributors of morbidity and mortality of human population [5]. In-
creasing evidences have demonstrated that cigarette smoking is an independent risk factor for the development and
progression of chronic kidney disease including DN [6-10]. Recent studies have demonstrated that nicotine, one of
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Figure 2. Nicotine increases mesangial cell fibronectin production in high glucose milieu

Human mesangial cells were cultured in serum-free medium with 5 mM glucose for 24 h, and incubated in medium containing

nicotine (10 μM) and high glucose (30 mM) for 72 h. (A) RNAs were extracted, and real-time PCR was performed to detect the

expression of fibronectin mRNA. (B) Cell lysates were collected for Western blotting to detect fibronectin protein. Representative

gels are shown. (C) The protein bands were scanned and the acquired images were analyzed using the public domain NIH image

program for data quantitation. Expression of fibronectin was normalized to β-actin. Data are presented as fold of control expression.

*P<0.05 in comparison with control (5 mM glucose, 0 μM nicotine), and #P<0.05 in comparison with nicotine treatment (5 mM

glucose, 10 μM nicotine).

the highly active compounds in cigarette smoke, contributes to the pathogenesis of smoking-mediated kidney dys-
function [11,12]. Nicotine plays its role through activation of specific nicotinic ACh receptors (nAChRs). Studies
from our group and others have confirmed that the nAChRs are expressed in kidney cells including podocytes, tubu-
lar epithelial cells, and mesangial cells. In our previous studies, we found that stimulating podocyte, one of the most
important epithelial cells for blood–urine barrier, activates MAPK kinases and enhances endogenous ROS genera-
tion, which promotes podocyte apoptosis [13]. It is reported that short-term stimulation of tubular epithelial cells
with high dose of nicotine (200–400 μM) causes apoptosis or epithelial–mesenchymal transition (EMT) through
enhanced ROS generation [14,15]; while long-term stimulation with low dose of nicotine (1–10 μM) increases pro-
liferation through activaton of AKT [16]. For mesangial cell, nicotine stimulation activates TGF-β pathway, which
promotes the cell proliferation and production of extracellular matrix proteins [17-19]. These studies show that nico-
tine stimulation causes injuries to the kidney cells, leading to renal dysfunction. However, the molecular mechanisms
underlying nicotine-accelerated DN have not been well elucidated yet.

Mesangial cells are specialized cells that reside in the glomerular mesangium along with the mesangial matrix in
the center of capillary loops. They play an important role in the maintenance of glomerular filtration, and respond
to local injury in the form of proliferation, apoptosis, and matrix remodeling [20]. Mesangial cell proliferation is as-
sociated with extracellular matrix accumulation, while a decrease in proliferation is associated with an attenuated
mesangial sclerosis [21-23]. Previous reports have shown that nicotine promotes mesangial cell proliferation and fi-
bronectin production through activation of TGF-β signaling pathway [17-19], but its role on mesangial cell growth
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Figure 3. Nicotine activates mesangial cell Wnt/β-catenin pathway in high glucose milieu

Human mesangial cells were cultured in serum-free medium with 5 mM glucose for 24 h, and then were stimulated for 24 h with

nicotine (10 μM) and high glucose (30 mM). (A) RNAs were extracted and real-time PCR was performed to detect the expression

of fibronectin mRNA. (B) Cell lysates were collected for Western blotting to detect the proteins of Wnt3, Wnt7B, and β-catenin.

Representative gels are shown. (C) The protein bands were scanned and the acquired images were analyzed using the public

domain NIH image program for data quantitation. Expression of Wnt3, Wnt7B, and β-catenin was normalized to β-actin. Data are

presented as fold of control expression. (D) The mediums were collected for ELISA to determine the secretion of Wnt3. *P<0.05

in comparison with control (5 mM glucose, 0 μM nicotine), and #P<0.05 in comparison with nicotine treatment (5 mM glucose, 10

μM nicotine).
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Table 1 Primer sequences for real-time PCR

Gene Forward primer Reverse primer

Wnt2 TAGTCGGGAATCTGCCTTTG TTCCTTTCCTTTGCATCCAC

Wnt2B CTCATCAGCAGGGGTAGTCC AAAACGGACACCGTAGTGGA

Wnt3 ACGAGAACTCCCCCAACTTT GATGCAGTGGCATTTTTCCT

Wnt6 GGTTATGGACCCTACCAGCA AATGTCCTGTTGCAGGATGC

Wnt7B GCAAGTGGATTTTCTACGTG TGACAGTGCTCCGAGCTTCA

β-catenin GCAGAAAATGGTTGCCTTGCTC AGCACCTTCAGCACTCTGCTTG

GAPDH CCATGGAGAAGGCTGGGC CAAAGTTGTCATGGATGA

in high glucose milieu has not been investigated. In addition, the pleiotropy of TGF-β makes it not suitable for ther-
apeutic target. We hypothesized that nicotine enhances mesangial cell proliferation and fibronectin production in
high glucose milieu through Wnt/β -catenin pathway.

Materials and methods
Culture of mesangial cell
Primary human renal mesangial cells were purchased from ScienCell (Carlsbad, CA), grown in Mesangial Cell
Medium (ScienCell) supplemented with 2% FBS and 1% mesangial cell growth supplement (ScienCell). Cells were
passaged by trypsinization when confluent and used between the third and ninth passages. Before treatment, cells
were cultured in serum-free RPMI medium with 5 mM glucose for 24 h.

Real-time PCR
Total RNA was isolated from human renal mesangial cells using TRIzol reagent (Invitrogen). Five micrograms of total
RNA were reverse transcribed using the first-strand synthesis system (Invitrogen). Real time-PCR was performed in a
Prism 7900HT sequence-detection system (Applied Biosystems, Foster City, CA, U.S.A.). Relative mRNA levels were
determined and standardized with a GAPDH internal control using comparative ��CT method. GAPDH was used
as an internal control. Sequences of primers are listed in Table 1.

Western blotting analysis
Western blotting was performed using established methodology [13]. Briefly, cells were washed with PBS and lysed
in RIPA buffer. Proteins (20–30 μg) were separated by 10–12% SDS/PAGE and then transferred on an immunoblot
PVDF membrane (Bio-Rad, Hercules, CA). After blocking in PBS/Tween (0.1%) with 5% nonfat milk, the membrane
was incubated with primary antibodies overnight at 4◦C followed by horseradish peroxidase-conjugated secondary
antibodies (Santa Cruz Technology, sc-2033 for anti-goat, and sc-2004 for anti-rabbit, 1:3000) and then developed
using ECL solution (Pierce). Primary antibodies used were rabbit anti-β-catenin (Abcam, ab32572, 1:1000), rab-
bit anti-fibronectin (Santa Cruz Technology, sc-9068, 1:1000), rabbit anti-Wnt3 (Abcam, ab32249, 1:1000), rabbit
anti-Wnt7B (Abcam, ab94915, 1:1000), and goat anti-actin (Santa Cruz Technology, sc-1616, 1:3000). For protein
expression quantitation, the films were scanned with a CanonScan 9950F scanner and the acquired images were then
analyzed using the public domain NIH image program (http://rsb.info.nih.gov/nih-image/).

Ki-67 staining
Mesangial cells (5 × 104) were planted in 35-mm dishes, and after appropriate treatment, immunofluorescent staining
was performed as reported previously [13]. Briefly, the medium was removed, and the cells were successively fixed
with 4% PFA, permeabilized with 0.3% Triton X-100, and were blocked with 2% BSA in 0.1% Triton X-100. Then, the
cells were incubated with primary antibody, rabbit anti-Ki-67 (Santa Cruz Technology, sc-15402, 1:100), overnight at
4◦C, followed by Alexa Fluor secondary antibodies (Invitrogen, A10042, 1:800), donkey anti-rabbit IgG Alexa Fluor
568 for 1 h at room temperature. Nuclei were stained with Hoechest 33342. Staining results were visualized and
captured with a ZEISS microscope, and Ki-67 positive cells were counted.

ELISA
Wnt3 in the medium of mesangial cell was measured by using the WNT3 ELISA Kit (Cat# OKCD00611, Aviva Systems
Biology, San Diego, CA), following the manufacturer’s instructions.
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Statistical analyses
Data were presented as means +− S.D. unless otherwise noted. All experiments were repeated at least three times
with duplicate or triplicate samples in each assay. All data were evaluated statistically by ANOVA, followed by
Newman–Keuls multiple comparison tests using software (Prism 4.0, GraphPad Software). In the case of single mean
comparison, data were analyzed by t test. P-values <0.05 were regarded as statistically significant.

Results and discussion
Nicotine enhances mesangial cell proliferation in high glucose milieu
Nicotine has been demonstrated to increase mesangial cell proliferation and fibronectin production [17-19]. However,
it is not clear whether high glucose has potential to exacerbate these phylogenic effects. To examine this aspect, we
treated primary human mesangial cells with nicotine (10 μM) in the presence of normal (5 mM) or high glucose
(30 mM), followed by proliferation assay by counting the cell numbers. High glucose (30 mM) increased the cell
proliferation when compared with low glucose (5 mM); these findings are consistent with the previous reports [21,22].
Nicotine (10 μM) significantly increased the cell proliferation in the presence of normal glucose milieu (5 mM), but
further exacerbated mesangial cell proliferation in high glucose milieu (Figure 1A,B).

The Ki-67 is a protein strictly associated with cell proliferation. During interphase, its antigen can be exclusively
detected within the cell nucleus, whereas in mitosis most of the protein is relocated to the surface of the chromosomes
[24]. It is present during all active phases of the cell cycle (G1, S, G2, and mitosis), but is absent from resting (quiescent)
cells (G0) [25]. Cellular content of Ki-67 protein markedly increases during cell progression through S-phase of the cell
cycle [26]. Because of these properties, Ki-67 is regarded as a cellular marker for proliferation. To confirm the effect
of nicotine and high glucose on mesangial cell proliferation, we performed immunofluorescent studies to examine
the changes in Ki-67 positive cell ratios. Results of these studies showed that nicotine increased the Ki-67 positive cell
ratio, which was further pronounced in the presence of high glucose (Figure 1C,D).

To further confirm these findings, mesangial cells were pre-treated with high glucose for 48 h, and then treated with
nicotine. Results showed that nicotine exacerbated cell proliferation in high glucose milieu when compared with low
glucose milieu (data not shown). Combined together, these data indicate that high glucose enhances nicotine-induced
renal mesangial cell proliferation. This is the first report to show the synergistic effect of nicotine and high glucose
on the proliferation of mesangial cells.

Nicotine enhances mesangial cell fibronectin production in high glucose
milieu
DN is characterized by vast areas of mesangial expansion as a consequence of the accumulation of extracellular matrix.
Fibronectin is a major component of extracellular matrix and accompanied with glomerular sclerosis. To examine
the effect of nicotine on fibronectin expression in high glucose milieu, we treated human mesangial cells with high
glucose and nicotine for 24 h, and then collected RNA for real-time PCR. Both high glucose and nicotine alone
could increase the expression of fibronectin, while both glucose and nicotine combined together further increased its
expression (Figure 2A).

To determine translation of fibronectin protein, Western blotting analysis was carried out with the cell lysates
obtained from the abovementioned protocol. Both high glucose and nicotine alone increased the protein expression
of fibronectin; however, nicotine further exacerbated high glucose-mediated mesangial cell expression of fibronectin
(Figure 2B,C). Combined together, these data indicate that high glucose enhances nicotine-induced mesangial cell
proliferation and fibronectin production.

Nicotine activates Wnt/β-catenin signaling pathways in mesangial cell
Canonical Wnt/β-catenin signaling pathway plays an important role in the development and progression of renal
fibrosis, and has been demonstrated to be a new target for the therapeutic strategy to prevent and/or slow down
the progression of renal fibrosis [27-29]. In canonical Wnt/β-catenin signaling pathway, extracellular ligands (Wnts)
bind to Frizzled (FZD) receptors and low-density lipoprotein receptor-related protein 5/6 (LRP 5/6) and disheveled
(DSH), contributing to accumulation of cytosolic β-catenin and its import into the nucleus to act as a transcriptional
coactivator of transcription factors of the TCF/LEF family. In the absence of Wnts, β-catenin will be degraded in the
cytoplasm. Wnt/β-catenin signaling pathway has been demonstrated to be activated by nicotine or high glucose alone
in several cell types [30-33], however, their role in mesangial cells has not been reported yet. We hypothesized that
the combination of nicotine and high glucose will enhance the activation of Wnt/β-catenin signaling pathway, and
their combined effect will further increase mesangial cell proliferation and fibronectin production. To validate this
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Figure 4. Blocking β-catenin attenuates nicotine and high glucose induced proliferation and fibronectin production

Human mesangial cells were cultured in serum-free medium with 5 mM glucose for 24 h. After addition of FH535 (500 nM) for 1 h,

the cells were stimulated for 72 h with nicotine (10 μM) and high glucose (30 mM). (A) Nuclei were stained with Hoechest 33342,

and cell numbers were counted under microscope. (B) Cell lysates were collected for Western blotting to detect fibronectin protein.

Representative gels are shown. (C) The protein bands were scanned and the acquired images were analyzed using the public

domain NIH image program for data quantitation. Expression of fibronectin was normalized to β-actin. Data are presented as fold

of control expression. *P<0.05 in comparison with control (5 mM glucose, 0 μM nicotine, no FH535), and #P<0.05 in comparison

with nicotine treatment (30 mM glucose, 10 μM nicotine, no FH535). –, 0 μM nicotine and 5 mM glucose; +, 10 μM nicotine and 30

mM glucose.

hypothesis, we treated human mesangial cells with high glucose (30 mM) and nicotine for 24 h, and then collected
RNA for real-time PCR. Results showed that both glucose and nicotine alone could increase the expression of Wnts
(2, 2A, 2B, 3, 6, and 7B), and β-catenin, while both glucose and nicotine combined together, they further increased
the expression of these genes (Figure 3A).

We also collected the cell lysates and performed Western blotting. Results showed that the protein of Wnt3, Wnt7B,
and β-catenin were increased by glucose and nicotine, and their combined use further increased the expression
(Figure 3B,C).

To measure the Wnts in the medium of mesangial cell, we selected Wnt3 as a representative and performed ELISA.
Results showed that either glucose or nicotine alone could increase the secretion of Wnt3, and their combination
increased it further, which is similar with the results of Real-time PCR and Western blotting (Figure 3D). Combined
together, these results validate our hypothesis that nicotine and high glucose have additive effects on the activation
of Wnt/β-catenin signaling pathway in mesangial cell.

Blocking Wnt/β-catenin signaling attenuates nicotine-induced mesangial
cell proliferation and fibronectin production
To establish a causal relationship between the activation of Wnt/β-catenin signaling and the proliferation of mesangial
cell, we evaluated the effect of the blockade of the signaling pathway on mesangial cell proliferation. Since β-catenin
is the key effector molecule in Wnt/β-catenin signaling pathway, we selected it as the target. We pre-treated human
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mesangial cells with β-catenin specific inhibitor FH535 in low glucose medium (5 mM), and then treated them with
nicotine (10μM) and high glucose (30 mM). After 3 days, we counted the cell numbers under a light microscope. Our
results showed that nicotine and high glucose significantly increased the cell numbers when compared with control,
while addition of FH535 abolished the mitogenic effect of nicotine and high glucose (Figure 4A). We also collected
the cell lysates and performed Western blotting to detect the expression of fibronectin. FH535 significantly decreased
nicotine and high glucose induced fibronectin expression (Figure 4B,C).

To further confirm this observation, we knocked down β-catenin by using siRNA, and then treated the mesangial
cells with nicotine and high glucose for 3 days. Our results showed that knocking down β-catenin also decreased
nicotine-induced mesangial cell proliferation and fibronectin production (data not shown). Combined together, we
confirmed that blockade of β-catenin attenuates nicotine induced mesangial cell proliferation and fibronectin pro-
duction in high glucose milieu.

In the present study, we investigated the effect of nicotine and high glucose on mesangial cell. We found that nico-
tine could exacerbate high glucose induced mesangial cell proliferation and fibronectin production. Both nicotine
and high glucose activated Wnt/β-catenin signaling pathway in mesangial cell, and their combined use further acti-
vated this pathway. Blocking Wnt/β-catenin pathway with β-catenin specific inhibitor or siRNA significantly atten-
uated nicotine and high glucose induced mesangial cell proliferation and fibronectin production. These results sug-
gest that nicotine increases mesangial cell proliferation and fibronectin production in high glucose milieu through
Wnt/β-catenin pathway. Our study highlights new potential targets for the prevention and therapy of DN.
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