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ABSTRACT: Introduction: Osteopontin (OPN) polymorphisms are
associated with muscle size and modify disease progression in
Duchenne muscular dystrophy (DMD). We hypothesized that OPN
may share a molecular network with myostatin (MSTN). Methods:
Studies were conducted in the golden retriever (GRMD) and mdx
mouse models of DMD. Follow-up in-vitro studies were employed
in myogenic cells and the mdx mouse treated with recombinant
mouse (rm) or human (Hu) OPN protein. Results: OPN was
increased and MSTN was decreased and levels correlated
inversely in GRMD hypertrophied muscle. RM-OPN treatment led
to induced AKT1 and FoxO1 phosphorylation, microRNA-486
modulation, and decreased MSTN. An AKT1 inhibitor blocked
these effects, whereas an RGD-mutant OPN protein and an
RGDS blocking peptide showed similar effects to the AKT inhibitor.
RMOPN induced myotube hypertrophy and minimal Feret diame-
ter in mdx muscle. Discussion: OPN may interact with AKT1/
MSTN/FoxO1 to modify normal and dystrophic muscle.
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Osteopontin (OPN; SPP1) is a multifunctional
cytokine with diverse functions. Its primary struc-
ture includes an arginine–glycine–aspartic acid

(RGD) site that mediates interactions with the
cell surface integrins (ITGs) avb1, avb3, and
a5b1.1–5 Proteolytic cleavage by thrombin exposes
a human SVVYGLR, ITG-binding motif, expand-
ing the ITG-binding repertoire to include a4b1,
a4b7, and a9b1,1,6,7 whereas a heparin-binding
domain allows OPN to bind to CD44.8 OPN also
has important roles in cancer progression and
inflammation.9–12

Germane to OPN’s role in muscle, a promoter
polymorphism (rs28357094) alters transcription
factor binding and baseline gene transcription in
multiple cell types. The rs28357094 genotype was
associated with an increase in biceps muscle size in
women but not men,13 in keeping with an effect of
estrogens on OPN expression.14–16 In healthy
human muscle, OPN expression increased with
acute mechanical loading, further suggesting a
role of OPN in muscle injury and hypertrophic
remodeling.17 The same rs28357094 polymorphism
tracked with loss of muscle strength, motor func-
tion, and independent ambulation in 3 separate
cohorts of dystrophin-deficient Duchenne muscu-
lar dystrophy (DMD) patients.18,19 Although not
detectable in normal human or mouse muscle,
OPN is highly expressed in DMD patient muscle,
as well as serum and muscle of dystrophin-
deficient mdx mice and golden retriever muscular
dystrophy (GRMD) dogs.20–26 In vitro, treating
C2C12 myoblasts with soluble OPN protein
increased proliferation and decreased fusion and
migration, whereas insoluble OPN protein pro-
moted adhesion and fusion.27

Given the associations of OPN gene polymor-
phisms, protein levels with muscle size, and its effects
in vitro, we studied relationships between OPN protein
and myostatin (MSTN), a known regulator of muscle
mass.

Additional supporting information can be found in the online version of this
article.
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forkhead box O1; Hu-WT OPN, human wild-type osteopontin (normal
RGD sequence); Hu-RGD!KAE OPN, Human mutant osteopontin (lacks
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METHODS

Animals. All dogs and mice were used and cared for
according to principles outlined in the National Research
Council’s “Guide for the Care and Use of Laboratory Ani-
mals.” All efforts were made to minimize animal suffering.
Dogs were housed either at the University of Missouri (Insti-
tutional Animal Care and Use Committee No. 2435) or the
University of North Carolina at Chapel Hill (Institutional
Animal Care and Use Committee No. 06-338.0). GRMD
dogs were identified as described elsewhere.28 Tibiotarsal
(TTJ) joint angle, TTJ joint extensor and flexor tetanic tor-
que, and cranial sartorius (CS) circumference were assessed
in all dogs at 6 months of age when phenotypic results best
correlate.29–33 Muscle biopsies were taken at surgery or nec-
ropsy, as previously described.34 We also utilized a murine
muscle regeneration series from previously published stud-
ies.35,36 Finally, X-linked muscular dystrophy (mdx) mice
were housed at the Children’s National Medical Center. At
3 weeks of age, 4 female mdx mice were injected with
recombinant mouse osteopontin (rmOPN)/green dye cock-
tail intramuscularly into the tibialis anterior (TA) muscle of
1 limb and an equal volume of 13 phosphate-buffered

saline (PBS)/green dye cocktail in the contralateral limb.
Green dye was used to determine the location of the injec-
tion cocktail with microscopy. Mice were necropsied and
muscle tissue was harvested.

Cell Culture. The well-established cell line, H-2kb-tsA58
wild-type (WT), conditionally immortalized murine myo-
blasts,37,38 were grown in complete growth medium consist-
ing of Dulbecco’s modified Eagle medium (DMEM), 2% L-
glutamine (Gibco, Carlsbad, California), 1% penicillin and
streptomycin (PAA, Dartmouth, Massachusetts), 2% chick
embryo extract (Sera Lab, UK), and interferon-gamma (20
units/ml) supplemented with 20% fetal calf serum. Myo-
blasts were maintained at 338C (95% air, 5% CO2) as prolif-
erative cells at low densities in complete growth medium.
To differentiate myoblasts into myotubes, cells were incu-
bated in DMEM spiked with 1% penicillin/streptomycin,
2% L-glutamine, and 2% horse serum. Myotubes were
allowed to differentiate for 4 or 5 days at 378C (95% air, 5%
CO2). Recombinant mouse (rm) OPN was a fusion protein
purchased from R&D Systems (Minneapolis, Minnesota).
One, 5, and 10 lg/ml of rmOPN were added to myoblasts

FIGURE 1. OPN and MSTN were inversely correlated in GRMD dogs. (A) OPN and MSTN mRNA expression were inversely corre-

lated in the CS at 4–9 weeks in GRMD dogs (r 5 –0.85, r2 5 0.72; P < 0.05; n 5 8), where myofiber hypertrophy is observed before

gross hypertrophy. (B) OPN was inversely correlated with CS muscle circumference in GRMD dogs at 6 months of age (r 5 –0.83, r2

5 0.69; P < 0.05; n 5 8). (C) Cardiotoxin-induced muscle injury in WT mice resulted in an immediate and substantial increase in

OPN with a temporally concurrent reduction in MSTN expression at day 1 postinjection. OPN levels eventually returned to day 0 (pre-

injection) levels while MSTN returned to subnormal levels.
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and/or myotubes in a 6-, 12-, or 24-well dish in serum-free
DMEM. Myoblasts were incubated with rmOPN for 24 and
48 hours. AKT inhibitor #124005 [1L6-hydroxymethyl-chiro-
inositol-2-(R)-2-O-methyl-3-O-octadecyl-sn-glycerocarbonate;
Calbiochem/EMD4 Biosciences, Darmstadt, Germany] was
diluted in dimethylsulfoxide and 5 lmol/L (target IC50 to
inhibit AKT) was added to individual rmOPN-treated wells.
Myotubes were treated with 10 lg/ml rmOPN (optimal con-
centration observed in treated myoblasts) at the end of day
4 of differentiation and incubated for 24 hours until the
end of day 5 to evaluate MSTN expression. To evaluate
hypertrophy, myotubes were differentiated for at least 3
days, then treated for 24–48 hours with 10 lg/ml of
rmOPN.

Human (Hu) WT OPN and Hu-RGD!KAE OPN pro-
teins were a generous gift from Dr. Larry Fisher and were
prepared as previously described.17,39 In Hu-RGD!KAE
OPN, the RGD amino acids were mutated to lysine (K), ala-
nine (A), and glutamic acid (E), respectively.40,41 For
human OPN experiments, H-2kb-tsA58 myoblasts were
treated with 10 lg/ml of Hu-WT OPN or Hu-RGD!KAE
OPN for 24 hours in serum-free growth medium. A peptide
that blocks the biological adhesion epitope Arg-Gly-Asp-Ser

(RGDS; R&D Systems; Minneapolis, Minnesota) was added
at 0.05 (0.253) and 0.2 (13) mg/ml to myotubes co-
treated with rmOPN for 24 hours.

Methods for light microscopy, RNA extraction, muscle
regeneration time series, total protein and DNA analysis,
quantitative reverse transcript–polymerase chain reaction
(RT-PCR), protein isolation and quantification, Western
blot, and enzyme-linked immunosorbent assay can be found
in the Supplementary Material available online.

RESULTS

OPN Was Correlated with MSTN and Muscle Size.

Quantitative RT-PCR data from the GRMD CS
muscle at 4–9 weeks (with cellular hypertrophy evi-
dent but before gross hypertrophy)17,34 showed a
strong negative correlation between OPN
(increased) and MSTN (decreased) mRNAs (Fig.
1A). OPN mRNA levels showed an inverse correla-
tion with CS muscle size in GRMD dogs at 6
months (Fig. 1B). OPN levels in the GRMD CS
muscle at 6 months correlated positively with TTJ

FIGURE 2. Recombinant mouse (rm)OPN treatment decreased MSTN expression. The rmOPN was dosed at 1, 5, and 10 lg/ml in H-

2kb-tsA58 WT, conditionally immortalized myoblasts, and 10 lg/ml in myotubes. All mRNA and protein experiments were performed

with 4–6 replicates. MSTN protein (PR) levels (pg/ml) were measured by enzyme-linked immunoassay and normalized to total protein

levels. Control (13 PBS) samples are shown in the far left column for panels (B)–(D) (*P � 0.05; ***P � 0.001). (A) rmOPN

decreased endogenous MSTN mRNA in myoblasts in a dose-dependent fashion at 24 hours. (B) rmOPN decreased MSTN protein in

a dose-dependent fashion in myoblasts at 48 hours. (C) rmOPN decreased MSTN protein in a dose-dependent fashion in myoblasts

at 48 hours. (D) rmOPN decreased MSTN protein in myotubes at 24 hours.
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angle and tetanic extensor force (P < 0.05; r >
0.85) and inversely with tetanic flexor force (P <
0.05; r > –0.79) (data not shown). We queried a
previously performed murine muscle regeneration
time series, which showed a dramatic increase in
OPN at day 1 after cardiotoxin intramuscular injec-
tion (Fig. 1C). Interestingly, MSTN decreased dur-
ing the same time period. OPN levels eventually
returned to day 0 (pre-injection) levels, whereas
MSTN returned to subnormal levels.

rmOPN Protein–Treated Cells Had Decreased and

Increased MSTN and AKT1 Phosphorylation,

Respectively. H-2kb-tsA58 WT myoblasts treated
with rmOPN showed a dose-dependent decrease in
MSTN mRNA and protein after 24 (Fig. 2A and B)
and 48 (Fig. 2C) hours of incubation. MSTN pro-
tein levels also decreased in myotubes treated with
rmOPN (Fig. 2D).

Consistent with activation of the AKT1 path-
way,2–4 rmOPN-treated cells had increased phos-
phorylated AKT1 (serine 473) levels after 24 hours
of treatment (Fig. 3A and B). Exposure of H-2kb-
tsA58 myoblasts to an AKT kinase inhibitor

(#124005) blocked both rmOPN-mediated AKT1
phosphorylation (Fig. 3A and B) and downregula-
tion of MSTN at the mRNA and protein level (Fig.
4A and B).

Recombinant Mouse OPN-Treated Cells Showed FoxO1

Phosphorylation and miRNA-486 Expression. Addition
of rmOPN to myoblast cultures increased FoxO1
phosphorylation at serine 256 (when normalized
to total FoxO1) compared with control (Fig. 3A
and C). This effect was blocked by AKT inhibitor
#124005 (Fig. 3A and C). Intriguingly, levels of
FoxO1 mRNA and protein were decreased by a
fold change of –1.3 in rmOPN-treated myogenic
cultures and restored by AKT inhibitor #124005
(Fig. 4A). After treating myoblasts with rmOPN, we
observed a 2-fold increase in miRNA-486, a known
regulator of FoxO1 and the AKT1/MSTN pathway
(Fig. 5A).42,43

OPN-Induced Reduction of MSTN Occurred through

Both RGD and Non-RGD Receptors. Myoblasts were
treated with a human recombinant OPN protein
with the ITG-binding RGD sequence mutated to

FIGURE 3. Recombinant mouse (rm)OPN treatment of H-2kb-tsA58 WT myoblasts led to phosphorylation of AKT1 and FoxO1. AKT1

and FoxO1 levels were measured by Western blot and quantified by densitometry. Phosphorylated AKT1 and FoxO1 were normalized

to total AKT and FoxO1 levels, respectively. The numbers to the left of the blots indicate molecular weight in kilodaltons (*P < 0.05;

**P < 0.01). T 5 total; P 5 phosphorylated. (A) AKT1 phosphorylation was induced in rmOPN-treated (10 lg/ml) myogenic cells after

24 hours of incubation compared with control (13 PBS). The AKT inhibitor #124005 blocked this effect. FoxO1 phosphorylation was

also greater in rmOPN-treated cells compared with control, and AKT inhibitor also blocked this effect. Duplicate to quadruplicates were

completed, as shown in each blot. Please note that all samples on each lane were run on the same gel. (B, C) Phosphorylated levels

of AKT1 and FoxO1 were increased in rmOPN-treated cells, whereas treatment with the AKT inhibitor decreased these levels to below

control values.
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KAE (RGD!KAE), which partially blocked both
the effects on AKT1 phosphorylation (Fig. 5B) and
reduced MSTN protein (Fig. 5C). Treatment of
myoblasts with Hu-WT OPN (normal RGD
sequence) resulted in more profound AKT1 phos-
phorylation and decreased MSTN protein expres-
sion compared with Hu-RGD!KAE OPN and
rmOPN (Fig. 5B and C). These results were fur-
ther supported by pretreating myotubes with an
RGDS blocking peptide to prevent rmOPN from
binding to the RGD amino acid sequence on ITGs.
The RGDS blocking peptide partially ablated the
effects of rmOPN on MSTN protein expression,
similar to the Hu-RGD!KAE OPN experiments,
but it was not dose-dependent (Fig. 5D).

Recombinant Mouse OPN Treatment Led to Myotube

and Myofiber Hypertrophy. We found an increase
in myotube hypertrophy in several myotubes in
rmOPN-treated cells compared with PBS control-
treated cells (Fig. 6A and B). Total protein con-
tent, normalized to total DNA content, was
increased after similarly treating myotubes with
rmOPN for 48 hours; there was no difference in

total DNA content between control and rmOPN-
treated myotubes (Fig. 6C). To test our hypothesis
in vivo, 3-week-old female mdx mice were co-
injected intramuscularly into the TA muscle with
rmOPN and a green dye cocktail, which led to an
increase in minimal Feret myofiber diameter 1
week later (Fig. 6D).

DISCUSSION

In addition to its well-established roles in can-
cer progression and inflammatory states, OPN has
been increasingly associated with muscle develop-
ment and remodeling. A single-nucleotide poly-
morphism in the OPN promoter region tracked
with differential muscle size in healthy women,
whereas OPN knockout mice had smaller TA
muscles.44 We previously showed that OPN poly-
morphisms were associated with muscle size in
healthy women13 and hypothesized that MSTN, a
well-known negative regulator of muscle mass,45,46

may share a molecular network with OPN. Simi-
larly, we showed that CS muscle in dystrophin-
deficient dogs had marked hypertrophy by 6
months of age, with sizes up to 300% of that in
normal dogs.32 After finding a strong inverse corre-
lation between OPN and MSTN in GRMD CS mus-
cle, we hypothesized that OPN could indeed
modify the MSTN muscle growth pathway. Surpris-
ingly, we found that OPN levels were inversely cor-
related with GRMD CS muscle size by 6 months of
age. We hypothesize that OPN exerted its down-
stream effects on MSTN at 4–9 weeks of age in
GRMD dogs, leading to muscle hypertrophy by 6
months of age, with a concomitant reduction of
OPN at the same time. Because OPN was inversely
correlated with CS muscle size at 6 months, it was
no surprise to see OPN track with other functional
outcome measures, such as TTJ angle and muscle
strength, in the GRMD dogs, as seen in other
studies.13,17,34

We further postulated that OPN could reduce
MSTN expression, which was tested in vitro. H-2kb-
tsA58 WT cells were treated with recombinant
OPN proteins, and signaling pathways through
ITGs/CD44, AKT1, FoxO1, and MSTN were
assessed. We observed AKT1 phosphorylation (ser-
ine 473) in OPN-treated cells and a decrease in
endogenous MSTN mRNA and protein. Therefore,
it was no surprise to observe decreased AKT1 phos-
phorylation and restored MSTN mRNA and pro-
tein after co-treating cells with rmOPN and an
AKT inhibitor. It should be noted that Morissette
et al. found that MSTN regulated AKT1-mediated
hypertrophy in myotubes.47 In our study, we
showed that AKT1 could indeed regulate MSTN
expression, suggesting a potential feedback mecha-
nism between MSTN and AKT1.

FIGURE 4. MSTN and FoxO1 decreased with rmOPN treat-

ment and this effect was rescued by an AKT inhibitor. (A)

MSTN and FoxO1 mRNA were decreased in H-2kb-tsA58 WT,

conditionally immortalized myoblasts after rmOPN treatment

(10 lg/ml). Addition of AKT inhibitor #124005 rescued MSTN

[fold-change (FC) 5 11.17] and FoxO1 (FC 5 11.452) mRNA

expression. (B) MSTN protein decreased after rmOPN treat-

ment and was rescued with AKT inhibitor (FC 5 11.4) in

myoblasts.
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Humans (SVVYGLR) and mice (SLAYGR) share
common OPN-binding sites in ITG and CD44
receptors.2–7 To determine the relative roles these
receptors play in muscle, we treated the murine H-
2kb-tsA58 WT myoblasts with Hu-WT OPN (normal
RGD sequence, binding to both ITG-dependent
and non-ITG receptors) and also a mutant Hu-
RGD!KAE OPN (mutated RGD, binding to non–
ITG-dependent receptors such as CD44). Interest-
ingly, the Hu-WT OPN protein produced more
profound AKT1 phosphorylation when compared
with rmOPN treatment and Hu-RGD!KAE OPN.
MSTN protein was similarly downregulated, in
keeping with continued signaling through AKT1
via ITG and non-ITG receptors. We saw a compara-
ble pattern with the mutant RGD!KAE OPN pro-
tein (AKT1 phosphorylation and reduced MSTN),
but less intense compared with Hu-WT OPN, sug-
gesting that OPN, at the very least, binds non–
RGD-dependent ITGs a4b1, a4b7, and a9b1 (and
possibly non–RGD-dependent CD44). However,
the significant further increase in AKT1

phosphorylation and decrease in MSTN protein
levels after Hu-WT OPN treatment compared with
Hu-RGD!KAE OPN suggests that RGD-dependent
ITGs (e.g., avb1, avb3, and a5b1) also may play a
role. Our findings are reinforced by RGDS block-
ing peptide experiments in which MSTN protein
was not as decreased when compared with rmOPN
treatment alone.

Collectively, these data suggest that OPN treat-
ment may signal through RGD- and non–RGD-
dependent receptors, resulting in decrease MSTN.
The use of human OPN not only helped deter-
mine whether RGD-dependent ITGs are involved,
but also whether non-RGD receptors, such as
CD44 or a4b1, a4b7, and a9b1, contribute. One con-
cern relates to whether bioactive growth factors
made by the myeloma cell line during the genera-
tion of the rmOPN protein (R&D Systems) could
confound our results. However, a reduction of
MSTN expression was confirmed by the use of our
Hu-WT and RGD!KAE OPN proteins generated
in human marrow stromal fibroblasts. Future

FIGURE 5. AKT1 is activated by OPN through RGD- and non–RGD-dependent receptors. Hu-WT OPN (normal RGD sequence) and

Hu-RGD!KAE OPN (lacking the ITG-binding RGD sequence) were tested in H-2kb-tsA58 WT myoblasts. (A) miR-486 was increased

in rmOPN-treated myoblasts (FC 5 12.07; P < 0.05) (*P � 0.05; **P � 0.01). (B) rmOPN, Hu-RGD!KAE OPN, and Hu-WT OPN

increased AKT phosphorylation compared with 13 PBS control, with the latter showing the greatest effect (P < 0.05). Both human

OPN proteins showed greater AKT1 phosphorylation abilities compared with rmOPN (P < 0.01). All OPN proteins increased FoxO1

phosphorylation. (C) Hu-WT OPN, Hu-RGD!KAE OPN, and rmOPN all decreased MSTN compared with 13 PBS control (P < 0.05).

Hu-WT OPN decreased MSTN protein slightly further compared with Hu-RGD!KAE OPN (P < 0.05). (D) rmOPN decreased MSTN

protein compared with 13 PBS (P < 0.05). This effect was partially blocked when rmOPN was co-treated with an RGDS amino acid

blocking peptide [0.05 (0.253) and 0.2 mg/ml (13)] compared with rmOPN alone, but was not dose-dependent (P < 0.01).
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experiments beyond the scope of this study will be
required to fully delineate the OPN–ITG binding
partners.

Earlier studies have revealed that FoxO1 is a
transcriptional regulator of MSTN, binding its pro-
moter region to activate transcription.48 AKT1-
mediated phosphorylation prevented FoxO1 trans-
location to the nucleus, thereby interfering with its
transcriptional functions.49 We hypothesized that
OPN treatment could therefore lead to both AKT1
and FoxO1 phosphorylation with a parallel
decrease in MSTN expression. We indeed observed
reduced endogenous FoxO1 and increased FoxO1
phosphorylation, with an associated decrease in
MSTN mRNA and protein in rmOPN-treated cells.
Addition of the AKT inhibitor #124005 to the
rmOPN-treated myoblasts appeared to rescue
FoxO1 mRNA and decrease FoxO1 phosphoryla-
tion, restoring and even increasing MSTN mRNA
and protein. This suggests that OPN, AKT1,
FoxO1, and MSTN may share a signaling pathway
in skeletal muscle cells.

As mentioned previously, we also observed a
decrease in FoxO1 mRNA after rmOPN treatment
of the myoblasts and hypothesized that miRNAs
targeting the mRNA were being upregulated by

rmOPN treatment. Consistent with this hypothesis,
miR-486, which has previously been shown to
decrease FoxO1 levels and regulate the MSTN/
AKT pathway,42,43 was increased 2-fold in our
rmOPN-treated myoblasts. Therefore, in addition
to activating the AKT pathway, OPN also appears
to be associated with downstream miRs to modu-
late FoxO1.

After defining the molecular pathways involved,
a functional relationship of OPN treatment was
demonstrated with myotube hypertrophy and
increased total protein content. OPN treatment
was previously shown to increase myoblast prolifer-
ation, but reduce fusion.27 On the other hand,
MSTN was observed to regulate myoblast prolifera-
tion in separate studies.47,48 Although we did not
measure myoblast proliferation in the current
study, we can infer that a reduction in MSTN
expression may result in myoblast proliferation via
OPN treatment, leading to myotube hypertrophy.
Nevertheless, we observed increased minimal Feret
diameter in OPN-injected mdx muscle. We hypoth-
esized that the 3-week age group, an age with pro-
found degeneration and regeneration within mdx
skeletal muscle, would have regenerating myofibers
expressing more ITG and non–ITG-dependent

FIGURE 6. Myotubes and muscle treated with rmOPN displayed hypertrophy. Myotubes were treated with rmOPN for 24–48 hours

and subsequently evaluated on day 5 of differentiation. A 10-lg/ml dose for rmOPN optimal and was used for each experiment. (A)

Myotubes were treated with 13 PBS to serve as a control. (B) Several of the H-2kb-tsA58 WT myotubes exhibited increased cell diam-

eter (white lines) compared with 13 PBS. (C) Treatment of myotubes with rmOPN increased total protein content by 26.6% after nor-

malizing to total DNA content compared with control (P < 0.05). All experiments were performed in sextuplicates. (D) There was

increased minimal Feret diameter in rmOPN-injected tibialis anterior (TA) muscles of 4-week-old mdx mice compared with contralateral

saline-injected TA muscles. Mice were injected at 3 weeks of age (1-week treatment duration). The minimal Feret diameter was mea-

sured only for myofibers with green dye immediately adjacent to the myofiber membrane. N 5 4 limbs per group.
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receptors compared with a later age. Therefore,
OPN could more efficiently exert its downstream
effects, leading to myofiber hypertrophy. Potential
drawbacks were the use of female mdx mice, as
males are predominantly affected in DMD, but
also possible hormonal influences on OPN expres-
sion,15,16 and the lack of a blinded observer to
measure minimal Feret diameter.

In a previous study we disclosed that the degree
of GRMD CS muscle hypertrophy correlates
directly with AKT1 phosphorylation and inversely
with MSTN levels at 6 months of age.34 Data from
the previous study were substantiated by our in-
vitro OPN–AKT1–MSTN pathway and in-vivo mdx
studies results reported here. These collective data
suggest that the AKT1 pathway is a specific modi-
fier of muscle size in the GRMD CS and, poten-
tially, other GRMD and DMD muscles that
undergo hypertrophy.

We propose a potential pathway where OPN
can decrease MSTN expression through AKT1/
FoxO1 signaling, with subsequent myotube and
myofiber hypertrophy (Fig. 7). This model could
account for OPN’s modulation of muscle size13

and hypertrophy of dystrophin-deficient muscle.34

The authors thank Dr. Alyson Fiorillo and Dr. Chris Heier for their
discussions; Dr. Sree Rayavarapu, Dr. Kanneyboyina Nagaraju, and
Dr. Zuyi Wang for their technical assistance; Dr. Larry Fisher for
contributing human recombinant osteopontin proteins; and Dan
and Janet Bogan and Jennifer Dow for animal care and data collec-
tion. This work was presented in part at the 2012 FASEB Osteopon-
tin Biology Meeting in Saxtons River, Vermont.
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