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Abstract: Mammals contain 28 genes encoding Transient Receptor Potential (TRP) proteins. The proteins assemble into 

cationic channels, often with calcium permeability. Important roles in physiology and disease have emerged and so there 

is interest in whether the channels might be suitable therapeutic drug targets. Here we review selected members of three 

subfamilies of mammalian TRP channel (TRPC5, TRPM2 and TRPA1) that show relevance to sensing of adversity by 

cells and biological systems. Summarized are the cellular and tissue distributions, general properties, endogenous 

modulators, protein partners, cellular and tissue functions, therapeutic potential, and pharmacology. TRPC5 is stimulated 

by receptor agonists and other factors that include lipids and metal ions; it heteromultimerises with other TRPC proteins 

and is involved in cell movement and anxiety control. TRPM2 is activated by hydrogen peroxide; it is implicated in 

stress-related inflammatory, vascular and neurodegenerative conditions. TRPA1 is stimulated by a wide range of irritants 

including mustard oil and nicotine but also, controversially, noxious cold and mechanical pressure; it is implicated in pain 

and inflammatory responses, including in the airways. The channels have in common that they show polymodal 

stimulation, have activities that are enhanced by redox factors, are permeable to calcium, and are facilitated by elevations 

of intracellular calcium. Developing inhibitors of the channels could lead to new agents for a variety of conditions: for 

example, suppressing unwanted tissue remodeling, inflammation, pain and anxiety, and addressing problems relating to 

asthma and stroke. 

Keywords: Calcium-permeable channel, cationic channel, inflammation, pain, redox potential, remodeling, transient receptor 
potential. 

INTRODUCTION 

 Knowledge of the mammalian Transient Receptor Poten-
tial (TRP) channels arose from studies of Drosophila 
melanogaster TRP, which forms a non-selective cationic 
channel in photoreceptors and enables sustained responses to 
bright light. Searches of mammalian cDNA libraries and 
databases subsequently revealed an array of TRP-related 
proteins, now referred to as the mammalian TRP channels. 
There are known to be 28 TRP-related mammalian genes, 
most of which encode Ca2+-permeable non-selective cationic 
channels. Importance in human disease has been identified, 
for example through studies of polycystic kidney disease 
where TRP channel mutations are causative factors. TRP 
channels are thought to exist as homo- or hetero- tetramers, 
with the ion pore at the centre of the cluster. There appear to 
be six membrane-spanning segments per TRP protein and 
the N- and C-termini are intracellular. Based on amino acid 
sequence comparisons the channels are sub-divided into 
families that include, but are not limited to, the Canonical 
(C), Melastatin (M) and Ankyrin (A) types. In mammals 
there are 7 TRPC proteins, 8 TRPM proteins and 1 TRPA 
protein. 

 Much has been learned about mammalian TRP channels 
but the overall biological purpose of the channels remains a 
matter of debate. Unlike many other ion channels, TRP  
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channels generally have weak voltage dependence and are 
not directly gated by major neurotransmitters, so they do not 
exist as primary determinants of electrical excitability or fast 
synaptic transmission. Instead, a hypothesis is that the TRP 
channels enable coupling of relatively slow chemical and 
physical events to cellular Ca2+-signalling systems, directly 
because of intrinsic Ca2+-permeability or indirectly through 
permeability to other ions, such as Na+. In several cases, 
events sensed by TRP channels are known. Some of the 
activating chemicals are dietary factors. Perhaps best known 
is capsaicin (of chilli pepper), which activates TRPV1 
channels. There is also menthol activation of TRPM8 and 
carvacrol activation of TRPV3. All of these TRP channels 
are expressed in sensory neurones, supporting the persuasive 
hypothesis that TRP channels are players in the sensory 
systems of mammals. However, expression of the channels is 
not restricted to sensory neurones, in keeping with a general 
tendency for TRP channels to be expressed across many cell 
types of the body. Furthermore, TRP channels respond to a 
variety of other chemicals that are naturally present in the 
body and associated with physiology or pathology, including 
redox and lipid factors. TRP channels mostly do not show 
exclusive sensitivity to a single factor but rather sensitivity 
to activation by a range of chemicals, leading to a concept of 
TRP channels as polymodal chemical sensors, putatively 
serving as integrators of chemical signals throughout the 
body. 

 Here we review three mammalian TRP channels 
(TRPC5, TRPM2, TRPA1), which we have selected based 
on our research interests, new and intriguing knowledge of 
the channels, and an apparent common role of the channels 
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in enabling cells and tissues to sense and respond to 
adversity. Aspects covered by the review include the 
properties and functional roles of the channels, potential of 
the channels as therapeutic drug targets, and current 
knowledge of the pharmacology. Other review articles cover 
the classification of TRP channels and details of TRP 
channels not addressed in this review, e.g. [1-4]. 

1. TRPC5 

1.1. Tissue and Cellular Distribution 

 TRPC5 has been detected most readily in the brain, with 
broad but non-uniform expression across different brain 
regions [5-10]. It is also present in many other tissues of the 
body, but again it is not uniformly expressed. Non-neuronal 
examples of its expression include sperm head [11], vascular 
smooth muscle cells [12-14], endothelial cells [15-18], 
adrenal medulla [19], mammary glands [20], yolk sac [17], 
activated T cells [21], monocytes in hypertension [22], and 
cardiac ventricles in hypertension [23]. 

1.2. General Properties 

 TRPC5 is a functional plasma membrane ion channel 
[24]. Although it is active across the full range of physio-
logical voltages, it is also voltage-dependent; voltage can be 
thought of as a modulator once the channel is activated by 
other mechanisms. Triple rectification may be evident as the 
voltage is changed from -100 to +100 mV but, most 
commonly, the signature current-voltage relationship (I-V) is 
dominated by double-rectification: outward and inward 
rectification coming together at an inflexion point near 0 
mV. TRPC5 is largely devoid of a kinetic component when 
the voltage is changed rapidly, except for occasional decay 
when square hyperpolarizing steps are applied [25]. 

 The unitary conductance of the TRPC5 channel is rela-
tively large: 41 pS chord conductance was recorded at -60 
mV [26]. There was a mean open time at -60 mV of 7.5 ms 
and frequency of opening of 6.2 Hz at 20-25 ºC [26]. The 
channel has similar permeability to Na

+, Cs+ and K+ while 
lacking permeability to Cl- [25,27-30]. Several divalent 
cations are permeant and Ca2+ permeability has been estima-
ted to be at least twice that of Na+ [28,29]. Intracellular Mg2+ 
blocks TRPC5, reducing outward unitary current at +30 mV 
with an IC50 of ~0.5 mM [31]. Aspartic acid residue 633 is 
involved in the Mg2+ blockade. TRPC5 is inhibited by >100 
μM extracellular gadolinium or lanthanum ion, whereas 
lower concentrations of lanthanides have striking stimulatory 
effects [26,28]. Effects of lanthanides may be stimulatory or 
inhibitory depending on the initial degree of TRPC5 activity 
prior to lanthanide exposure [32]. 

1.3. Endogenous Modulators 

 TRPC5 modulation is multi-factorial, complex and 
incompletely understood. The channel shows ‘versatility’ or 
‘promiscuity’, with different stimulators able to converge on 
channel function. TRPC5, therefore, has capability to act as 
an integrative sensor that coordinates various signals at the 
level of Ca2+ entry. It may also show important constitutive 
activity. 

 A common stimulus for TRPC5 is an agonist at a G 
protein-coupled receptor. Many different receptors may be 
involved, including receptors for adenosine 5’-triphosphate, 
bradykinin, acetylcholine, histamine, IgM (B-cell receptor 
cross-linking), prostaglandin E2, thrombin, uridine 5’-tri-
phosphate, sphingosine-1-phosphate, glutamate and chole-
cystokinin [8,10,13,28,33-36]. G protein activation is almost 
certainly a critical step down-stream of receptor-activation 
because agonist effects are partially mimicked by intra-
cellular GTP-�-S and inhibited by GDP-�-S [13,28,37]. G 
proteins of the Gq/11 type have been implicated [37,38] but 
the requirement is not absolute because stimulation by sphi-
ngosine-1-phosphate is blocked by pertussis toxin, which 
shows a role for Gi/o [13]. In human embryonic kidney cells, 
although acting via different G proteins, endogenous mus-
carinic receptors and sphingosine-1-phosphate receptors 
couple similarly to TRPC5 [13], suggesting either that G 
protein �� is critical or that Gq/11 � and Gi/o � link via a com-
mon pathway. The down-stream signal after the G protein is 
uncertain. An important role of phospholipase C (PLC) is 
implicated but the signaling is unlikely to be explained by a 
simple relationship between TRPC5 and PLC effects 
(changes in PIP2, IP3, Ca2+, diacylglycerol etc). 

 TRPC5 is also stimulated by activation of growth factor 
receptors, which do not signal through Gq/11 or Gi/o [28,39]. 
In these cases, the channels seem not to be “activated” but 
trafficked as constitutively-active channels to the surface 
membrane. In human embryonic kidney cells, GFP-tagged 
TRPC5 was observed in punctate, non-endocytic, vesicles 
[28,39]. In response to epidermal growth factor (EGF) the 
punctae progressed from sub-plasma membrane to plasma 
membrane space over a period of 1-2 minutes [39]. EGF-
evoked trafficking of TRPC5 was prevented by inhibitors of 
phosphatidylinositol (PI)-3-kinase or a dominant negative 
mutant of Rac1 [39]. The effector down-stream of Rac1 is 
suggested to be PIP-5-kinase because a dominant-negative 
mutant of this kinase was inhibitory. The proposed signaling 
cascade is EGF receptor, PI-3-kinase, Rac1 and PIP-5-
kinase. 

 An unusual and striking feature of TRPC5 is stimulation 
by external lanthanides [25,26,28,36]. Acidic amino acid 
residues in the outer pore region (turret) are involved; parti-
cularly glutamic acid residue 543 at the top end of the fifth 
membrane-spanning segment [26]. The biological impor-
tance of the lanthanide effect is unknown. Humans contain 
lanthanides only at low concentrations and the ions are not 
known to have biological relevance. External Ca2+ mimics 
the lanthanide effect, but only at supra-physiological concen-
trations [26,27,36]. Recently it was reported that ionic lead 
(Pb2+) mimics the effect of lanthanides and that the effect 
depends on glutamic acid residue 543, leading to the hypo-
thesis that TRPC5 may confer survival advantage by acting 
as a sensor of poisonous metal ions [40]. TRPC5 may also be 
potentiated by mild extracellular acidification [41]; relation-
ship to glutamic acid residue 543 was also indicated, but 
TRPC5 channels carrying the double mutation E543Q/ 
E595Q unexpectedly retained acid sensitivity. 

 The TRPC5 turret is a target for thioredoxin, a protein 
that has mostly been studied in the intracellular context but  
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which is also secreted. In its reduced form, extracellular 
thioredoxin stimulates TRPC5 channel activity by breaking a 
disulphide bridge in the turret near to E543 [32]. The data 
add to an emerging picture of the TRPC5 turret as a target 
for extracellular modulators and mechanism for coupling to 
the ion pore. The thioredoxin sensitivity of TRPC5 is part of 
a more complex system of redox modulation because there is 
stimulation of TRPC5-dependent Ca2+ entry by H2O2 [15]. 
Stimulation by nitric oxide has been suggested [15] but this 
result was not confirmed by a subsequent study [42]. 

 Lysophosphatidylcholine has been identified as a stimu-
lator of TRPC5, acting relatively directly [43]. Several other 
lysophospholipids are effective, including the important 
signaling lipid lysophosphatidic acid, but not lysophospha-
tidylethanolamine or phosphatidylcholine. Platelet-activating 
factor (PAF) and lyso-PAF are chemically similar to LPC 
and stimulate TRPC5. Sphingosine, sphingomyelin, cera-
mide and ceramide-1-phosphate (C1P) lack effect but sphin-
gosylphosphorylcholine is a strong stimulator, and ganglio-
sides and psychosine are modest stimulators. Cerebrosides, 
sulphatides, arachidonic acid and anandamide (an arachido-
nic acid metabolite) fail to stimulate. The data suggest a 
complex arrangement between TRPC5 activity and various 
lipid factors, supporting the hypothesis that a function of 
TRPC5 channels is to act as lipid signal transducers. The 
mechanisms of the effects vary from relatively direct effects 
in the case of lysophosphatidylcholine [43] to effects purely 
via G protein signalling in the case of sphingosine-1-
phosphate [13] and the oxidized phospholipids POVPC and 
PGPC [44]. The ganglioside GM1 has been suggested to 
stimulate TRPC5 indirectly through �5�1 integrin [21,45]. 

 Elevation of the intracellular Ca2+ concentration has a 
strong permissive role in TRPC5 function [28,29,36,46,47]. 
It has been suggested that intracellular Ca2+ may even be a 
direct agonist at TRPC5, making it a Ca2+-activated ion 
channel [48]. However, evidence for a direct effect is lacking 
because TRPC5 channels in inside-out patches have not been 
shown to be stimulated by Ca2+. Earlier studies showed that 
elevation of intracellular Ca2+ to 200 nM stimulated TRPC5 
in the absence of an exogenous agonist [28,29,36] and 
TRPC5 expressed in Xenopus laevis oocytes was stimulated 
by ionomycin, an ionophore that evokes Ca2+-release [49]. 
However, these effects of Ca2+ were relatively small com-
pared with those of other stimulators and may reflect facilita-
tion of constitutive channel activity or channel activity 
evoked by endogenous agonists surrounding the cells or 
produced by the cells. High micromolar concentrations of 
Ca2+ are inhibitory and may contribute to desensitization 
[50,51]. 

 TRPC5 has been observed to be stimulated by hypotonic 
extracellular solution (removal of mannitol) or physical 
pressure applied to the inside of the cell [52]. Stimulation 
has also been observed in response to store-depletion evoked 
by inhibition of the SERCA pump in intracellular Ca2+ stores 
[5,14,36,37,53]. The mechanisms of these effects are unclear 
and not all investigators have observed the effects (see [24]). 
It is conceivable that the effects arise indirectly, for example 
because G protein coupled receptors or lipid signaling 
pathways are stimulated. 

 

1.4. Protein Partners 

 TRPC5 is one member of a family of seven mammalian 
TRPC channels. There is direct evidence that TRPC5 can 
assemble with its closest relative TRPC4, and TRPC1 
[13,54]. There are indications that TRPC1 can associate with 
additional TRP channels but it is not clear if TRPC5 can also 
join these partnerships. Heteromultimeric TRPC5-TRPC1 
channels have a different I-V from TRPC5 alone, with less 
inflexion and greater but not absolute linearity in the 
physiological range [29,32,39]. Unitary currents are almost 
ten times smaller compared with TRPC5 alone [29]. Similar 
regulation by receptor agonists, thioredoxin and lanthanides 
has been observed for TRPC5-TRPC1 compared with 
TRPC5 channels [13,29,32]. 

 There is compelling evidence for association of TRPC5 
with various Ca2+ sensing proteins, which include calmodu-
lin, NCS-1, CaBP1, enkurin, and STIM1 [11,46,49,50,55, 
56]. Calmodulin interaction occurs at the so-called CIRB 
(CaM-IP3 receptor binding) site [55]. Other protein partners 
of TRPC5 are Na+-H+ exchange regulatory factor [57], 
stathmins [58], the immunophilin FKBP52 [59], the dynamin 
superfamily member MxA [60], junctate [61], and the lipid 
binding protein SESTD1 [62]. 

1.5. Functions 

 Several studies support the conclusion that TRPC5 has a 
role in growth cone extension and axonal guidance, although 
there is divergence of conclusions on the polarity of the 
effect, which may be due to the stage in the process at which 
intervention occurred [9,45,46,58]. Similarly a positive role 
in vascular smooth muscle migration has been observed, 
whereas the effect on endothelial cell migration was 
inhibitory [13,16]. Podocyte migration was stimulated by 
TRPC5 (via Rac1) and inhibited by TRPC6 (via RhoA) [63]. 
It is clear, therefore, that TRPC5 activity influences cell 
movement or the movement of parts of cells. More detailed 
studies are needed to investigate the timings and spatial 
aspects of TRPC5’s roles in these processes and to elucidate 
down-stream pathways. Coupling to calmodulin kinases has 
been suggested [9]. The contribution to cell migration in the 
cardiovascular system may be important in cardiovascular 
remodeling and the metabolic syndrome [17,64]. 

 Stimulation of TRPC5 heteromultimers was suggested to 
occur in response to cholecystokinin in neurons of the fear 
centre, the amygdala [8]. The suggestion was supported by 
studies of Trpc5-/- mice, which showed a lowered sense of 
innate fear [10] and raised the possibility that sensing of Pb2+ 
and H+ by TRPC5 enables the channel to have roles in stimu-
lating awareness of toxic metal poisoning or suffocation.  

 Other suggested roles of TRPC5 are in the regulation of 
matrix metalloprotease secretion from fibroblast-like syno-
viocytes in rheumatoid arthritis [32], degranulation of mast 
cells [65], neuron-protection against HIV-1 transactivator 
protein [66], and autoimmune suppression [21]. 

1.6. Therapeutic Potential 

 Trpc5-/- mice are approximately normal, which suggests 
that the Trpc5 gene is not critical for life of a young lab- 
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oratory mouse [10]. Putting aside the possibility of redund-
ancy and functional compensation in heteromultimeric com-
plexes, it may also be concluded that modulators of TRPC5 
function would not be lethal, perhaps even in humans. 
Therefore, it is reasonable to consider whether exogenous 
modulators of TRPC5 might be useful in the treatment of 
disease. One possibility is that TRPC5 inhibitors could be 
useful as new anxiolytics, potentially complementing exist-
ing anxiolytics such as diazepam, or over-coming problems 
associated with current agents. Another possibility is that 
TRPC5 inhibitors might be useful to suppress unwanted 
cardiovascular remodeling, including within the context of 
hypertension and the metabolic syndrome. Effects on neu-
ronal growth cones and axonal guidance are possible reasons 
for caution, particularly in developmental contexts. There 
might also be unwanted effects on the immune system. The 
net balance of effects would almost certainly depend on the 
specific heteromultimeric arrangements of TRPC5 in 
different contexts and on the channel’s activity relative to 
other mechanisms in different conditions. 

1.7. Pharmacology 

 Externally-acting anti-TRPC5 blocking antibody has 
been developed by two independent groups [18,32,53]. 
Although no specific or potent exogenous chemical inhibi-
tors of TRPC5 are known, various chemicals have effects on 
TRPC5 function. In many of these cases it is not clear if the 
agent acts directly at TRPC5. TRPC5 has been reported to be 
inhibited by 25 μM SKF-96365 [27], 0.1-10 μM 3,5-bis(tri-
fluoromethyl)pyrazole derivative BTP-2 [67], 100 μM 
flufenamic acid [38], the calmodulin inhibitors 100 μM W-
13 or chlorpromazine [68], 100 μM W-7 or 5 μM calmida-
zolium [69], 0.3 μM Pyr2 [70], 20 μM 2-aminoethoxy-
diphenyl borate [25], and the myosin light chain kinase 
inhibitors 3 μM ML-7 or ML-9 [68,69]. We have not 
confirmed that BTP-2 inhibits TRPC5, instead we find slight 
stimulation (M Clynes and DJ Beech, unpublished data). 
Stimulation of TRPC5 by 50 μM genistein or diadzein was 
recently reported [18]. TRPC5 has been found to be resistant 
to 10 μM U73343, 30 μM dihydrosphingosine, 10 μM 
staurosporine, 1 μM bisindolylmaleimide I, 10 μM genistein, 
10 μM wortmannin (but see [68]), 1mM sodium 
orthovanadate, 300 μM indomethacin or 50μM RHC-80267 
[28], and 1 μM nifedipine, 10 μM methoxyverapamil, 25 μM 
berberine [25] or 100 μM MRS-1845 [25].  

2. TRPM2 

2.1. Tissue and Cellular Distribution 

 TRPM2 exhibits widespread tissue and cellular distribu-
tion with mRNA being abundant in the brain and detectable 
in immune and many other tissues and cell types [71-75]. In 
addition, TRPM2 channel activities have been documented 
in a diversity of cells, including neurons [76-80], microglia 
[75,81], pancreatic �-cells [82, 83], endothelial cells [84], 
and immune and other blood cells [72,85-94]. Many studies 
have focused on TRPM2 as a plasma membrane channel, but 
there is a report suggesting that it also exists as a lysosomal 
channel in pancreatic �-cells [82]. 

 

2.2. General Properties 

 TRPM2 channels are assembled as homomers directed by 
a C-terminal coiled-coil domain [95]. A special molecular 
feature of TRPM2 is that the distal C-terminal tail shows 
strong homology to the NUDT9 proteins, exhibiting adeno-
sine 5’-diphosphoribose (ADPR) pyrophosphatase activity. 
Although the role of the enzymatic activity is unclear, the 
domain provides the site for ADPR binding and thereby 
confers activation of the TRPM2 channels by ADPR [72]. 
The TRPM2 channels are permeable to all physiological 
cations including Ca2+ and activation leads to increases in 
intracellular Ca2+ concentration ([Ca2+]i) and/or membrane 
depolarization [72,85,96]. The current-voltage (I-V) relation-
ship exhibits straight linearity. The single channel conduc-
tance is typically 50-80 pS [72,78,85,88,97,98]. In addition 
to the full-length (TRPM2-L), several splicing variant iso-
forms are identified [74,99] including TRPM2-S, which 
contains the N-terminus and the first two transmembrane 
segments. This truncated isoform does not form functional 
channels, but imposes dominant negative inhibition of the 
TRPM2-L [100]. 

2.3. Endogenous Modulators 

 In addition to ADPR, nicotinamide adenine dinucleotide 
(NAD) and its metabolites including 2’-O-acetyl-ADPR, 
cyclic ADPR (cADPR) and nicotinic acid-adenine dinucleo-
tide phosphate (NAADP) activate the TRPM2 channels. The 
EC50 for ADPR effects at TRPM2 is 10-90 μM. 2’-O-acetyl-
ADPR, a metabolite of the SIR2 protein deacetylases, shows 
similar effectiveness [101]. The EC50 values for NAD, 
NAADP and cADPR are 1-1.8 mM, 0.73 mM and 0.7 mM, 
respectively, which are higher than the physiological concen-
trations [73,85,86,102,103]. However, these activators show 
remarkable synergy with ADPR. AMP, an ADPR metabo-
lite, has no agonist activity but inhibits the channel activation 
by ADPR with an IC50 of 70 μM [86,102]. 

 The TRPM2 channels can also be activated by oxidative 
stress stress such as H2O2 [73,99,100]. The activation by 
H2O2 is slow, typically taking several minutes. The under-
lying molecular mechanism is still under investigation. 
Although there is evidence supporting direct gating [99], 
more recent studies suggest an indirect activation mechanism 
through activating poly(ADPR)polymerase (PARP)/ 
poly(ADPR) glycohydrolase (PARG) or NAD glycohydro-
lase (NADase) pathways to produces ADPR [84,91,104-
106]. This latter mechanism is thought to also mediate 
activation of the TRPM2 channels by tumour necrosis factor- 
� (TNF-�) [73,90,107] and amyloid �-peptide [77]. Thus, 
expression of TRPM2 channels confers on cells an ability to 
sense and respond to changes in cellular redox status. 

 Ca2+ is essential for full activation of the TRPM2 chan-
nels; intracellular Ca2+ potently facilitates the channel activa-
tion by ADPR, or even directly activates the channels [108-
110]. TRPM2 channel activity is enhanced by warm tem-
perature of >40°C [82]. In contrast, extracellular or intra-
cellular acidification inhibits the TRPM2 channel [94,98].  

2.4. Protein Partners 

 Like many other ion channels, TRPM2 channels are 
functionally regulated by interacting proteins; calmodulin 
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and protein tyrosine phosphatase PTPL1 have been so far 
identified. The calmodulin-TRPM2 interaction is Ca2+-dep-
endent and enables intracellular Ca2+ to gate the TRPM2 
channels [109-111]. PTPL1 is a protein tyrosine phospha-
tase; over-expression of PTPL1 reduces, whereas sup-
pression of the PTPL1 expression increases, the phospho-
rylation level of the TRPM2 protein by unidentified tyrosine 
protein kinases and the TRPM2 channel-mediated responses 
to H2O2 and TNF-� [90].  

2.5. Functions 

 Functional roles of TRPM2 have started to emerge, 
including effects on insulin release, cytokine production, 
endothelial permeability, and apoptotic/necrotic cell death. 
Togashi et al. showed that pancreatic �-cells respond to 
warm temperature with increased [Ca2+]i and insulin release 
through activating the TRPM2 channels [81]. TRPM2 chan-
nels are also involved in insulin release stimulated by high 
levels of glucose via a KATP channel-independent mechanism 
[82].  

 Several cellular functions of the TRPM2 channels relate 
to oxidative stress (i.e. generation of H2O2). For instance, a 
recent study provided compelling evidence for a key role of 
TRPM2 in H2O2-induced increases in [Ca2+]i that are essen-
tial in signaling cascades responsible for production of the 
chemokines CXCL8/CXCL2 in monocytes [92]. A separate 
study showed that H2O2 as well as ADPR induces Ca2+ 
influx in human pulmonary artery endothelial cells. H2O2 
reduces trans-monolayer endothelial electrical resistance in a 
concentration-dependent manner. Such H2O2-evoked effects 
were enhanced by over-expressing TRPM2-L, or attenuated 
by over-expressing TRPM2-S to inhibit the endogenous 
TRPM2 channel function, or using PARP inhibitors to block 
ADPR formation [84]. These results suggest an important 
role for the TRPM2 channels in mediating H2O2-induced 
impairment of the endothelial barrier functions. The most 
widespread functional role of the TRPM2 channels is, 
perhaps, to mediate oxidative stress-induced cell death. This 
has been consistently demonstrated in cells expressing the 
recombinant and endogenous TRPM2 channels, including 
neurons, monocytes, lymphocytes, insulin-secreting cells and 
cardiomyocytes [73,76,77,87,90,100,101,106,107,111-113]. 
TRPM2 channels also mediate cell death induced by TNF-�, 
A�42, concanavalin A and puromycin (a pleiotropic cell 
stress agent) [73,77,87,90,101,107]. The importance of the 
TRPM2 channels in cell death induced by H2O2 and other 
cytolytic stimuli is supported by the observations that the 
cell death is attenuated by reducing the expression and 
function of endogenous TRPM2 channels or preventing 
ADPR formation [73,77,87,90,100,104,107]. 

 Lipopolysaccharide (LPS) and TNF-� stimulate the 
generation of reactive oxygen species (ROS) in immune 
cells. A more recent study has shown that LPS and TNF-� 
significantly up-regulate TRPM2 expression and enhance 
ADPR-induced currents in human primary monocytes, 
resulting in elevated basal [Ca2+]i and production of IL-6, IL-
8, IL-10 and TNF-�. These effects are reduced when 
TRPM2 expression is suppressed by RNA interference [93]. 
A separate study has implicated a role for TRPM2 in prostate 
cancer cell proliferation [114]. 

2.6. Therapeutic Potential 

 The suggested roles of TRPM2 in insulin secretion from 
pancreatic �-cells [82] and chemokine production in mono-
cytes [92] imply that alteration in expression and function of 
TRPM2 may increase susceptibility to diabetes and inflam-
matory disease. Indeed, Trpm2 gene ablation reduces chemo-
kine expression, neutrophil infiltration, and ulceration in a 
colitis animal model [92]. The finding that the TRPM2 
channels mediate oxidative stress-induced endothelial hyper-
permeability recognises TRPM2 channels as an important 
factor in vascular barrier dysfunction of cardiovascular 
disease [115].  

 There is also accumulating evidence to support a role for 
the TRPM2 channels in the pathogenesis of neurodege-
nerative disorders, which share common features including 
prominent disruption in Ca2+ homeostasis triggered by oxida-
tive stress. Loss of neuronal cells due to activation of the 
TRPM2 channels by oxidative stress, TNF-� and A�42 
strongly suggests a role of the TRPM2 channels in the patho-
physiology of Alzheimer’s [77,78,116]. Altered TRPM2 
channel expression and/or function are also reported under 
diseased conditions such as stroke, Western Pacific amyotro-
phic lateral sclerosis (WP-ALS) and parkinsonism-dementia 
(PD). For example, TRPM2 expression is up-regulated in 
microglia that parallels with microglial activation in a stroke 
animal model, consistent with the idea that the TRPM2 
channels in microglia are involved in the CNS responses to 
oxidative stress and brain damage due to ischemic injury 
[77]. However, intriguingly, a recent study has identified a 
mutation (P1018L) in WP-ALS and PD patients, which is 
located in the pore loop of the TRPM2 channel and 
introduces fast channel inactivation [117].  

2.7. Pharmacology 

 The pharmacology of the TRPM2 channels is currently 
limited. Nonetheless, several compounds have been iden-
tified that inhibit the TRPM2 channels, including 8-Br-
cADPR, flufenamic acid (FFA), imidazole anti-fungal agents 
(clotrimazole and econazole), N-(p-amylcinnamoyl) anthra-
nilic acid (ACA), and 2-aminoethoxydiphenyl borate (2-
APB). One study found no effect of 2-APB on TRPM2, 
possibly because of a pore-dilation effect in the channels 
[25]. 8-Br-cADPR strongly suppresses the channel activation 
by cADPR, NAD, NAADP and H2O2, but intriguingly shows 
significant synergy with ADPR [85,99]. FFA, a non-steroidal 
anti-inflammatory metabolite, completely inhibits the 
TRPM2 channels in a concentration-independent (50-1000 
μM) and largely irreversible manner [118]. Clotrimazole and 
econazole in the range examined of 3-30 μM display vir-
tually the same actions as FFA [119]. In contrast, ACA and 
2-APB display a reversible and concentration-dependent 
inhibition with IC50 of 1.7 μM and 1.2 μM, respectively 
[120,121]. It should be emphasized that all these inhibitors 
cause well-documented inhibition at a wide spectrum of ion 
channels, receptors and enzymes [118,120,121]. Therefore, 
potent and specific TRPM2 channel inhibitors are still 
required for elucidation of the functional roles of the TRPM2 
channels as well as for the purposes of therapeutic 
exploitation. 
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3. TRPA1 

3.1. Tissue and Cellular Distribution 

 TRPA1 mRNA was reported in different mammalian 
tissues, including brain [122,123], intestine and pancreas 
[123]. However, functional activity of TRPA1 channels is 
most consistently characterized in sensory neurons and other 
cells with sensory functions. TRPA1 is present in subsets of 
peripheral sensory neurons of dorsal root (DRG), trigeminal 
(TG) and nodose ganglia [124-126]; these TRPA1-positive 
sensory neurons belongs to C-fibres and usually also exp- 
ress nociceptor markers TRPV1, calcitonin gene related 
peptide (CGRP), substance P but not IB-4 [124,125,127, 
128]. TRPA1 is expressed in vestibular and auditory sensory 
epithelia such as mechanosensory hair cells of the inner ear 
in mammals [124,129] or of lateral line in fish [130] where it 
is suggested to participate in mechanotransduction. High 
level of TRPA1 expression is also reported in skin 
keratinocytes [128,131] and there is expression in the 
enterochromaffin cells of the gastrointestinal tract [132]; 
these cells stores serotonin (5-hydroxytryptamine; 5-HT) and 
are believed to be able to respond to the chemical 
composition of the gut lumen by 5-HT release and thus 
regulate gastrointestinal contractions. Functional TRPA1 has 
been reported in synoviocytes of joints [133] and endothelial 
cells [134]. 

3.2. General Properties 

 TRPA1 channels are permeable to mono- and divalent 
cations and have a single channel conductance in the range 
of 100 pS (reviewed in [122]). At room temperature the 
monovalent cation permeability sequence for TRPA1 was 
estimated to be Rb+ � K+ > Cs+ > Na+ > Li+ [135]. 
Permeability of TRPA1 to Ca2+ is higher than to Na+ with 
PCa/PNa close to 6 under basal conditions (no agonist 
stimulation); the fractional Ca2+ current in the presence of 
physiological concentrations of ions was estimated to be in 
the range of 17 % [135]. Based on the permeability to 
cations of different size, the pore diameter of TRPA1 under 
basal conditions was estimated in the range of 11Å. An 
interesting feature of several thermo-TRP channels is the 
phenomenon of pore dilation: upon agonist stimulation 
(sometimes a prolonged stimulation is required) the pore of 
these channels increases its size becoming permeable to 
large organic molecules such as NMDG, spermine, Yo-Pro, 
gentamycin etc. (reviewed in [136]). TRPA1 also undergoes 
pore dilation upon stimulation with mustard oil [135,137]. It 
was estimated that in the dilated state the TRPA1 pore 
diameter increases by approximately 3Å [135]. 

3.3. Endogenous Modulators 

 TRPA1 is a polymodal channel that can be stimulated by 
distinct mechanisms: i) covalent modification of cysteine 
and lysine residues within the N-terminus of the channel 
[138,139]; ii) non-covalent lock-and-key interaction with 
ligands (e.g. icilin, d-9-tetrahydrocannabinol, nicotine) [138-
141]; iii) elevated intracellular Ca2+ and other intermediates 
of G protein coupled receptor (GPCR) cascades [142]; iv) 
cooling below 15oC (the matter is under debate; for recent 
reviews see [143,144]; v) depolarisation [145].  

 Probably the most important mechanism of TRPA1 
activation, which also underlies its most substantiated phy-
siological function (i.e. sensing irritants) is activation 
through covalent modifications of cysteine and perhaps also 
lysine residues in the N terminus of the channel. Although 
activity of many ion channels can be modified by cysteine 
modifications, TRPA1 is striking in the range of compounds 
and types of cysteine modifications it is responsive to. The 
compounds include plant-derived pungent and irritant che-
micals such as allyl isothiocyanate (mustard oil, MO), thio-
sulfinate (onion), �,�-unsaturated aldehydes (cinnamon) 
[138], air pollutants, cigarette smoke components (alorecin, 
nicotine), tear gas components (chlorobenzylidene malono-
nitrile), formaldehyde, reactive oxygen species (ROS), 
chlorine and many others [138,139,146,147]. A general pro-
perty of these compounds is that they contain highly reactive 
electrophilic carbon atoms which can react with cysteines 
forming reversible covalent modifications or adducts 
[138,139,148]. TRPA1 can also be irreversibly modified by 
classical cysteine-modifying reagents such as N-metyl malei- 
mide (NMM) and (2-aminoethyl)methanethiosulphonate 
(MTSEA) [138,139]. In addition, direct activation of TRPA1 
by ROS (which also commonly promote disulfide bonds 
between cysteines or formation of reversible cysteine 
modification to cysteine sulfenic acid [149] has also been 
reported [150]. Two groups found five cysteines (all in the 
channel N-terminus) to be responsible for TRPA1 activation 
by irritants but only one of them (C622 in mouse or C619 in 
human TRPA1) was identified by both groups [138,139]. 
Covalent modification of lysine 708 (in human TRA1) by 
isothiocyanates was also reported to contribute to activation 
of TRPA1 [138] (although in another study lysine-modifying 
agents did not activate TRPA1 [139]). Structural background 
of the TRPA1 gating by covalent modification within the N-
terminus remains to be elucidated although a recent study 
indicated that the TRPA1 pore region is important for the 
coupling between covalent modifications of N-terminal cys-
teines and channel gating [151]. Recent study has demons-
trated that the irritant-sensing function of TRPA1 is evolu-
tionarily conserved and is already evident in insects [152].  

 TRPA1 is directly activated by intracellular Ca
2+ and it 

was suggested that Ca2+ can directly bind to the N-terminal 
EF-hand domain of TRPA1 [142,153]. Ca2+ sensitivity of 
TRPA1 was recently suggested to underlie activation of 
TRPA1 by cold. Thus, it was suggested that, in HEK293 
cells, cold-induced Ca2+ influx through unidentified channels 
(but not cooling itself) activates TRPA1 which otherwise has 
no intrinsic cold sensitivity [142]. This issue is still actively 
debated (see below). Activation of TRPA1 by Ca2+ may also 
underlie suggested activation and/or sensitization of TRPA1 
by GPCRs coupled to PLC signalling, such as bradykinin 
receptors B2 and protease activated receptors PAR-2 
[146,154,155]. Several other intermediates of the PLC 
signalling cascade such as PIP2 [155], diacyl glycerol and 
arachidonic acid [154] have been implicated in the action of 
PLC-coupled receptors and inflammatory mediators but this, 
again, is a controversial area and while sensitization (i.e. 
increased sensitivity to agonists) of TRPA1 by PLC-coupled 
receptors is reproducible in many studies, the acute 
activation of TRPA1 by these receptors is not; thus, in 
TRPA1 knock-out mice bradykinin induced similar acute 
excitation of C-fibres as in wild-type animals [156]. In 
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addition, Liu et al. found little evidence for activation of any 
ruthenium red-sensitive TRP channels by bradykinin in 
cultured DRG neurons [157]. Ca2+ was also implicated in 
TRPA1 desensitisation [124,158], which further complicates 
the relationship between GPCR signaling and TRPA1 
activity. 

 Despite its original identification as ion channel activated 
by noxious (<15oC) cold [126,154], the cold-sensitivity of 
TRPA1 is still debated. Two groups were unable to record 
activation of heterologously expressed TRPA1 by cold 
[124,159], another group suggested that cold sensitivity of 
the channel is due to its Ca2+ sensitivity [142]. In addition, 
poor correlation between cold- and MO-sensitivity of cul-
tured nociceptive neurons and inconclusiveness of beha-
vioural experiments on Trpa1

-/- mice ([160] vs. [146] vs. 
[145]) further contributed to the controversy. A recent study 
presented new evidence for cold sensitivity of TRPA1 [145]: 
the authors demonstrated that heterologously expressed 
TRPA1 channels can be activated by cold temperature in 
Ca2+-free solutions; additional behavioural tests on Trpa1

-/- 
mice (cold plate and tail flick) highlighted reduced sensi-
tivity of transgenic animals to very cold temperatures (0 and 
-10 oC). The authors argued that cold-induced Ca2+ transients 
in TRPA1-positive neurons are slow (�100 s to full effect in 
Ca2+ imaging paradigm) and rather small, which may be why 
these effects were overlooked in other studies. It remains 
unclear whether the slow kinetics of TRPA1 activation by 
cooling is compatible with relatively fast (�5s) onset of 
nocifensive behaviour in mice responding to cold [145]. 

 As other thermo-TRP channels, TRPA1 is weakly 
voltage-sensitive with a calculated gating charge (z) of 0.375 
[145]; for comparison, gating charge in a Shaker voltage-
gated K+ channel is more than 12 [161]. The structural 
background for voltage-dependence of TRPA1 is unclear. In 
contrast to the voltage sensor domain of Kv channels, which 
has been localised to transmembrane segment S4 and is 
characterized by an array of positive charges, S4 of TRPA1 
does not have any positive charges [136]. There are currently 
two main hypotheses describing the gating of thermo-TRP 
channels by voltage and temperature. One hypothesis is that 
the voltage-dependence is a fundamental principle of the 
channel gating and other stimuli, such that temperature and 
agonists affect channel gating by shifting the voltage dep-
endence [145,162]. Another hypothesis involves an allosteric 
model where it is assumed that the temperature and voltage 
sensors are independent structures coupled to channel gating 
[136,163].  

 As for many other ion channels, there are reports that 
TRPA1 interacts with and can be regulated by the plasma 
membrane phospholipid PIP2, although the nature of this 
interaction is controversial since some groups report that 
PIP2 directly inhibits or desensitizes TRPA1 [155,164] while 
others suggest that PIP2 is required for TRPA1 activity and 
thus activates the channel [158,165]. 

3.4. Protein Partners 

 There is evidence that in sensory neurons and expression 
systems TRPA1 can interact (at least functionally) with 
TRPV1. The conclusions are based on data suggesting: i) 
that cannabinoid-induced dephosphorylation of TRPV1 

requires functional TRPA1 [166]; ii) a phenomenon of cross-
desensitization of TRPV1 and TRPA1 responses [167,168]; 
iii) co-expression of TRPA1 and TRPV1 in sensory neurons 
and expression systems results in whole-cell and single-
channel currents with properties that cannot be adequately 
described by independent co-expression of TRPA1 and 
TRPV1 [169,170]; iv) TRPV1 and TRPA1 can be co-
immunoprecipitated from neurons and expression system 
[170]. It is, however, still unclear if TRPV1 and TRPA1 can 
form bona-fide heteromultimers. 

 TRPA1 possesses an extended and highly-structured N-
terminus harbouring large numbers of ankyrin repeats, which 
suggest a rich background for interactions with other 
molecules; surprisingly, the information on such interactions 
is largely missing. 

3.5. Functions 

 TRPA1 is a non-selective cation channel which upon 
activation conducts depolarising currents and may, therefore, 
trigger action potentials (APs). Since TRPA1 is expressed in 
populations of sensory neurons and other cell types with 
sensory functions, it qualifies for a role of bodily sensor for 
any stimulus capable of providing enough in vivo TRPA1 
activation to trigger AP firing. 

 As discussed, the role of TRPA1 as a noxious cold sensor 
is still debated. Likewise no consensus is reached about the 
role of TRPA1 in mechano-transduction: despite high 
TRPA1 expression in the mechano-sensitive hair cells, 
mechano-sensitivity of these cells is normal in TRPA1 
knock-out mice [144,146] and zebrafish [130] (a recent 
report however provided evidence that mechano-sensitivity 
of colonic afferents is deficient in Trpa1 knock-outs [156]). 
Most researchers are in agreement however that one of the 
major functions of TRPA1 is sensitivity to environmental 
irritants. In accord with this function, TRPA1 is expressed in 
sensory neurons innervating skin, airways and gastro-
intestinal tract and thus has a broad interface for interaction 
with different airborne compounds and components of the 
food. 

 The presence of functional TRPA1 in nociceptive 
neurons of the dorsal root and trigeminal ganglia suggests a 
role for these channels in pain because APs generated by 
these, normally silent, neurons is a first step in nociceptive 
transduction that can lead to the sensation of pain. Accord-
ingly, a recent study has identified a gain-of-function muta-
tion (N855S) within S4 of TRPA1 as a cause of a rare human 
condition - heritable episodic pain syndrome [171]; this 
disorder is characterised by episodes of debilitating pain trig-
gered by fatigue, fasting, and cold. In addition, inflammation 
and tissue injury often trigger local production of electro-
philic compounds such as ROS, which can directly activate 
TRPA1 and produce inflammatory pain. Recently a pro-
inflammatory electrophilic prostaglandin, 15-deoxy-�12,14-
prostaglandin J2 (15d-PGJ2), has been show to activate 
TRPA1 via a mechanism similar to that of MO [172]. In 
addition, inflammatory sensitization of TRPA1 may underlie 
some components of inflammatory hyperalgesia (increased 
sensitivity to painful stimuli), particularly mechanical and 
cold hyperalgesia [156,173,174]. Thus, TRPA1 is most 
likely a chemical sensor for injury and inflammation. 
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3.6. Therapeutic Potential 

 Abundant expression of TRPA1 in DRG and nodose C-
fibres innervating airways has recently led to the discovery 
of the role of TRPA1 in respiratory physiology and patho-
logy [175-177]. Indeed, activation of neurons innervating 
airways by irritants, oxidants or allergens causes respiratory 
depression, nasal obstruction, cough and sneezing. Impor-
tantly, asthma in many cases is triggered by airborne irritants 
(such as cigarette smoke components) capable of activating 
TRPA1 and exciting airway C-fibres. Such C-fibre excitation 
not only triggers spinal respiratory circuits but also stimu-
lates terminal release of neuromediators such as substance P, 
neurokinin A, CGRP, and others [178]. Local release of 
neuropeptides may further enhance airway inflammation 
(neurogenic inflammation) as well as cause contraction of 
airway smooth muscles, trigger bronchial oedema, mucus 
secretion and other asthma-related pathologies [178]. Strik-
ingly, a recent study provided evidence that Trpa1-/- mice 
are much more resistant to airway inflammation and hyper-
activity in an allergic asthma model than the wild-type 
animals. Moreover, treatment of wild-type mice with a 
TRPA1 antagonist significantly inhibited airway inflamma-
tion and hyperactivity [175]. This study highlighted the pers-
pectives of TRPA1 antagonists for treatment of inflamma-
tory diseases of airways and, particularly, asthma. There also 
may be a potential for targeting TRPA1 in the development 
of anti-tussive drugs. A different study recently suggested 
that a TRPA1 antagonist has efficacy in reversing mecha-
nical hyperalgesia induced by inflammation [174]. 

 An unexpected use of pro-algesic thermo-TRP channels 
in analgesic drug delivery has been found [179]. Using the 
TRPV1 pore dilation phenomenon it was possible to deliver 
cell-impermeable lidocaine analogue QX-314 specifically 
into the TRPV1-positive nociceptors by local co-injection of 

QX-314 with TRPV1 agonist capsaicin. This manoeuvre 
allowed local analgesia without motor or tactile deficits 
normally produced by local administration of cell-permeable 
lidocaine, which equally affects all type of nerve endings 
within the injection area. In further development of this 
approach this group demonstrated that lidocaine itself is 
capable of TRPV1 activation and, thus, co-application of 
lidocaine and QX-314 increased efficacy of local anaesthesia 
by the selective delivery of QX-314 to subset of nociceptors 
[180]. In a preliminary report the group suggested that 
TRPA1 can also be used for the local delivery QX-314 to 
TRPA1-positive nociceptors [181]. This work introduces a 
new avenue for the design of more selective local analgesics.  

3.7. Pharmacology 

 Activators of TRPA1 were discussed above; TRPA1 
channels are inhibited by gentamicin, ruthenium red and 
gadolinium (all in low micromolar range; reviewed in [122]), 
although these are all relatively non-specific agents. Despite 
the fact that TRPA1 is a validated target for neurogenic 
inflammation, asthma and several types of pain, the number 
of known selective TRPA1 inhibitors is surprisingly low. 
Viana and Ferrer-Montiel reviewed available patent data-
bases and found only 14 TRPA1-related patents, of which 
only five protected TRPA1 inhibitors [182]. Thus, lower 
alkyl phenols such as (+/-) camphor inhibit TRPA1 with IC50 
in lower millimolar range [182]. (Z)-4-(4-chlorophynyl)-3-
methylbut-3-en-2-oxime (AP18) also block TRPA1 with an 
IC50 of about 3 μM; this compound also showed antihyper-
algesic efficacy in behavioural models of inflammatory pain 
[174]. An AP18-related compound, (1E,3E)-1-(4-fluoro-
pheny)-2-methylpent-1-3-one oxime, blocks TRPA1 with an 
IC50 of 70 nM, which is the most potent TRPA1 blocker 
known by far [182]. Two related compounds, 2-(1,3-
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dimethyl-2,6-dioxo-1,2,3,6-tetrahydropurin-7-yl)-N-[4-
(propan-2-yl]phenyl) acetamide (HC-030031) and 2-(1,3-
dimethyl-2,6-dioxo-1,2,3,6-tetrahydropurin-7-yl)-N-[4-
(butan-2-yl]phenyl) acetamide (CHEM-5861528) block 
TRPA1 with IC50s in the range of 4-10 μM [147,182]. HC-
030031 was shown to reduce airway inflammation and 
hyperexcitability in a model of asthma [175]. 

CONCLUSIONS 

 The evidence suggests that these three TRP channels 
have in common that they are quite broadly distributed 
(TRPA1 perhaps mostly via sensory nerves), show poly-
modal stimulation, have activities that are enhanced by redox 
factors, are permeable to calcium, and are facilitated by 
elevations of intracellular calcium. There are, however, also 
important differences. 

 TRPC5 activity is stimulated by a wide range of agonist 
at G protein and tyrosine kinase receptors but it is also 
promiscuous in showing stimulation by a range of additional 
substances including specific lipids, acid, and metal ions. It 
has intriguing roles in cellular or sub-cellular movements 
and is implicated in the control of fear. Agents targeted to 
TRPC5 or TRPC5-containing channels may be useful in sup-
pressing unwanted tissue remodeling and anxiety. TRPM2 
senses hydrogen peroxide but also specific nucleotides and 
may offer an avenue for development of new agents that 
suppress stress-related inflammatory disorders, adverse 
effects of stroke, and degenerative conditions of the nervous 
system and pancreas. TRPA1 is a sensor for chemical irri-
tants and has additional possible roles in thermo- and 
mechano- sensation. Most notably, stimulation of TRPA1 
excites nociceptive neurons, apparently contributing signifi-
cantly to physiological pain responses, inflammatory hypera-
lgesia, neuropathic pain states and irritant responses of 
asthma. TRPA1 has potential as a target for developing new 
analgesics and agents that treat asthma. 

 Based on current evidence it seems unlikely that subs-
tantial unwanted effects would arise if specific inhibitors of 
the channels were administered because disruption of the 
genes has relatively little effect on the mouse in controlled 
conditions. There would naturally need to be much more 
investigation of potential safety concerns however, and there 
is the additional problem that highly-specific and potent 
small molecule blockers of the channels are not yet known, 
perhaps with the exception of TRPA1 agents. 

 Fig. (1) is a concise summary of key features of the three 
TRP channels, indicating physiological roles, and suggesting 
conditions in which blockers of the channels might be 
therapeutically useful. The figure is not exhaustive and so 
readers are referred to the main text and original articles for 
more complete information. The channels show common 
themes in their sensitivities to redox factors and other reac-
tive chemical species, permeability to calcium ions, and sti-
mulation by elevation of the intracellular calcium concen-
tration. Although there is evidence for roles of the channels 
in quiescent conditions, they may be most functional in 
adverse conditions, making them potentially attractive as 
therapeutic drugs targets. The potential for integration with 
oxidative stress mechanisms of mitochondria may be a 
fruitful area for further investigation [183]. 
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