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Abstract 

Background: COVID-19 caused a worldwide outbreak leading the majority of human activities to a rough break-
down. Many stakeholders proposed multiple interventions to slow down the disease and number of papers were 
devoted to the understanding the pandemic, but to a less extend some were oriented socio-economic analysis. In 
this paper, a socio-economic analysis is proposed to investigate the early-age effect of socio-economic factors on 
COVID-19 spread.

Methods: Fifty-two countries were selected for this study. A cascade algorithm was developed to extract the R0 
number and the day J*; these latter should decrease as the pandemic flattens. Subsequently, R0 and J* were modeled 
according to socio-economic factors using multilinear stepwise-regression.

Results: The findings demonstrated that low values of days before lockdown should flatten the pandemic by 
reducing J*. Hopefully, DBLD is only parameter to be tuned in the short-term; the other socio-economic parameters 
cannot easily be handled as they are annually updated. Furthermore, it was highlighted that the elderly is also a major 
influencing factor especially because it is involved in the interactions terms in R0 model. Simulations proved that 
the health care system could improve the pandemic damping for low elderly. In contrast, above a given elderly, the 
reproduction number R0 cannot be reduced even for developed countries (showing high HCI values), meaning that 
the disease’s severity cannot be smoothed regardless the performance of the corresponding health care system; non-
pharmaceutical interventions are then expected to be more efficient than corrective measures.

Discussion: The relationship between the socio-economic factors and the pandemic parameters R0 and J* exhibits 
complex relations compared to the models that are proposed in the literature. The quadratic regression model pro-
posed here has discriminated the most influencing parameters within the following approximated order, DLBL, HCI, 
Elderly, Tav, CO2, and WC as first order, interaction, and second order terms.

Conclusions: This modeling allowed the emergence of interaction terms that don’t appear in similar studies; this led 
to emphasize more complex relationship between the infection spread and the socio-economic factors. Future works 
will focus on enriching the datasets and the optimization of the controlled parameters to short-term slowdown of 
similar pandemics.
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Background
Modeling pandemic propagation is one of the most 
complicated subjects that are studied as dynamic sys-
tems or stochastic problems. Several approaches have 
been developed in order to enhance the understanding 
of the pandemic kinetics through a population. Phe-
nomenological models like the basic SIR model (Sus-
ceptible, Infected, Recovered) and the related upgraded 
versions try to simulate the way a pandemic evolves [1]. 
The SIR models are described by a system of Ordinary 
Differential Equations (ODEs) for which the initial con-
ditions depend on the space and time considerations, 
according to the characteristics of each country [2–4].

Researchers developed number of  approaches in 
order to estimate the  different characteristics of the 
outbreaks evolution; Vizi et al. adopted pair-wise mod-
els with Markovian infection and arbitrary recovery 
processes that vary, so that the effect of recovery pro-
cess choice is estimated [5]; while other introduced 
additional SIR compartments to quantify different 
aspects on the propagation mechanisms and disease 
transmission. For instance, Maier and Brockmann 
proposed a new symptomatic-quarantined infected 
population compartment, [6], while Nadim et al. incor-
porated additional compartments such as quarantined, 
asymptomatic, and isolated compartments to simulate 
and catch the short-term behavior of COVID-19 and 
to discuss the preventive strategies against it [7]. Other 
studies built up physical-inspired approaches like the 
recrystallization Ostwald Growth theory to study dif-
ferent containment scenarios; the containment strat-
egies were proved to slow down the kinetics of the 
pandemic as well as the wall boundaries should do for 
kinetics of crystal’s growth [8]. Samely, Bouchnita and 
Jebrane used the physics of particles dynamics to study 
the dynamics of pair-wise contact models between 
individuals that belong to a closed population. The 
characteristics of the closed region and the population 
that were studied are included as main features of the 
simulation so that it was possible to quantify the effect 
of the demographic characteristics on the outbreak 
propagation in closed regions [9]. Other researchers 
were more interested by the mathematical structure 
of the SIR models; the existence of the solution of the 
problem and the different scenarios are built up by 
varying the input of the simulations. That is why, based 
on the SIR model, Katriel studied the seasonality of the 

pandemic and proved the existence of the return period 
of a given pandemic while R0 is higher than 1 [10].

Furthermore, other researchers tried to figure-out the 
eventual relationships that might exist between socio-
economic characteristics of countries and the disease 
kinetics. Most of these researches handle systemic 
models in terms of time series modeling [11, 12], sta-
tistical analysis [13, 14], stochastic and dynamic analy-
sis using epidemiological modeling [1–4]. For instance, 
Nader et al. [15] used non-parametric machine learning 
model to estimate the Non-Pharmaceutical Interven-
tions (NPI) effects on COVID-19 propagation; based 
on the simulations, the authors summarized numerous 
conclusions related to short-term pandemic propaga-
tion in schools or according to business activities in 
176 countries (that was expressed by means of GDP per 
capita). Symmetrically, Lee et  al. [16] studied different 
scenarios of schools re-opening in Shanghai in terms 
of pandemic propagation regarding the age-structure 
and different contact patterns. Within the same scope, 
Arachchi and Managi [17] associated the death rate of 
COVID-19 to the social behavior for different coun-
tries; this statistical analysis included the social capi-
tal based on multidimensional analysis as community 
attachment, social trust, family bonds, and security. 
The study figured-out interesting observations of death 
increase according to population density and ageing, 
while it is the inverse as the number of hospital beds 
increases and lockdown policy is applied [17]. Similar 
results were produced by Kaufman et  al. [18] proving 
that social distancing mandates the spread of the pan-
demic to decrease in USA, supporting the fact that NPI 
are as mostly importance even in case of vaccination.

In sum, it is remarkable that the approaches adopted 
in literature regarding COVID-19 spread description 
and modeling can be  grouped into three main cat-
egories: stochastic processes, epidemiological models, 
physics inspired, and socio-economic approaches.

Recent works were more dedicated to socio-eco-
nomic factors that should impact the disease propa-
gation, but to a less extent they were focused on first 
order features, even for models involving logarithmic 
or exponential terms. In fact, the authors of this paper 
could not find publications that proposed higher order 
or interaction terms in their modeling to figure-out 
higher complexity analysis. Hence, a synthetic reading 
of these articles within the benchmark section of this 
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paper will enlighten this point. After all, it is worth 
recalling some major challenging obstacles especially 
regarding data availability and completeness; several 
developing countries do not exhibit standardized statis-
tics or there is, in general, lack of them, while for the 
developed countries, data is well-classified and avail-
able on several official web sites and publications; that 
led the authors of this paper to reduce of the selected 
countries from around 200 to 52 countries. In addition, 
another main obstacle is that rare are the articles that 
details the technics that are adapted and adopted for 
SIR parameters identification, and by extension R0, and 
J* estimation. Consequently, we have proposed the cas-
cade algorithm as it is introduced above and detailed in 
the next sections.

In this paper, it is proposed to carry-out a macroscale 
socio-economic investigation by evaluating the repro-
duction rate R0 and the period (or day) J* according to 
a set of standardized socio-economic indicators. The day 
J* expresses the first important decrease day (shift day) 
of the infection accounted from the declaration of the 
first day of infection by the authorities. J* is proposed 
in this paper as a damping performance time indica-
tor related to the short term government’s policies that 
were adopted against the outbreak. Hence, this paramet-
ric socio-economic approach was designed to emphasize 
the most significant socio-economic factors that should 
influence somehow the pandemic evolution. To illustrate 
the methodology, 52 countries were selected regarding 
data availability and completeness.

For each country, the ratio R0 was computed accord-
ing to Eq.  (3) [1] as presented in the SIR model section; 
J* was computed according to an inferential-based algo-
rithm that is developed in the next sections. The initial 
conditions of the system (1.1–1.6) (or 2.1 - 2.6) were esti-
mated by means of least square formulation and com-
puted using a gradient free algorithm developed in this 
paper. Subsequently, R0 and J* were  modeled according 
to the socio-economic indicators by means of multilin-
ear stepwise regression (SW-MLR). A multicollinearity 
assessment was conducted so that a minimization of the 
Variance Inflation factors (VIF) of the predictor’s factors 
and models terms was achieved. The four designed algo-
rithms were implemented as a whole-integrated cascade 
algorithm to reach the objectives of this research.

The present paper will be organized as follows: the next 
section is dedicated to the adopted methodology; the 
mathematical formulation of the problem to be solved is 
detailed in the third section; the fourth section presents 
the results of the proposed approach and the correspond-
ing socio-economic discussion; after that, a benchmark 
study is carried out to compare the results of the present 

study with other references in terms of similarities and 
contrast; this allowed positioning our work regarding the 
existing literature; and the last section exhibits conclusive 
remarks and the perspectives of this work.

Methods
The methodology adopted consists in:

• Data collect, cleaning, analysis, and primary data 
scatter visualization;

• Dimensionless data normalization;
• Resolution of the inverse problem by identifying the 

SIR optimal parameters (β∗, μ∗) and J∗ for each coun-
try by means of the cascade algorithm;

• Identification of the initial values of SIR system using 
a minimization Randomized Gradient Free Algo-
rithm (RGFA);

• Stepwise regression of the SIR parameters processed 
simultaneously with the multicollinearity analysis of 
the socio-economic input parameters;

• Factorial analysis  and the corresponding bench-
mark study;

The socio-economic data constitute the input matrix 
of the stepwise regression procedures; they were selected 
from different databases as presented Datasets collect 
(steps 1 and 5) section. The dimensionality reduction of the 
SW-MLR models was ensured by means of the multicol-
linearity assessment that aimed to minimize the Variance 
Inflation Factors (VIF) of data, of  the model’s predictors 
and terms. Concerning the SW-MLR, reasonable level of 
determination coefficients R2 (> 70%) was considered the 
regressive models. In addition, according to the large scale 
differences of the variables, dimensionless min-max nor-
malization was applied on both input and output raw data.

Workflow of the study
Figure  1 presents the architecture of the global analysis 
and the flow chart that was drawn for this work.

The list below highlights the essential guidelines for 
understanding the global analysis of Fig. 1.

• Step 1 and 5: Data were loaded and collected from 
various databases as it is exhibited in Table 2;

• Step 2: The inverse problem formulation is devel-
oped in First phase: cascade algorithm results sec-
tion in terms of the optimization problem (OP) to be 
solved;

• Step 3: According to the inverse problem developed 
in step 2, for each country, the cascade algorithm 
computes the SIR model parameters that are to  be 
stored according to the step 4. The subroutines of 
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the cascade algorithm are detailed in Second phase: 
Modeling the parameters according to socio-eco-
nomic indices section and in the Additional file 1;

• Steps 6 to 8: coupled to multicollinearity analysis, 
SW-MLR algorithms were implemented as detailed 
in Summary of the findings section. The loop, con-
stituted by the steps 6 to 8, expresses the multiobjec-
tive targets as the multicollinearity analysis aims to 
reduce the dimensionality by minimizing the VIF of 
the predictors; the maximization of the R2 ensures 
reliable models;

• Step 9: The convergence of the loop composed 
by steps 6–7-8 means that the VIF factor of each 
terms finally reaches the minimal value; the R2 of 
the regressive models also reaches the higher value. 
Hence, the models are returned and the significant 
predictors are maintained;

Finally, Results and discussion section displays the 
results of this work and discusses the main findings.

Datasets collect (steps 1 and 5)
For this study, 52 countries were selected based on data 
availability and completeness; these latter are listed in the 
Table  1. The socio-economic features that are a-priori 
selected in this study are listed in the Table 2. They were 

selected so that the authors tried to group the most con-
ventional socio-economic indicators that are in use in 
socio-economic analysis. COVID-19 statistics were col-
lected from the references [19] (used also in [20]) and [21].

Mathematical approach and algorithms design
An inverse problem is a mathematical problem that deals 
with the determination of the parameters of Ordinary Dif-
ferential Equations (ODEs) systems or Partial Differential 

Fig. 1 Architecture of the global analysis

Table 1 List of countries selected for the analysis

Albania Czech Republic Japan Russia

Algeria Denmark Kazakhstan Serbia

Argentina Egypt Malta Slovakia

Austria Estonia Morocco South Africa

Belgium Finland Netherlands Sri Lanka

Brazil France New Zealand Sweden

Bulgaria Georgia Norway Switzerland

Canada Germany Pakistan Tunisia

Chile Greece Panama Turkey

China India Philippines Ukraine

Colombia Indonesia Poland United Kingdom

Costa Rica Israel Portugal Uruguay

Croatia Italy Romania USA
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Equations (PDEs) systems that should describe a set of 
functional data that are extracted from experiments or 
observations [30, 31]. Inverse problems are widely prac-
ticed in many industrial sectors (process, chemistry, biol-
ogy, biotechnology, etc.) [31–33]. In 1982, James Ramsay 
developed a new concept in functional data analysis that 
is based on the minimization of a linear differential opera-
tor (LDO); Ramsay’s approach has been used in data clas-
sification and has been known, since this date, as Principal 
Data Analysis (PDA) [34]. The concept of PDA was intro-
duced by Ramsay [34] instead of the Principal Component 
Analysis (PCA) which presents a general approach to the 
classical dimensionality analysis/reduction that could not 
be necessarily be modeled as smooth functions which is the 
case of functional data [35–38].

In this paper, a straightforward PDA approach for non-
linear system identification is developed. A specific for-
mulation in the case of linear parameters ODEs system 
was drawn as well. The adaptation to SIR system was 
direct and the SIR parameters’ formulations were deter-
mined according to the procedure that is detailed in Addi-
tional file 1. This approach was applied for each country.

The following paragraphs details step-by-step the set of 
mathematical tools developed in this work.

SIR model
The system (1.1–1.6) and (2.1–2.6) display the (SIR) model 
that is adopted in this work as the basic form of the phe-
nomenological models in epidemiology modeling [1, 2].

(1.1)
di(t)

dt
= β i(t)s(t)− µ i(t)

(1.2)
ds(t)

dt
= −β i(t)s(t)

s.t.

i(t): is the normalized infection function reported to 
population unit, s(t): is the normalized susceptible func-
tion reported to population unit, r(t): is the normalized 
recovered function reported to population unit;
I(t): is the estimated infection function, S(t): is the 
estimated susceptible function, R(t): is the estimated 
recovered function;

(1.3)
dr(t)

dt
= µ i(t)

(1.4)i + s + r = 1

(1.5)∀t ∈ t1, t1 + J∗

(1.6)i1 + s1 + r1 = 1 at time t1

(2.1)
dI(t)

dt
=

β

N
I(t)S(t)− µ I(t)

(2.2)
dS(t)

dt
= −

β

N
I(t)S(t)

(2.3)
dR(t)

dt
= µ I(t)

(2.4)N = I + S + R

(2.5)∀t ∈
[

t1, t1 + J∗
]

(2.6)I1 + S1 + R1 = 1 at time t1

Table 2 List of indices used in the study

a All data sources were accessed on December, the 15rd 2020

Index Index Aspect Data sources  referencesa

GDP Gross Domestic Product per capita Economic [22, 23]

HDI Human Development Index Economic, social [24]

HCI Health Care Index Social [25]

GSMI Global Social Mobility Index Economic, social [26]

CO2 Carbone Dioxide emission Economic [27]

WC Water Consumption Economic [28]

DBLD Number of Days Before Lockdown Non-pharmaceutical measure several websites
Age the elderly population more than 65 years old Social, demographic [19]

Tav The temperature average of the countries that are 
considered

Observation index From (https:// en. wikip 
edia. org/ wiki/ List_ of_ 
count ries_ by_ avera ge_ 
yearly_ tempe rature) 
based on [29]

https://en.wikipedia.org/wiki/List_of_countries_by_average_yearly_temperature
https://en.wikipedia.org/wiki/List_of_countries_by_average_yearly_temperature
https://en.wikipedia.org/wiki/List_of_countries_by_average_yearly_temperature
https://en.wikipedia.org/wiki/List_of_countries_by_average_yearly_temperature
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i1,  s1,  r1: are the initial conditions respectively related 
to the functions i(t), s(t), and r(t);
I1,  S1,  R1: are the initial conditions respectively 
related to the functions I(t), S(t), and R(t);
𝛽 and μ: are the stochastic parameters that must be 
computed to fit the model (1) (or (2)) to the observed 
data. In this study, the short-term and early-age analy-
sis will be analyzed according to sole values of the cou-
ple (𝛽, μ) as it is detailed in the rest of the paper.

The reproduction number is to be computed by means 
of Eq. 3.

Optimization problem definition (step 2)
The optimization problem (OP) is proposed in order to for-
mulate the parameters identification problem and to derive 
the corresponding cascade algorithm of the OP problem.

(3)R0 =
β

µ

(4)
−→
x̃ 1 = argmin

(

x11 ,...,xN1

)

(

χ2
)

(5.1)χ2
(

−→
x 1/

−→
θ∗

)

=
∑

1≤i≤m

∑

1≤j≤N

ǫ2ji

(5.2)εji = x̃ji − xji

(5.3)x̃ji = x̃j

(

ti,
−→
θ∗

)

(6.1)
−→
x̃ := arg

(

RK
(

ODES,
−→
x̃ 1,

[

t1, t1 + J∗
]

))

(6.2)ODES :
−→
ẋ =

−→
f
(

−→
x (t), t,

−→
θ∗

)

(6.3)
−→
x̃ =

(

x̃1, . . . , x̃N
)t

(6.4)−→
x 1 =

(

x11 , . . . , xN1

)t

(6.5)
(

x11 , . . . , xN1

)

:= (x1(t1), . . . , xN (t1))

(6.6)J∗ = arg(PWP)

(7.1)
−→
θ∗ = argmin−→

θ

(

χ2
PDA

)

s.t.

– 
−→
x̃ 1

(

x̃11 , . . . , x̃N1

)

 is the optimal vector of the initial 
values of the solutions 

−→
x̃
(

x̃1, . . . , x̃N
)

 at the time  t1;
– 

−→
x̃  is the solution of the Rang-Kutta (RK) algorithm 

of the ODEs system denoted by the expression (6.1);
– ODES: expression of the ODEs system to be solved 

(Eq. 6.2). The SIR model expressed by means of nor-
malized variable was adopted as depicted by system 
(1.1–1.6);

– J∗ is the length of the interval of time of simulation 
[t1, t1 + J∗];

– t1 is the initial time of the interval of simulation 
[t1, t1 + J∗];

– 
−→
θ  is the vector of parameters to be optimized 
according to PDA approach (system 7);

– −→θ∗ is the vector of optimal parameters;

Hence, the ultimate goal of OP resolution is to 
compute:

– the optimal SIR parameters 
−→
θ∗ = (µ∗,β∗) as detailed 

in Cascade algorithm: PDA approach and parameters 
identification section;

– the initial conditions 
−→
x̃ 1 =

(

x̃11 , . . . , x̃j1 , . . . , x̃N1

)T 
of each functions x̃j . Projected to the case of COVID-
19, the functions x̃j are the Infection rate I(t) and the 
susceptible rate S(t). The, the initial conditions are 
denoted i1 and s1 respectively for infection and sus-
ceptible rates at the initial time t1. The RGFA algo-
rithm of resolution is displayed in  Randomized gra-
dient free algorithm for initial condition computing 
section;

– the parameter J∗ was computed using a point-wise 
procedure (PWP) that is developed in this work and 
that is detailed in Cascade algorithm: point-wise pro-
cedure (PWP) for J∗ determination section.

Cascade algorithm and the corresponding subroutines (step 
3)

Cascade algorithm: algorithm structure The cas-
cade algorithm was designed to solve the OP prob-
lem and adapted to the SIR model. Figure  2 presents 
the main blocks of the cascade algorithm. Each step 

(7.2)χ2
PDA

(

−→
θ

)

=
∑

j

∑

i

Lxj
2
i

(7.3)Lxji = x′j i
− fj

(

−→
x i, ti,

−→
θ

)
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of this algorithm is detailed in the next sections (Step-
wise regression and multicollinearity assessment, Mod-
eling the shift day J*, Modeling the ratio R0 and  Cas-
cade algorithm: point-wise procedure (PWP) for J∗ 
determination).

Cascade algorithm: PDA approach and parameters iden‑
tification Let’s 

(

ti,
−→
x i

)

 be a set of points of RN + 1 that 
could be fitted by a set of first order ODEs as described 
by N equations of the system (8.1-...–8.N). Where

(8.1)˙̃x1(t) = f1

(−→
x̃ (t), t,

−→
θ

)

(8.i)˙̃xi(t) = fi

(−→
x̃ (t), t,

−→
θ

)

(8.N)˙̃xN (t) = fN

(−→
x̃ (t), t,

−→
θ

)

Fig. 2 Cascade algorithm presentation
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ti is the times of observations as (1 ≤ i ≤ m);
t is the continuous time parameter;
−→
x i =

(

x1i , . . . , xNi

)

 is the observed dataset at each 
time ti;−→
x̃ (t) =

(

x̃1(t), . . . , x̃N (t)
)T  is the vector of the fit-

ting functions (estimated functions);
fi

(−→
x̃ (t), t,

−→
θ

)

 represents the expression of the 
right term of the ODE (8.i);
˙̃xi(t) is the first order derivation of a function x̃i(t);−→
θ =

(

θ1, . . . , θp
)

 is the vector of the estimated 
parameters of system (8.1–8.N);

It is to notice that the set of data observations −→x i are to 
be normalized before proceeding to the computations. 
The classical least square  method considers the error 
of estimation of the functions 

−→
x̃ =

(

x̃1, . . . , x̃N
)T as 

described by the syst. 9 [39]:

As introduced above, it is proposed to study the inverse 
problem by means of the minimization of the sum of 
squares of the Linear Differential Operators (LDOs) that 
are denoted as Lx as exhibited in system 10 [36].

s.t.

Lxji expresses the LDO operator related to the func-
tion fj at the time ti;

The analytical development of the PDA Least Square 
Minimization (PDA-LSM) is detailed in Additional file 1. 
Hence, based on the PDA-LSM formulation, the optimal 
parameters (β∗, μ∗) of the SIR model (1.1–1.6) are to be 
computed according to Eqs. 11, 12.1, 12.2 and 12.3.

Where

(9)
ǫ1i = x̃1(ti)− x1i

...
ǫNi = x̃N (ti)− xNi

(10)

Lx1i = ẋ1i − f1

(

−→
x i, ti,

−→
θ

)

...

LxNi = ẋNi − fN

(

−→
x i, ti,

−→
θ

)

(11)
(

β∗

µ∗

)

= [A]−1 −→b

(12.1)[A] =







�

1≤k≤m

2 (ik sk)
2

�

1≤k≤m

−i2ksk
�

1≤k≤m

−i2ksk
�

1≤k≤m

i2k







These parameters are valid within the time interval 
[t1, t1 + J∗]. As written in the summation symbol “Σ”, 
“m” denotes the size of the discretized interval of time 
[t1, t1 + J]. For each update of J∗, (μ∗, β∗) are also updated.

Randomized gradient free algorithm for initial condition 
computing In general, Free gradient algorithms have 
been designed in order to solve optimization problems 
regardless the need of computing the objective function’s 
gradient [40]. A Randomized Gradient Free Algorithm 
(RGFA) is designed in this paper in order to compute 
the initial conditions of the SIR problem. In other words, 
RGFA aims to solve the system (4–5.3) of OP problem.

It is worth mentioning to recall that the initial conditions 
of the basic SIR system are coupled by the equation of the 
mass N of population conservation, in its normalize ver-
sion (13).

s.t.

i1: is the initial number of the infected population
s1: is the initial number of the susceptible population
r1: is the initial number of recovered people

It is assumed here that, at the initial time t1, the number 
of recovered population is null since the immunity of the 
population could not be reached at the first instants of 
the pandemic. This statement allows directly setting r1 to 
0 as a first assumption.

This allows correcting the initial conditions Eq. (13) that 
becomes (14):

One can write the definition of the optimal initial condi-
tion i∗1 as (Eq. 15):

For each country, the real initial conditions 
(

I∗1 , S
∗
1

)

 are to 
be computed according to the system (16.1 and 16.2).

(12.2)

−→
b =







�

1≤k≤m−1

�

ik+1−ik
τ

ik sk −
sk+1−sk

τ
ik sk

�

�

1≤k≤m−1

�

−
ik+1−ik

τ
ik

�







(12.3)τ = 1

(13)i1 + s1 + r1 = 1

(14)i1 + s1 = 1

(15)i∗1 = argmin
(i1)

(

χ2
)



Page 9 of 28El Jai et al. BMC Public Health         (2022) 22:1633  

Equation (15) corresponds to a constraints-free problem; 
for each country, the optimal value i∗1 was computed by 
means of the RGFA algorithm as displayed below. This 
algorithm details the univariate unconstrained optimiza-
tion problem in case of a unimodal function to be mini-
mized (convex). The algorithm was then  applied to  the 
sum of the squared errors of  the ODEs fitting. In other 
terms, the function f(x) that is considered in the expres-
sion (17) corresponds to the sum of the squared errors 
of estimation χ2 of the Infection rate function I; the argu-
ment x of Eq. (17) expresses the initial condition i1 as 
depicted in the expression (15).

RGFA uses dynamic borders {{a}, {b}}. The current posi-
tion x(i) is generated randomly within the current itera-
tive interval [a,b] by means of uniform probability dis-
tribution. The detection of the decreasing directions are 
performed by adding a step ±h to the current position 
x(i); the functions values {f(x(i)), f(x(i))-h, f(x(i)) + h} are 
then computed. In consequence, the interval borders a 
and b are updated according to the evolution directions. 

(16.1)I∗1 = N i∗1

(16.2)S∗1 = N − I∗1

(17)(15) ⇐⇒ x∗ = argmin
(

f (x)
)

The convergence of the algorithm is reached when the 
interval is reduced to a “supposed point of accumulation” 
denoted {x∗}. This solution can be seen as the conver-
gence point of the series an and bn that express dynamic 
borders of the pre-defined interval of the optimization 
problem. The algorithm returns the number of iterations 
“i” and the corresponding solution “x∗”.

Cascade algorithm: point‑wise procedure (PWP) for J∗ 
determination A PWP procedure was developed for 
a point-by-point insertion of an observed point (ti, Ii) 
to a  pre-existing fit using inferencial statistics. General 
speaking, the algorithm is based on a pre-determined set 
of points of which an interpolation is  valid in terms of 
errors centering and model accuracy. After that an extrap-
olation of the pre-computed model is carried out  for a 
new point (ti+1, Ii+1). The error of extrapolation of this 
point is then analyzed according to the global errors vec-
tor behavior. If this new observation presents a reasonable 
level of fitting error, it is systematically added to the exist-
ing set of points to fit, and the model is recomputed. The 
adding or the rejection of a given point is managed by the 
procedure displayed in the next paragraphs.

Thus, the PWP algorithm quantifies the likely trend of 
the error of estimation of I(t); indeed, this error must 
be centered on zero with a reasonable dispersion. The 
designed procedure was inspired by Statistical Process 
Control (SPC) in which the monitoring of a given prop-
erty is carried out by means of control charts [41, 42]. 
Figure 3 depicts with details the PWP algorithm.

The PWP procedure starts by a minimal number of 
points (dataset of size N). The size N can be chosen 
according to each phenomenon and observer expertise. 
The assignment of the next point (i + 1) to the dataset is 
controlled by means of controlling the estimated error of 
extrapolation “ εi =

∼
y(ti)− yi ” as follows:

For each iteration

– Computing the histogram of the pre-defined data-
set;

– Computing the quantiles {Q1(α = 5%), Q2(α = 25
%), Q3(α = 75%), Q4(α = 95%)}. The quantiles are 
defined by the Eq. (18):

s.t.

(18)α% = P(e ≤ Qi)
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“e” is the r.v. that is considered as the error of estimation 
at each time point  ti;

– 1st control: If the point (i + 1) is included in the 
range [Q1, Q4], the point (i + 1) is transferred to the 
2nd control loop;

– 2nd control: 7 next points are computed;

° If a tendency of the (i + 1) with the 7 next points 
does not exist, it means that the estimated errors 
are fluctuating randomly around zero; else a ten-

dency is caught which points-out the beginning 
of an important deviation from the zero line; the 
number 7 is fixed according to the SPC procedure 
[42]. This value can be changed to estimate the 
effect on the results of the PWP algorithm; this will 
be treated in future works;

° The tendency behavior at a given point (i) is 
detected by computing p point after the current 
analyzed point (i). The slope and the coefficient 
of determination of the linear line 

(

−→
t ,−→ε

)

 are 
computed at these points; therefore, tests of ten-

Fig. 3 Point-Wise Procedure for optimal modeling interval detection in term of J∗ parameter
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dency and deviation position to the zero line are 
to be performed by the algorithm. The tendency 
is estimated according to the slope “a” and the 
accuracy η:

▪ If |a| < η: the tendency line is supposed horizontal 
and then a test of limits distance is leached in order 
to obtain errors that are not too distant from the 
zero;

▪ If |a| > η: the tendency line is supposed evolv-
ing through a non-horizontal direction, increas-
ing or decreasing, so that the error of estimation 
is actually shifting from the zero line; the center-
ing of “e” on zero is no longer ensured;

▪ Moreover, if the fluctuation of “e” is detected 
between the quantiles {Q3, Q4} or {Q1, Q2}, it means 
that the errors are positioned near the extreme error 
lines Q1 or Q4; this highlights a potential change of 
error average that could shift from the zero line;

– Outliers detection and management:

° In case of outlier detection, in other term a point 
that does not fit the existing fitting  curve, a coun-
ter “k” is incremented. If “k” exceeds a critical value 
“Cc”, the algorithm is forced to break and it returns 
the values of the errors subset and the optimal mod-
eling time parameter J∗. The present algorithm pro-
ceeded by a setting “Cc = 20”. Other values of the 
“Cc” can be proposed. The effect of Cc choice will be 
discussed in future works;

° Otherwise if no outlier is detected, neither out of 
range [Q1, Q4] nor caused by a tendency, the cur-
rent computed point (i) is assigned to the subset of 
valid points; the algorithm loops;

° If the index k exceeds the maximal number 
of outliers, the algorithm breaks and returns 
the parameter J∗  and then the errors subset 
−→ε =

{

ε1, . . . εN , . . . , εJ∗
}

.

Figure  3 details the PWP algorithm that was imple-
mented and applied on the error of estimation of the 
infection function.

Modeling using SW‑MLR procedure (step 7)
Stepwise regression procedure is an automated pro-
cedure that is applied to find out the most influencing 
variables of a model in the case of important number 
of decision variables. The stepwise regression approach 
was firstly proposed by Efroymson [43]; it is an iterative 
procedure that works by adding and removing independ-
ent variables terms until reaching the targeted precision 

or reaching the minimal mean square error (MSE). The 
entrance or the exit of a model term is conditioned by the 
estimation of F-statistics, p-value or other valid statistics 
of the corresponding term. If the F-statistics is higher 
than a threshold value, the variable is maintained in the 
model, else it is eliminated [44].

Stepwise regression is applied for both linear and non-lin-
ear models [45]. For non-linear modeling, statisticians prefer 
to denote the model as generalized linear models in order to 
tackle wider range of data with different types of response 
variables [46]. The vector of variables or vector of predictors 
is denoted X and the model terms are denoted Z, where:

After stepwise algorithm convergence, the set of pre-
dictors are composed by the best input vectors X and the 
corresponding model terms Z.

Finally, the models could be written in two equivalent 
ways (20) or (21):

Or

It is worth mentioning that the Step-wise regression 
algorithms belong to the set of Supervised Machine 
Learning procedures. For more details on the stepwise 
regression algorithm and the corresponding statistical 
tests, readers are referred to [44].

In addition, the modeling procedures should fit two main 
objectives that could be sensitively conflictual [43–45]:

– Minimizing the predictor’s number to avoid over-
learning;

– Minimizing the bias of the model by selecting the 
necessary predictors variables, knowing that the 
elimination of a predictor could cause the loss of 
information;

Mathematical form of the adopted models (step 9) In 
this study, general quadratic models were adopted for 
both R0 and J* as it is exhibited by the Eq. (22). General 
quadratic models were adopted due to the weakness of 
the first order and interactions models that were tested 
before proceeding to the current modeling.

Where

(19)Zi = f
(

−→
X
)

(20)
∼

Y = f
(

−→
X
)

(21)
∼

Y = f
(

−→
Z
)

(22)y
(−→
x
)

=
1

2
−→
x

T
A
−→
x +

−→
b

T−→
x + γ
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A is the symmetric matrix associated to the quad-
ratic and interaction terms of the model y;
−→
b  is the vector of constants associated to the first 
order terms of the function y;
γ is the constant term of the function y;

After performing the hypothesis test for acceptance or 
rejection of the series of models, the “best” models can be 
selected according to the following equivalent indicators 
[44]:

– Coefficient of determination R2

– Adjusted coefficient of determination adjusted of 
R2,

– Mallows Cp statistics,

Moreover, structural multicollinearity was assessed and 
tested. This was ensured in this work by means of the 
Variance Inflation Factor (VIF) [47]. The modeling was 
applied for training countries and verified by the test 
dataset.

Multicollinearity assessment (step 6) In the case of 
structural multicollinearity, prediction bias or overfit-
ting should be eliminated. Hence in this paper, the step-
wise procedure was constrained by VIF minimization 
that aims to reduce the inflation of bias due to an even-
tual structural and data multicollinearity. Since the VIF 
minimization causes the reduction of the dimensional-
ity of the regressive models, the corresponding R2 were 
also verified and are tended to be maximized to produce 
models with reasonable accuracy and error. This proce-
dure was programmed on matlab.

For each term “j” of a regressive model, the correspond-
ing VIFj is given by expression (23) [48]:

General speaking, the minimization of VIF and maximi-
zation of the precision of a model should be considered 
as a multi-objective optimization problem as well. Thus, 
one can transform this statement into mathematical form 
as it is expresses by expression (24).

s.t.

“q” is the number of the model terms

(23)VIFj =
1

1− R2
j

(24)model∗ = arg

{

max(R2)

min1≤i≤q(VIFi)

Belslay [48] reported: VIF “measure is therefore of some 
use as an overall indication of collinearity. Its weaknesses, 
like those of the coefficient of determination, lie in its 
inability to distinguish among several coexisting near 
dependencies and in the lack of a meaningful boundary 
to distinguish between values of VIF that can be consid-
ered high and those that can be considered low” [48]; 
hence, we are proposing the interval [5, 10] as an accept-
able variation range of the VIF factors [49, 50]. In addi-
tion, all normalized inputs were centered before proceed-
ing to stepwise regression programming [48].

Results and discussion
As it can be remarked from the methodology, the results 
of the proposed approach should  consist in two main 
phases; the first is  dedicated to the fitting of the  SIR 
parameters, initial conditions computation, and the 
validity interval in terms of the day J*. the second phase 
corresponds to the modeling of these parameters accord-
ing to the set of socio-economic parameters using SW-
MLR procedure. A last sub-section of the discussion 
is dedicated to the benchmark study which led to posi-
tion our study according to the existing references, and 
then to exhibit the similarities and differences with other 
specialized literature in terms of the more relevant socio-
economic factors that are involved in COVID-19 spread.

First phase: cascade algorithm results
The application of the cascade algorithm results in a set 
of optimal parameters 

(

β∗,µ∗, I∗0 , J
∗
)

 that are reported in 
the Table 3. The table is displayed according to a descend-
ent sort of R0. Figure 4a and b display a colored scatter 
plot of R0 and J* per country.

It is remarkable that the China shows an acute level of 
disease reproduction which is higher than 2000. A pre-
liminary Weighted Sum of Squares (WSS)-elbow clus-
tering according to R0 was performed on data of Table 3 
showing that China constitutes one-class at each cluster 
number; it means that China should be considered as 
an  outlier and must be eliminated from  the rest of the 
regressive modeling.

To illustrate the results of the cascade algorithm, an 
example of estimated infection function i(t)  of Brazil 
is exhibited in Fig.  5a, the shift day J* was estimated to 
be equal to 133 days. After that day, the observed infec-
tions drop so that the infection behavior changes for 
the first time from the infection declaration; the infec-
tion behavior is no longer exponential, this corresponds 
so to the early age of infection propagation in Bra-
zil. As explained in the cascade algorithm of Fig.  2, the 
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Table 3 SIR parameters (β∗, μ∗), the initial value I∗
0
 , and the shift time point J∗

Country β* μ* R0 I0* RGFA iterat.a J*b PWP 
iterat.c

‘China’ 0,042 2,09E-05 2009,569 4 10 100 75

‘Morocco’ 0,0962 6,19E-04 155,412 5 11 33 8

‘Algeria’ 0,0974 8,38E-04 116,229 5 13 35 10

‘Japan’ 0,0721 8,14E-04 88,575 2 8 84 59

‘Indonesia’ 0,0272 3,32E-04 81,928 63 17 111 86

‘India’ 0,0466 6,81E-04 68,429 345 9 71 46

‘Costa Rica’ 0,0548 1,32E-03 41,515 6 13 33 8

‘Poland’ 0,0905 2,39E-03 37,866 26 12 33 8

‘Chile’ 0,1404 3,75E-03 37,440 3 10 35 10

‘Ukraine’ 0,0741 2,17E-03 34,147 27 11 42 17

‘Slovakia’ 0,0477 1,86E-03 25,645 7 14 47 22

‘Egypt’ 0,041 1,70E-03 24,118 25 10 105 80

‘New Zealand’ 0,1378 5,75E-03 23,965 3 11 27 2

‘Pakistan’ 0,0419 2,01E-03 20,846 60 9 113 88

‘Greece’ 0,0455 2,22E-03 20,495 14 17 45 20

‘Australia’ 0,0923 4,99E-03 18,492 3 11 67 8

‘Bulgaria’ 0,0302 1,67E-03 18,084 8 12 67 42

‘Croatia’ 0,0978 5,48E-03 17,847 3 6 36 11

‘Tunisia’ 0,0617 4,46E-03 13,834 2 10 113 88

‘Colombia’ 0,0392 3,44E-03 11,395 48 15 103 78

‘Turkey’ 0,107 1,12E-02 9,554 270 15 27 2

‘Romania’ 0,0486 5,19E-03 9,364 37 11 55 30

‘Denmark’ 0,0699 8,08E-03 8,651 27 18 39 14

‘Norway’ 0,0852 9,92E-03 8,589 31 11 29 4

‘Netherlands’ 0,1171 1,51E-02 7,755 45 17 29 4

‘Malta’ 0,0635 8,30E-03 7,651 3 16 36 11

‘Serbia’ 0,0824 1,09E-02 7,560 22 17 38 13

‘Philippines’ 0,027 3,78E-03 7,143 22 16 204 179

‘Sweden’ 0,0698 1,03E-02 6,777 34 10 44 19

‘United Kingdom’ 0,0996 1,67E-02 5,964 70 13 45 20

‘Israel’ 0,1164 2,10E-02 5,543 15 16 35 10

‘Russia’ 0,0671 1,23E-02 5,455 18 12 98 73

‘Portugal’ 0,1183 2,32E-02 5,099 30 7 30 5

‘Italy’ 0,106 2,27E-02 4,670 78 13 43 18

‘Canada’ 0,0505 1,09E-02 4,633 127 12 59 34

‘Belgium’ 0,1385 3,08E-02 4,497 33 16 29 4

‘Germany’ 0,0849 1,96E-02 4,332 31 8 66 41

‘Argentina’ 0,0363 8,62E-03 4,211 35 10 132 107

‘USA’ 0,0974 2,78E-02 3,504 542 8 30 5

‘Finland’ 0,0224 6,42E-03 3,489 26 11 79 54

‘Switzerland’ 0,1375 4,06E-02 3,387 41 16 26 1

‘Austria’ 0,0932 2,80E-02 3,329 40 7 35 10

‘South Africa’ 0,0463 1,56E-02 2,968 38 11 127 102

‘Sri Lanka’ 0,0157 5,64E-03 2,784 6 9 314 289

‘Albania’ 0,0184 7,01E-03 2,625 7 8 178 153

‘Estonia’ 0,0224 9,80E-03 2,286 11 9 59 34

‘Uruguay’ 0,0378 1,72E-02 2,198 4 7 146 121

‘Kazakhstan’ 0,0474 2,26E-02 2,097 11 13 116 91

‘France’ 0,0681 4,43E-02 1,537 344 17 55 30
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estimated parameters 
(

β∗,µ∗, I∗0
)

 are to be updated at 
each J∗ update. The convergence of the PWP procedure 
determines the final value of 

(

β∗,µ∗, I∗0
)

.
The error of estimation is centered on zero as it is 

depicted in Fig.  5b and c; while the initial value I0 was 
numerically computed by the RGFA algorithm. Thus, for 
Brazil, I0 was estimated to be around 1285 infections after 
20 iterations. Finally, the optimal SIR parameters (β∗, μ∗) 
are estimated to be equal to (0.025, 3.06 E-02). Additional 
file 2 groups the resulting plots of all countries that have 
been selected for this study.

Second phase: modeling the parameters according 
to socio‑economic indices
Stepwise regression and multicollinearity assessment
The second main phase of this article is to model the 
resulting parameters (β∗, μ∗), R0, and J∗ in term of the socio-
economic parameters that are listed in Table 2; the set of 
input parameters are {GDP, HDI, HCI, GSMI, CO2, WC, 
DBLD, AGE, Tav}. To assess structural multicollinearity, 
VIF factors were computed in all steps of the backward 
stepwise regression procedure coupled to the  quadratic 
model. Concerning the infection rate β∗, 137 models were 
generated by this procedure, while for the recovering rate 
μ∗, 37 models were generated. For the shift day J*, 346 
models were generated. It is worth mentioning that all the 
corresponding p-values of these models are less than 5%, 
number of them are on the scale of  10−6. Nevertheless, 
although this procedure generated models with excellent 
p-values and R-squared, the high VIF levels, sometimes of 
the order of tens and mostly in the order of millions, lead 
to conclude that high multicollinearity bias are involved by 
different model terms in the produced models. This results 
in imprecise and insignificant models due to the elimina-
tion of the terms with high VIF values.

Figure 6a to c depict 2D-plots of the maximal “VIF factors 
of the models” versus “the corresponding R-squared” in log-
log space. One can conclude the increasing behavior of the R2 
according to the VIF values. That is to say, the dimensionality 

reduction related to the decrease of structural multicollinear-
ity by means of the minimization of VIF factors of the terms 
should enhance model’s R2. Furthermore, the max(VIF) fac-
tors of the terms of the modeled μ∗ and β∗ starts resp. around 
2000 and 60 (resp. Figs. 5b and 6a).

In order to remedy multicollinearity, data were cen-
tered [40]; the interaction and the quadratic terms were 
then recomputed. Subsequently, the VIF factors were 
computed and multicollinearity was avoided by a step-
wise elimination of the terms that generate high VIF 
values. Table 4 displays the resulting independent terms 
and the corresponding VIF factors. Hence, the stepwise 
regressions were carried out resulting in significant mod-
els of the reproduction number R0 and the shift day J* as 
it is detailed in the two next sections.

Modeling the shift day J*
The model of the shift day J* reached a reasonable accu-
racy in term of p-value, R2, and VIF factors as it is exhib-
ited in Fig.  7; all the model terms and the model itself 
have significant p-values. Moreover, R2 is highly signifi-
cant reaching more than 80% while the R2-adj reached 
more than 75%. It is noticeable that the intercept term is 
not significant since the corresponding p-value is higher 
than 5%. This is not quite important because this analysis 
especially deals with the variation of the infection param-
eters according to the socio-economic parameters. The 
model of Fig. 7 was computed using the training set com-
posed by 36 countries.

Figure 8 plots the histogram of the error of estimation 
and the corresponding t-distribution fitting. Figure  8a 
shows clearly that the test phase errors are quite included 
in the same range of variation of the error resulting from 
the training phase. Chi-squared test was carried out 
showing that training and testing population belong to the 
same population that is t-distributed centered on zero.

Figure 9 displays the slices of the J* best model accord-
ing to the predictors selected in the stepwise regression 
that are “DBLD, GDP, CO2, Tav, WC”. Based on this 

Table 3 (continued)

Country β* μ* R0 I0* RGFA iterat.a J*b PWP 
iterat.c

‘Georgia’ 0,0623 4,16E-02 1,498 7 12 92 67

‘Brazil’ 0,028 3,06E-02 0,915 1285 20 133 108

‘Panama’ 0,022 3,86E-02 0,570 65 11 141 116

‘Czechia’ 0,0421 2,01E-01 0,209 14 8 171 146

a Number of iteration of RGFA computed at the convergence of the algorithm
b The initial value of J∗ was set to 25 days
c Equal to the number of loops of PWP procedure
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figure, Table  5 summarizes the behavior of J* according 
to each predictor.

During the simulations, it was observed that the vari-
ations of J*, according to CO2 and WC, were very sen-
sitive to the variation of Tav as it could be concluded 
from Fig. 9a and b comparison; according to Fig. 9a, the 
value of Tav forces the variation of J* according to CO2 
to behave as a negative slope line, while it is totally the 

opposite for higher values of Tav as shown on the Fig. 9b. 
Subsequently, Fig. 10 is exhibited in order to highlight the 
second order interactions effects on J*. It should be men-
tioned that, according to Fig. 10, the shift day J* presents 
a stable behavior according to both first order and second 
order terms.

In general, it is clear that during a pandemic, the only 
parameter that can be handled in the short term is the 

Fig. 4 a Scatter plot of the basic reproduction number R0. b Scatter plot of the day J* (this vector map data is made with Natural  Earth(1) and 
programed with  geopanda(2); these two programs are public access). (1)https:// www. natur alear thdata. com/ downl oads/ 10m- cultu ral- vecto rs/ 

(Accessed on 15 January 2022). (2)https:// geopa ndas. org/ en/ stable/ (Accessed on 15 January 2022)

https://www.naturalearthdata.com/downloads/10m-cultural-vectors/
https://geopandas.org/en/stable/
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DBLD that expresses the number of days before lock-
down. Based on Fig. 10, the DBLD predictor affects the 
shift day J* as:

– a first order term increasing the J*;
– A second order term by increasing the J*
– with interactions with other predictors: water con-

sumption parameter WC, and Tav parameter that cor-
responds to the “last 20 years” temperature average.

According to the Fig. 9, it is noticeable that J* behaves 
like a convex parabola according to the DBLD predictor. 
In addition, the minimum of this parabola depends on 
the current values of the other predictors. In contrast, J* 

behaves like a concave parabola according to GDP. Both 
peak’s position and value intensity of J*(GDP) parabola 
depend on the other parameters values.

It is important to recall that one of the major objec-
tives of each country is to enforce the decreasing of the 
pandemic, which can somehow be expressed as the mini-
mization of the shift day J*. Since, all the predictors are 
descriptive variables and are not easy to handle in the 
short term, the only way to reach this objective is to tune 
the DBLD in order to minimize the value of J*. For each 
country, this latter can be ensured by solving the Eq. (25). 
This point will be detailed and discussed in future works.

(25)DBLD∗ = argmin
(

J∗
/

(GDP,CO2,WC ,Tav)
)

Fig. 5 a Estimated infection function i(t) computed by cascade algorithm on the interval of time [1, 133]. b Plot of the errors of estimation. c 
Histogram of errors
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Modeling the ratio R0
The reproduction number R0 was modeled by the same 
procedure like J*; it was also computed using the same 
training set. Figure 11 details the model of R0 expressed 
by the corresponding set of socio-economic predictors. 
Based on the p-values, it was noticeable that the model 
and the predictors are significant except the intercept 
term (which is not of great importance for the factorial 
analysis). Moreover, R-squared is ranged between 60 
and 70%, that is to say, the model can be used to have 
a preliminary insight of the behavior of R0 according to 
the socio-economic predictors.

Test phase was assessed using the test set. Figure 12a 
displays the error of estimation of both training (blue) 
and test phases of the modeling. Figure 12b shows that 
the error of estimation is centered on zero for both 
training and test sets. Chi squared tests were carried 
and proved that both sets belong to the same.

Figure  13 displays the slices of the R0 best model 
according to the predictors “CO2, HDI, HCI, WC, age”. 
Based on this figure, Table 6 was produced to summarize 
the behavior of R0 according to each predictor. By com-
paring Fig. 13a and b, it is remarkable that the variation 
of R0 according to HCI (Health Care Index) is very sen-
sitive to the age predictor variation. For instance, on the 
Fig. 13a, at a low elderly parameter (age), one can observe 
that R0 is decreasing according to HCI; that to say that 
smaller is the elderly, the smaller the R0 is, and thus, the 
number of infection is decreasing. In contrast, at higher 
values of elderly, as it is exhibited in the Fig.  13b, the 
health system is no longer able to ensure either the pan-
demic damping or the infection/death kinetics decelera-
tion regardless the HCI level. The other parameters stably 
affect the ratio R0, in other words, the R0’s evolution 
according to {CO2, HDI, WC} shows a stable profile as 
depicted in Fig. 13a and b, and reported in Table 6.

Fig. 6 Stepwise indicators analysis: max(VIF) VS R-squared a for the infection rate β∗b for the recovering rate μ∗c for the shift point J*

Table 4 Independent terms and the corresponding VIF

Model’s term CO2 DBLD age Tav GDP_GDP HDI_HDI HCI_HCI GSMI_GSMI DBLD_DBLD
Term’s VIF 4.852 2.514 3.720 5.779 3.973 4.712 4.341 7.265 5.320

Model’s term age_age Tav_Tav GDP_CO2 GDP_DBLD GDP_Tav HCI_GSMI HCI_WC HCI_DBLD HCI_age
Term’s VIF 5.320 7.300 3.883 4.504 9.593 5.519 3.665 4.583 5.565

Model’s term HCI_Tav CO2_DBLD CO2_Tav WC_DBLD DBLD_age DBLD_Tav age_Tav
Term’s VIF 6.072 6.300 4.649 9.452 9.297 6.112 6.808
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Other remarks are included in the Conclusion section 
in order to discuss more generally the R0 and J* behaviors 
according to socio-economic parameters involved in this 
study.

Summary of the findings
Based on the simulations, number of conclusions can be 
depicted:

Related to shift day J*:

– the most important parameter that can be handled 
for J* reduction is the DBLD, and hopefully, this is 
the only parameter that can be tuned in the short 
term. It is worth mentioning that the reduction of 
J* leads to an early-age flattening of the infection 
curves;

– The other parameters that are involved in J* evolu-
tion are GDP and CO2:

° J* behaves as a concave quadratic (parabola) of 
GDP which, at a given GDP level, J* is maximized, 
leading to a delay in pandemic damping. This behav-
ior can be seen as an economic issue for which the 
human activity  causes the increase of  the disease 
propagation;
° The variation ∂J∗

∂(CO2)
 highly depends on the value 

of Tav: J*(CO2) is a decreasing line for low values 
of Tav; in contrast, J*(CO2) is an increasing line at 
higher values of Temperature average Tav;

– Related to J*(Tav) variation, it is noticeable that the 
increasing of the value of Tav implies the increase 
of J* independently of the other predictors values. 
Furthermore, as it was noticed about CO2 and WC 
predictor, Tav variation also affects the behavior of 
J* according to the other predictors; i.e. higher is 
the average temperature of countries, lower is the 
infection damping in term of higher values of J*;

Hence, in order to exploit the remarkable J* behavior, 
it would be interesting to simulate the likely values of J* 
for each county at the correspondent socio-economic 
parameters levels. This should allow determining the 
optimal values of the DBLD that might be adopted by 
each country in case of similar diseases, since DBLD is 
the only parameter that can be controlled by the authori-
ties in the short term.

Concerning the reproductive number R0, it was shown 
that the parameters involved in its evolution are CO2, 
HDI, HCI, WC, and the elderly parameter. Furthermore, 
by varying the predictors positions in the simulation, it 
was highlighted that:

– the age parameter plays a crucial role in the R0 evolu-
tion according to HCI index; the slope ∂(R0)

∂(HCI) mainly 
depends on the elderly level. This variation is either 
negative or positive for respectively lower or higher 
values of age predictor;

– this behavior can inform the decision makers about 
the usefulness of a given health system (expressed 
by HCI index). In the present investigation, an 

Fig. 7 Best model of J*
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elderly of 65 years old was implemented, but simi-
lar studies should produce very useful data by vary-
ing the elderly in order to detect deeper effect of this 
parameter on the infection propagation; this can be 
expressed by an “age structure” relationship;

– For high values of elderly, it was remarkable that the 
health care system could not control nor dampen 
the pandemic propagation since the variation ∂(R0)

∂(HCI) 
becomes positive for all values of socio-economic 
parameters; in other terms, corrective measures 
would not result in the expected effects. In conse-

quence, the confinement, lockdown, and other pre-
ventive procedures would be more appreciable;

– In contrast, low elderly led to negative variation 
∂(R0)
∂(HCI) which means that the health care system can 
participate to the decrease of R0 and then the decel-
eration of the disease propagation;

Benchmark study
This benchmark study is dedicated to compare the find-
ings of recent existing literature that treated almost 

Fig. 8 Error of estimation of J*. a Error of estimation b the corresponding histograms and t-distribution fitting curves
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similar analysis in terms of socio-economic factors’ 
implication in pandemic spread. This section also draws 
the similarities and the contrast between our findings and 
the literature. Table  7 summarizes the features (socio-
economic indicators) that are used in the papers that 
were selected for this benchmark. It is possible that the 
papers displayed in Table  7 involved additional factors, 
but in order not to disturb the comparison with the cur-
rent work, only common indicators were selected herein.

The references listed in the Table 7 analyzed the infec-
tion and deaths statistics cases according to different 
socio-economic indicators. Different approaches were 
proposed by the authors, including simple or compos-
ite indicators. In the majority of those papers, regressive 
models were considered for structural analysis. However 
and technically speaking, two main remarks emerged 
after analyzing these references:

Fig. 9 J* model slices of first order effects: “J* VS Predictors” a at a given position of Tav b at another position of Tav

Table 5 Behavior of J* according to the predictors

Predictor Behavior of J* Comment

GDP Parabola Concave

CO2 Linear Decreasing slope

DBLD Parabola Convex

WC Linear Increasing or decreasing 
slope depending on Tav 
value

Tav Parabola Convex

Fig. 10 J* model slices: “J* VS model terms”
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– The majority of the papers adopted first order fea-
tures

– Multicollinearity was not assessed nor studied

Nevertheless, the signs of the constants of the models 
that are related to the different variables (features) con-
stitute the most interesting information that should dem-
onstrate the tendency relationship between the infection 
state (dependent variable) and the descriptive variables. 
In the present article, the infection tendency was studied 
according to the reproduction number R0, and the day J* 
that gives an idea of the infection flattening in time.

The next paragraphs extend the benchmark discus-
sion regarding the most important factors selected in the 
modeling phase of this research.

DBLD variable: the effect of lockdown policies Accord-
ing to the analysis of the references [1, 51–55, 57, 69], it 
was remarkable that the application of lockdown policies 
enhanced the slow-down of the spread of the pandemic 
in space and time. For instance, based on real-time statis-
tics in Libanon, Kharroubi et Saleh [52] demonstrated the 
success of the lockdown measures on the containment 
of the disease. Same results were attested by [51] who 
grouped time series data corresponding to 202 countries; 
their modeling emphasizes the negative and statistically 
significance of the lockdown contribution on the infec-
tion rates. The authors also proved that the infection 
curves flattening takes place 7 to 20 days from the rigor-
ous lockdown implementation [51]. Similar results were 

found by Padhi et al. [54] in the case of India using SIRD 
(SIR+Death) modeling, and by [55] in case of USA. Other 
researchers simulated the results of lockdown application 
by the countries [1], and others, forecasted the COVID-
19 propagation after school re-opening including the 
effect of age structure in Shangai by means of an adapted 
SEIR model [16]. Indeed, Lee et al. [16] proved that the 
re-opening of all children should maintain a baseline R0 
of 3.3 and reducing the daily contact among children 
of 10–19 years old should decrease R0 to 33% from the 
baseline. Contrariwise, Born and coauthors [53] tried 
to understand the counterfactual case of Sweden, since 
Sweden did not apply the lockdown as for the other 
countries of EU. The outcome of this research showed a 
decrease of the infection and death curves by about 75 
and 38% respectively. The NPIs should also reduce death 
by about 95%; SIR model was adopted for the simulations 
[53]. The other studies, reported in the Table  7, which 
involve lockdown in their analysis exhibit similar conclu-
sions in terms of infection and death reduction after or 
while applying lockdown measures, based on statistics or 
simulations [1, 18, 57, 69].

Based on the above, it is noticeable that this research 
can provide similar findings, especially if we consult 
the curves of Fig.  10 that are related to DBLD param-
eter as a second order parameter “DBLD*DBLD” or 
as interactions terms “WC*DBLD” and “DBLD*Tav”. 
But in fact, the feature of our study is that the damping 
time J*(DBLD) behave like a convex parabola so that the 

Fig. 11 Best model of R0
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analysis could not be independent of the other socio-
economic factors, and it will depend on each country. We 
conclude here that, indeed, the reduction of the DBLD, 
which is the number of days before lockdown, should 
accelerate the infection flattening by reducing the time J*; 
but according to our modeling (Fig. 9), this is true above a 
given DBLD value, that depends on the other socio-eco-
nomic factors. Under this critical value (the minimum of 
the parabola), the effect is inversed and the reduction of 

the early application of the lockdown will have no effect 
on the pandemic decrease.

HCI and age variables: the coupled effect of health care 
system and elderly According to the literature, the 
health care system was considered by means of different 
indicators such as ICU level [11], Prevention and Control 
(P&C) capacity [71], the number of hospitals and the 4 T’s 
(tracing, tracking, testing and treating) [69]. In this work, 

Fig. 12 Error of estimation of R0. a Error of estimation b the corresponding histograms and t-distribution fitting curves
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and as previously introduced, HCI index was adopted as 
a public health policy indicator.

In the existing literature, it was notified that the enhance-
ment of the previous heath policy indices (ICU, P&C, 
Hospitals number, and the 4 T’s) implies the reduction of 
the pandemic infection and death count. Even in the case 
of multidimensional analysis, the health policy was not 
speculated nor discussed from a wider perspective that 
could include the other socio-economic factors [62–68]. 
The age structure was also identified to have significant 
effect on the infection evolution, while elderly is assumed 
to be highly correlated to death cases; an exponential 
relation was denoted [57, 59]. Thus, for older adults, 
social distancing remains the appreciable and the well-
encouraged strategy for risk prevention [58]. However, 
[56] showed how delicate is to assess the age-specific 
number of COVID-19 death associated with regards to 
seroprevalence statistics. In addition, contact pat-
terns are then discussed, by the authors leading to a 

systematic explanation of the excess of death especially 
in nursing homes. This shows how age-structure can 
be robustly exploited to reconstitute the level of trans-
mission [56].

Considering the above, it is remarkable that the previ-
ous references did not include interactions between 
the elderly (or the age-structure) and the health care 
system at all. Consequently, the proposed model  of 
R0 herein proves the need of a  higher order multidi-
mensional insight (order higher than “1”) in terms of 
socio-economic predictors; this statement is justified in 
"Modeling the ratio R0"  section. Hence, the health care 
system effectiveness cannot be assessed nor quantified 
without including the interactions with other parameters 
such as population elderly. Indeed, in the present work, 
it was proved and concluded that the infection spread, 
expressed by the R0 ratio, tightly depends on the interac-
tion of HCI and the elderly parameter so that it is neither 
obvious nor logical to interpret the level of the health 
care system efficiency of a country independently on the 
age structure of the corresponding population. Hence, 
deeper analysis should be performed to draw a reliable 
picture of the correlation between the public health sys-
tem and the infection state of a country. In consequence, 
the authors assume that the models that do not integrate 
interactions or higher order terms should present mod-
eling bias or missing links in infection interpretation 
according to public health effectiveness even if they could 
show significant fitting parameters.

Fig. 13 R0 model slices of first order effects: “R0 VS Predictors” a at a given position of age b at another position of age

Table 6 Behavior of R0 according to the predictors

Predictor Behavior of R0 Comment

CO2 Linear Decreasing slope

HDI Parabola Convex

HCI Linear Increasing or decreasing 
slope depending on age 
predictor

WC Linear Decreasing slope

age Linear Increasing slope
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HDI, GDP, and Tav variables: a multidimensional analy‑
sis Liu et al. (2021) presented one of the earlier papers 
in the literature that exhibited the unexpected posi-
tive correlation between HDI and the risk of infection 
and deaths of COVID-19. The infection rate and fatal-
ity rate of seven regions in Italy was modeled by means 
of HDI index, as a composite factor, but also according 
to the sub-components of the HDI such as the Average 
Annual Gross Salary. Liu et  al. models statically proved 
the positive correlation between both infection and fatal-
ity rates with the HDI [61]. Identical conclusions were 
notified by Troumbis (2021) [66], and Thazhathedath 
Hariharan et al. [64]; in order to well interpret these find-
ings, a particular attention was given to the high level of 

life expectancy of populations in the richest countries 
that have high HDI which can cause the increase of more 
death according the corresponding high elderly [63, 64]. 
Moreover, Thazhathedath Hariharan et  al. [64] tried to 
find out an eventual multidimensional explanation of the 
infection by coupling socio-economic factors to environ-
mental ones such as temperature, temperature anomaly, 
and humidity. The results of the corresponding  simula-
tions showed that the low temperature could allow the 
proliferation of the viruses but also temperature may 
cause host shifts (denoted as temperature anomalies) for 
viruses and increases the susceptibility of more suscep-
tible species. Nevertheless, after including HDI in the 
models, the environmental factors lost their effects and 

Table 7 The references used in the benchmark analysis and the associated socio-economic factors

a Reference N° in the present article
b Related to lockdown strategies
c Some articles involve the ecological footprint that can also be considered somehow in terms of CO2 emission and consumption in general, including water 
consumption parameter (WC)
d Analysis in terms of Non-Pharmaceutical Interventions (NPIs) and/or social distancing
e Analysis in terms of ICU-beds capacity

Ref N°a DBLDb HCI HDI Age Tav GDP CO2 WC

[1] x x

[11] xd xe

[15] x

[16] x

[18] xd

[51] x

[52] x

[53] x

[54] x

[55] x

[56] x

[57] x x

[58] x

[59] x

[60] x

[61] x

[62] x x x

[63] x

[64] x x

[65] x x x

[66] x x xc xc

[67] x x

[68] x x

[69] x

[70] x

[71] x

[72] x x
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temperature becomes meaningless compared to HDI 
and could not describe COVID-19 transmission [64]. In 
another hand, Ahmed et  al. [65] included GDP and life 
expectancy among numerous other environmental fac-
tors (temperature, humidity…). The study concluded that 
the infection decreases with GDP but could not propose 
reliable remarks regarding temperature-infection rela-
tionship [65]. Muraniya and Varga [66] exhibited same 
conclusions on the GDP-infection infection in the case of 
rich countries; In contrast, for low income countries the 
infection spread is correlated to population density and 
health care conditions [66]. A biological explanation of 
the GDP-infection relation in rich countries, this relation 
is likely associated to the unbalanced ecological milieu 
and to the perturbation of the natural immunity (in terms 
of micro-organisms) that could be caused by the indus-
trial stress and by pollution emission in such developed 
countries [66]. In the same way, Varotsos et al. [67] asso-
ciated the death increase to HDI and the infection evo-
lution to the GDP per capita. Anam et Shor [68] statis-
tically found that COVID-19 infection decreases with 
temperature but increases according to GDP as proposed 
by the previous references.

According to the previous reading, the main remark is 
that the models  already used in the literature  did not 
present neither interaction terms nor high order param-
eters in terms of temperature, HDI, and GDP depend-
ency; the authors based their analysis on one order 
parameters, while neither  discussion nor analysis of 
multicollinearity verification or assessment is intro-
duced apart Ahmed and coauthors [65] who reported 
that multicollinearity of the parameters vectors of his 
study will not bring perturbation to the interpretation 
of his models. This latter remark is fundamental in this 
comparison paragraph. For instance, Thazhathedath 
Hariharan [64] found that the effect of temperature 
could be negligible if the HDI parameter is introduced 
in the analysis. Furthermore, GDP parameter was found 
in the literature to be a increaser factor of infection in 
the case of richest countries, but for the other countries, 
its effect vanishes in presence of demographic factors 
[66]. According to our findings, reported in Fig.  9, the 
simulations proved that the profile of the infection-slow 
down (in terms of J* day) according to GDP parameter 
is associated to the temperature, and the GDP-infection 
relation is not as linear as it appears; as mentioned in 
Summary of the findings section, J*(GDP) is a con-
cave curve, that depends on the other socio-economic 
factors. Temperature also affects heavily the profile 
of J*(CO2) where it is either increasing or decreasing 
according to temperature level. Hence, the key-point 
of modeling proposed in this paper is that the order of 

modeling should be higher than those proposed in  the 
literature and the relationships between the infection 
and death rates or cases must be analyzed deeper in a 
multidimensional perspective.

Conclusion
In this paper, it is proposed to draw up a macro-scale 
approach for understanding the pandemic propagation 
of COVID-19 according to socio-economic indicators. 
For the disease description, two main indicators were 
adopted; the critical shift day J*, that was proposed for 
the first time in this work which characterizes the first 
important decrease of the disease, and the reproduc-
tion number R0 that summarizes the macroscale infec-
tion time-kinetics. The study focused then on the early 
age of the pandemic. The methodology adopted was 
presented in general, and the case of SARS-COV-2 pan-
demic was analyzed by means of the basic SIR model. 
Fifty-two countries were selected according to data 
availability and completeness. Then, R0 and J* consti-
tuted the dependent variables to be modeled according 
to the socio-economic factors. Concerning the step-
wise regression procedure, 2/3 of the countries were 
selected for the training phase and the last 1/3 served 
for the test phase.

The first phase of this research was achieved by 
means of the cascade algorithm that is composed by 
four sub-algorithms that were designed and imple-
mented for each selected country. First, β∗ and μ∗ were 
computed by adapting PDA analysis to linear param-
eters problem. Consequently, the reproduction num-
ber  R0 was estimated according to β∗ and μ∗. Injecting 
these results in the RGFA algorithm, the optimal initial 
input I∗0  was determined, and the critical shift day J* 
was selected using the PWP algorithm that was devel-
oped in this paper. In the second phase of modeling, a 
series of SW-MLR were launched to model J* and  R0. 
The candidate independent variables selected initially 
are the socio-economic parameters. Furthermore, data 
and structural multicollinearity were taken into con-
sideration, treated, and eliminated within the stepwise 
regression procedures leading to reliable and accurate 
general quadratic models.

A detailed comparative study was conducted by 
means of a benchmark which focused on the multidi-
mensionality of COVID-19 spread in association to the 
adopted socio-economic vision. This comparative study 
allowed pointing out the main novelties brought by our 
research in term of interactions and higher order mod-
els terms instead of first order parameters; in fact, this 
should reinforce the understanding of the pandemic 
spread in a wider window of the public health and to 
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avoid neglecting the likely weak relationships between 
the infection statistics and some socio-economic or 
environmental factors. Indeed, in a first order analy-
sis, some factors appear to be not significant, but by 
implementing higher order or interaction terms, this 
insignificance relation seems to be not negligible as the 
infection profile varies significantly after increasing the 
factors modeling order.

Future works will focus on the effect of the elderly-
based age analysis on the outbreak’s propagation and 
its dependence to other socio-economic factors; other 
works will be dedicated to the computing of the opti-
mal DBLD parameters for each country and compara-
tive scenarios are to be developed in the case of optimal 
DBLD factor. In addition, the authors are working on an 
extension of the SIR model to a new Opened-SIR (O-SIR) 
model that will be coupled to socio-economic factors 
for a deeper understanding of the pandemic spread in a 
meso-scale perspective. Further works will focus on to 
the mathematical analysis of the algorithms that were 
proposed in this paper in term if complexity formulation, 
computation, convergence analysis, and applicability to 
other case of study related to epidemiological modeling 
and industrial applications.

Finally, the authors invite the readers to share their 
comments and critics in order to widen the perspec-
tives of this analysis.
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