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Background: The COMprehensive Post-Acute Stroke Services
study was a cluster-randomized pragmatic trial designed to evaluate
a comprehensive care transitions model versus usual care. The data
collected during this trial were complex and analysis methodology
was required that could simultaneously account for the cluster-
randomized design, missing patient-level covariates, outcome non-
response, and substantial nonadherence to the intervention.

Objective: The objective of this study was to discuss an array of
complementary statistical methods to evaluate treatment effective-
ness that appropriately addressed the challenges presented by the
complex data arising from this pragmatic trial.

Methods: We utilized multiple imputation combined with inverse
probability weighting to account for missing covariate and outcome
data in the estimation of intention-to-treat effects (ITT). The ITT es-
timand reflects the effectiveness of assignment to the COMprehensive
Post-Acute Stroke Services intervention compared with usual care
(ie, it does not take into account intervention adherence). Per-protocol
analyses provide complementary information about the effect of
treatment, and therefore are relevant for patients to inform their
decision-making. We describe estimation of the complier average
causal effect using an instrumental variables approach through 2-stage
least squares estimation. For all preplanned analyses, we also discuss
additional sensitivity analyses.

Discussion: Pragmatic trials are well suited to inform clinical
practice. Care should be taken to proactively identify the appropriate
balance between control and pragmatism in trial design. Valid esti-
mation of ITT and per-protocol effects in the presence of complex
data requires application of appropriate statistical methods and
concerted efforts to ensure high-quality data are collected.

Key Words: causal inference, cluster-randomized trial, pragmatic
trial, per-protocol analysis
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In 2010, the Patient-Centered Outcomes Research Institute
funded a series of research studies that would spur the devel-

opment and testing of patient-centered, real-world interventions
that could be rapidly translated into clinical care.1 Despite their
increasing utilization, the design and analysis of multicenter
pragmatic trials remains complex, particularly when the inter-
vention itself is multifaceted. Interventions frequently span across
care settings (eg, acute, post-acute, community), involve multiple
interactions with patients at varying timepoints, and require
adherence at the provider and patient level. By design, such in-
terventions are often delivered flexibly, allowing for variation in
implementation of the intervention across settings. Pragmatic trials
also frequently utilize a usual care (UC) comparator that may be
heterogenous or share some aspects with the intervention.2 Given
these challenges, there is not yet consensus as to the best way to
analyze data from large-scale, complex pragmatic clinical trials.3

As one moves along the continuum from highly controlled to
highly pragmatic trials, there are inherent tradeoffs between data
quality (supporting more compelling inferences regarding efficacy)
and generalizability (supporting more compelling inferences re-
garding real-world effectiveness). The COMprehensive Post-Acute
Stroke Services (COMPASS) Study was one of the first large-
scale pragmatic clinical trials of transitional care in the United
States. Our mandate was to balance the competing goals of data
quality and pragmatism within the framework of a large cluster-
randomized trial. Herein we discuss aspects of the study’s design,
the analytic challenges we encountered, the statistical approaches
we employed to understand the intervention’s effectiveness, and
considerations for the design and analysis of future studies.

THE COMPREHENSIVE POST-ACUTE STROKE
SERVICES STUDY DESIGN

Post-acute care in the United States is often fragmented
and ineffective at managing patients’ recoveries and transitions to
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home.4,5 Patients may not receive needed rehabilitation therapy,
have difficulty with medication management, and are at risk for
recurrent stroke, complications and rehospitalizations.5–13 The
COMPASS study was a pragmatic, cluster-randomized trial de-
signed to evaluate the effectiveness of an evidence-based tran-
sitional care model compared with hospitals’ UC to improve the
functional status of stroke and transient ischemic attack patients
discharged home.14 The study investigated the real-world effec-
tiveness and feasibility of implementing comprehensive transi-
tional care management in current practice. The primary outcome
for the study was 90-day patient-reported functional status. It was
measured by the 16-item Stroke Impact Scale (SIS-16), a well-
established semicontinuous measure represented as a percentage
between 0 and 100, with higher scores representing better
function.15 The study enrolled nearly 6000 adult stroke and
transient ischemic attack patients discharged home from 40
hospital units.14,16

Pragmatic Intervention
The COMprehensive Post-Acute Stroke Services transi-

tional care (COMPASS-TC) intervention was designed for
scalability and sustainability and was aligned with the Centers
for Medicare and Medicaid Services transitional care manage-
ment reimbursement models.17 Core elements included a tele-
phone call at 2 days and a face-to-face clinic visit within
7−14 days post-discharge. Standardized clinical assessments
were used to generate individualized electronic care (eCare)
plans delivered at the clinic visit. The primary goal of
COMPASS-TC was to manage patients after discharge through
specialized follow-up care including neurological evaluation, re-
ferrals to needed services (eg, rehabilitation, community services),
and evidence-based coaching on risk factor control. While the
intervention established a shared set of processes across hospitals,
it was specifically tailored for each hospital, community, and
patient. In keeping with the pragmatic nature of the study, the
study team did not undertake efforts to increase patient adherence,
although it did provide limited financial assistance to support
hospitals’ efforts at implementation and delivery.

Cluster Randomization
The substantial planning and training efforts required to

adapt existing processes of care and to build community resource
networks precluded randomization at the patient level. Fur-
thermore, requiring hospital staff to deliver 2 separate interventions
would have resulted in logistical challenges, and would likely have
interfered with timely delivery of care, led to contamination of
treatment groups, and resulted in drift over time had 1 treatment
been perceived to be more beneficial. Instead, hospitals were
randomized to COMPASS-TC or UC, with randomization strati-
fied into 4 levels according to annual stroke patient discharge
volume and stroke center certification status to ensure balance in
these key cluster-level characteristics.14,16 UC sites maintained
their UC for stroke patients discharged home and the study team
made no effort to change their standards of care.

Outcome Assessment and “Opt-Out” Consent
Model

The need to concurrently deliver clinical care while
conducting research impacted patient enrollment and the

choice of an informed consent model. We developed an opt-
out consent model whereby, before discharge, patients were
enrolled and informed of their hospitals’ participation in the
study.18 Hospital staff collected contact information and
baseline data on medical history, stroke severity and demo-
graphics. At 90 days, a survey research laboratory called
patients to obtain informed consent and, if given, collect
patient-reported outcomes. At least 3 call attempts were made
followed by a mailed survey for patients who were not suc-
cessfully reached by telephone. Participants could opt-out of
participation in the outcome survey at any time.

ANALYTIC CHALLENGES AND STATISTICAL
METHODOLOGY

While the study design choices had their advantages,
such as enhancing the generalizability of results, they si-
multaneously impacted the type of data collected and the
choice of statistical methodologies required to produce un-
biased estimates of treatment effectiveness. First, cluster-
randomization does not guarantee balance in patient-level
covariates. This necessitates adjustment for factors that are
strongly associated with study outcomes as well as appro-
priate handling of missing covariate data. Second, while the
opt-out consent facilitated data capture (eg, disease severity,
medical history) on all enrolled patients, the lack of baseline
consent may have reduced engagement in the study and
contributed to outcome nonresponse at 90 days. A third an-
alytic challenge we faced was substantial nonadherence to the
intervention by both patients and hospitals. Having been
aware that this phenomenon is common in pragmatic trials,3

our prespecification of per-protocol (PP) analyses was in-
tegral to our analysis approach, particularly as these results
are of importance to patients when making treatment deci-
sions. Finally, treatment recommendations and patients’ as-
sociated adherence were not well-characterized in the UC
comparator arm. Hospitals assigned to UC typically referred
patients to primary care or, in some cases, provided limited
hospital-based follow-up. This variation presented challenges
in the interpretation of results. Below, we describe the sta-
tistical methodologies used to address these key challenges,
their assumptions and limitations, and strategies for sensi-
tivity analyses.

Considerations for Analyses Based on
Cluster-level Randomization

For cluster-randomized trials, the random assignment of
treatment group is to a cluster (ie, hospital unit) even if the
intervention is delivered to patients individually. Since
randomization is not at the patient level, there is no assurance
(and in many cases there should be no expectation) that im-
portant patient characteristics will be balanced, as different
hospital units might serve fundamentally different pop-
ulations. Figure 1 illustrates the age distribution for 2 pairs of
hospital units that were paired for randomization as well as
the overall distribution by treatment arm. This distribution
was heterogenous across hospitals resulting in an overall
older patient population in the intervention arm. Because age
is associated with outcomes of interest (eg, SIS-16), such
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imbalances confound treatment effect estimates and must
therefore be accounted for in the analysis. Age and other key
clinical variables (eg, primary diagnosis, stroke severity) were
prespecified for inclusion in these analysis models to
minimize patient-level confounding. Moreover, sensitivity

analyses were prespecified to assess the robustness of our
inferences to covariate adjustment. These approaches are
described in more detail below.

While cluster-level randomization ensures the theoret-
ical independence of cluster-level characteristics and treat-
ment assignment, in practice, unless the number of clusters is
very large, imbalances may remain, suggesting these char-
acteristics should still be controlled for. To this end, our
analysis models included a 4-level variable for randomization
strata to increase the precision of effect estimates. This
stratification variable was defined as the cross classification of
each hospital’s designation as a primary or comprehensive
stroke center (either vs. neither) and stroke volume (high
vs. low).

Intention-to-Treat Analysis
For the sake of brevity, we focus our discussion of the

prespecified intention-to-treat (ITT) analyses on the primary
outcome (SIS-16). Our prespecified analysis methods at-
tempted to address 3 main challenges enumerated above: (1)
confounding due to imbalance in patient-level characteristics
that are associated with outcomes; (2) missing values for key
patient-level characteristics; and (3) selection bias associated
with outcome nonresponse. The primary analysis of SIS-16
scores was based on a weighted linear mixed model (LMM)
that included a hospital-specific random effect (ie, random
intercept), the 4-level randomization stratification variable, a
cluster-level indicator for randomization arm, and patient-
level covariates (ie, primary diagnosis, age, race, National
Institutes of Health Stroke Scale score). Further sensitivity
analyses, discussed below, included additional patient-level
covariates (Table 1).

Accounting for Missing Covariate Data Using
Multiple Imputation

Efforts taken during the trial successfully minimized
missing data; however, key patient characteristics still suf-
fered from varying degrees of missingness, ranging from
< 1% to 6.5% (see footnote to Table 1). For example,
documentation of whether the patient was in need of

Intervention Arm Usual Care Arm

Hospital
Pair A

Hospital
Pair B

Overall

<55
(27%)

56-64
(25%)

65-74
(21%)

75+
(27%)

<55
(22%)

56-64
(29%)

65-74
(25%)

75+
(24%)

<55
(21%)

56-64
(23%)

65-74
(26%)

75+
(30%)

<55
(31%)

75+
(17%)

<55
(16%)

56-64
(22%)

65-74
(28%)

75+
(34%)

<55
(17%)

56-64
(20%)

65-74
(28%)

75+
(35%)

56-64
(23%)

65-74
(29%)

FIGURE 1. Distribution of age. The top two rows display age
for 4 individual hospitals representing 2 paired blocks for
randomization; the bottom row displays the overall age dis-
tribution according to study arm.

TABLE 1. Intention-to-treat and Per-protocol Effect Estimates Obtained From Prespecified and Sensitivity Analyses
Analysis Type Method Effect Estimate 95% CI P

Intention-to-treat Complete case, restricted to participants with observed
outcome and covariate data

0.95 −1.60 to 3.50 0.4479

Multiple imputation, prespecified adjustment set* 0.42 −1.91 to 2.76 0.7223
Inverse probability weighting+multiple imputation,
pre-specified adjustment set

0.61 −1.74 to 2.97 0.6098

Inverse probability weighting+multiple imputation, additional
covariate adjustment using model selection procedure†

0.29 −2.12 to 2.69 0.8152

Per-protocol (estimation of the
complier average causal effect)

Instrumental variables‡ 1.11 −2.90 to 5.12 0.5867

Compliance mixture model 1.34 −2.55 to 5.23 0.5002

Values in parentheses below indicate degree of missing data for these covariates.
*Prespecified covariates included: age, race (< 1%), National Institutes of Health Stroke Scale score (2.8%), diagnosis (stroke, TIA), and randomization stratum. Values in

parentheses indicate degree of missing data for these covariates.
†Additional covariates considered in model selection were: insurance status (2.1%), need for rehabilitation (6.5%), history of stroke, history of TIA, history of cardiovascular

disease, referral for home health (6.5%), presence of primary care provider, rural residence (< 1%), history of depression, history of hypertension, history of smoking.
‡Primary, prespecified analyses.
CI indicates confidence interval; TIA, transient ischemic attack.
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rehabilitation was missing for ~6.5% of patients. At least 1 of
the National Institutes of Health Stroke Scale score, race, and
need of rehabilitation characteristics was missing for ~9.2%
of patients; this is a degree of missingness that could render
complete case analysis biased to a non-negligible degree.
Moreover, in complete case analysis, changing the covariate
adjustment sets for sensitivity analyses results in different
subsets of complete cases, making comparisons of results
across models more difficult.

We used multiple imputation by chained equations
(MICE) to impute missing values of 6 covariates that we
planned to explore in the sensitivity analyses.19 MICE re-
quires specifying a regression model for each sometimes-
missing variable such that some of the covariates included
may themselves be sometimes-missing variables. The method
assumes that the missing data are missing at random. Because
the tenability of this assumptions relies on correctly speci-
fying the imputation models, it becomes more plausible as the
number of covariates included in them increases.19,20 This
militates in favor of including “all but the kitchen sink” in
each imputation model, although this presents practical
challenges, especially when missing covariates are categorical
in nature (eg, prediction models can perform poorly when
there is insufficient information to estimate the model pa-
rameters). We attempted to balance these competing concerns
using a conservative model selection procedure to first iden-
tify the variables to be included in the imputation models.
Specifically, we used an ad hoc Hot Deck imputation pro-
cedure to fill in missing covariate values using the observed
values from complete cases.21 For each case that had 1 or
more missing covariates, we created 10 imputed observations,
each of which was given one-tenth the weight of a case with
fully observed data. Each imputation model (be it a linear,
logistic, or generalized logistic regression) was then fit to the
Hot Deck imputed dataset, using a large number of co-
variates. Using backward selection with a relatively liberal
P-value threshold, we identified the subset of covariates to
include in each imputation model; selection proceeded until
the effects of all remaining covariates had associated un-
adjusted P values of <0.1.

While a detailed explanation and theoretical justification
of MICE is beyond the scope of this paper, it is an iterative
procedure, with a Bayesian motivation. MICE uses Markov
Chain Monte Carlo methods to draw samples (ie, predictions)
for the missing variables to create so-called full datasets where
no covariates have missing values. The use of MICE has been
shown to perform well compared with other commonly used
methods, although there is potential for improving performance
using machine learning approaches, especially when the number
of covariates is large or their relationships are highly complex.22

Regardless of imputation method, the procedure yields some
number, M, of full datasets (we specified M=100). Each
complete dataset is then analyzed, and the results are combined
using standard techniques to account for the uncertainty asso-
ciated with the unknown values of the missing covariates.23

When data are missing for reasons related to the (un-
observed) missing values, they are considered missing not at
random, in which case MICE cannot fully address the issues
presented by missingness. In that case, investigators might

consider conducting sensitivity analyses to assess the ro-
bustness of their findings to the imputation method. Increas-
ingly, software exists to support such efforts. For example,
The MI Procedure in SAS (which we used to implement
MICE) allows the user to employ a pattern-mixture approach
to impute missing data under plausible models for why they
are missing (eg, patients with worse outcomes are more likely
to have them missing). Such investigations are particularly
important if outcome ascertainment rates differ by group. If
inferences from such sensitivity analyses differ with primary
analyses, this must be taken into account when describing the
results of the study.

Minimizing Selection Bias From Outcome
Nonresponse

The primary outcome, SIS-16, was observed for 59% of
patients. Thus, there was significant cause for concern that
analyses performed using observed outcomes without further
adjustment would be biased. There are several strategies to
correct for selection bias due to outcome nonresponse. The 2
most common choices are multiple imputation (MI) of both
the missing covariate data and outcomes and inverse proba-
bility weighting (IPW). Both approaches are valid when the
missing data are missing at random, which in the context of
the COMPASS study outcomes data means patients’ baseline
characteristics are sufficient to predict their outcome values.
We chose to employ IPW to account for outcome non-
response, a decision made on practical grounds.

One key factor that influenced our decision to use IPW
over MI to account for missing outcomes was that we ob-
served a moderate ceiling effect during an early blinded ex-
amination of the distribution of SIS-16 scores (∼24% of
participants scored at the maximum value). A ceiling (or,
analogously, a floor) effect refers to the mounding of re-
sponses at the upper (lower) boundary of an instrument’s
range. As a consequence, no transformation can be applied to
make the distribution approximately normally distributed (ie,
to remove the ceiling effect). In response, our team conducted
large-scale simulation studies to assess the robustness of in-
ference using the linear model in this setting.24 While we
found that inferences were indeed robust, we noted that MI
would require accurate prediction of the missing outcome
values (subject to the ceiling effect) which could not be
achieved by assuming a normal prediction model or using
other prediction models available in standard software. This
led us to choose IPW rather than imputation methods to deal
with challenges presented by outcome nonresponse.

Briefly, we used a logistic regression model to estimate
the probability (propensity) that a patient with given charac-
teristics would provide an outcome (ie, respond to the
90 d outcome assessment). The outcome model was then fit to
the observed data, weighting patients by the inverse of their
propensities. Heuristically, selection bias due to outcome
nonresponse is accounted for by upweighting data from pa-
tients who are less likely to respond. For a more rigorous
exposition of IPW and its assumptions, we refer the reader to
the excellent text by Hernán and Robins.25

Using IPWs estimated from logistic random effects models
can yield biased estimation when the number of observations
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within clusters is small.26 This is precisely the setting in the
COMPASS study, which employs models with hospital-specific
random intercepts. As a remedy, we used conditional logistic
regression, which is more robust to the presence of small clusters.
We estimated IPWs separately for each study arm using a
common set of covariates as predictors.26

A final complication was that some of the covariates
used to estimate the IPWs exhibited missingness. To address
this issue, for each imputed dataset, the IPW analysis pro-
cedure described above was performed, and the parameter
estimates were combined across imputations. Simultaneously
accounting for these sources of bias presents a somewhat
daunting computational challenge, especially in cases where
the number of endpoints examined in the trial is large, since
the multistep analysis process must be repeated for each
endpoint.

Sensitivity Analysis to Assess Robustness of
Prespecified Analyses

The methods described above to address covariate
missingness, outcome nonresponse, and confounding due to
imbalance in patient characteristics are subject to criticism to
the degree that their underlying assumptions are violated. We
felt it important to present results of alternative analyses that
would allow critical readers to assess the robustness of the
approaches taken. To this end, we performed 3 sensitivity
analyses of the primary endpoint, including: (1) a complete
case analysis which made no use of the sophisticated sta-
tistical machinery described above; (2) an analysis that did
not incorporate IPWs to gauge their influence on the analysis;
and (3) an analysis that included an expanded covariate ad-
justment set to assess whether confounding was robustly
controlled for in the analysis models based on the prespecified
covariates. Results of these analyses are presented in Table 1
and additional details are available in a supplement to the
primary results publication.27

Per-Protocol Analyses
Increasingly, supplementing ITT analyses with PP

analyses is viewed as important in comparative effectiveness
research in pragmatic trials.28 PP analysis was an integral part
of our analysis plan given its relevance to patient stakeholders
and the subsequent substantial nonadherence to treatment that
we observed in the COMPASS study. Some hospitals did not
consistently implement the intervention during the trial be-
cause of limited resources including staff and competing
demands. Others never achieved true buy-in by those im-
plementing the intervention.29 Patients also experienced bar-
riers to receipt of treatment including costs, transportation
challenges, and difficulty balancing multiple follow-up visits.
As a result, only 35% of patients assigned to treatment re-
ceived the core elements of the COMPASS-TC intervention
(ie, an eCare plan within 30 d of hospital discharge). There
was considerable heterogeneity in adherence across hospitals,
ranging from 6% to 70% (Fig. 2). ITT estimates in the
presence of nonadherence do not represent the biological
effect of the intervention but rather a mixture of the effects in
compliers and noncompliers. As such, the ITT estimate may
not be indicative of the experience in a setting where

treatment is widely and successfully adopted. For these
reasons, we prespecified PP analyses to better understand the
effect of treatment when received. We endeavored to estimate
the conditional (ie, covariate adjusted) complier-average
causal effect (CACE) of the intervention, which is based on
Rubin compliance principal strata.30 A rigorous discussion of
compliance principal strata is beyond the scope of this paper.
Briefly, under this framework, 4 subpopulations are relevant
with respect to treatment receipt: (1) always-takers: those
patients who would receive an intervention regardless of
treatment assignment; (2) never-takers: those who would
never receive an intervention; (3) compliers: those patients
who would follow COMPASS-TC protocols or those of UC
(whichever they were offered); and (4) defiers: those who
would receive the opposite care assigned to the hospital unit
in which they were enrolled. Our analyses were based on a set
of identifiability assumptions, discussed below. One is the
unverifiable but plausible assumption that there are no defiers
in the study population. In our case, because patients treated
at UC sites had no opportunity to receive the COMPASS
intervention, there were no defiers or always takers in the
population. Therefore, our population consisted of compliers
and never-takers so that a noncomplier is essentially a
synonym for never-taker. PP analyses attempted to estimate
the COMPASS intervention effect among compliers. We can
infer that patients who received the COMPASS-TC were
compliers. However, as we did not closely monitor care
recommendations and adherence in the UC arm, compliance
to UC was unobserved, presenting a challenge for estimation
of the CACE.

Complier Average Causal Effect Estimation Using
an Instrumental Variables Approach

Our primary strategy for estimation of the CACE was
an instrumental variables (IV) approach.31 A rigorous dis-
cussion of IV is beyond the scope of this paper, for which we
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FIGURE 2. Proportion of patients receiving COMprehensive
Post-Acute Stroke Services transitional care (COMPASS-TC) per-
protocol by hospital. Circles represent the 19 hospitals that
adopted the intervention and the area represents the total
number of enrolled patients. Values on the y-axis represent the
proportion of patients who received COMPASS-TC per-protocol
(an electronic care plan within 30 d of index discharge).
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guide the reader to Hernán and Robins (see Section 16.1 and
Technical Point 16.1 therein for more rigorous exposition on
this topic). Although fundamental to the approach, identifying
a valid IV can be challenging. Briefly: (1) the instrument must
be associated with treatment receipt; (2) the instrument must
not have a causal effect on the outcome of interest except
through treatment receipt; and (3) the instrument and outcome
must not have a common cause (that is not accounted for in
the analysis). Figure 3 graphically depicts the causal
relationships assumed for the preplanned IV analysis for the
COMPASS study.

One of the key benefits of IV analysis is that, if the
analyst adequately adjusts for the effects of the measured
confounders (C) of the relationship between study arm and
outcome, and there are no unmeasured confounders (U1),
inference on the effect of treatment receipt on the outcome is
valid, even if there are unmeasured confounders of that re-
lationship (U2). The statistical analysis plan for the COM-
PASS study provides a thorough description of the rationale
for using randomized study arm (a cluster-level variable) as
an instrument. Briefly, the fact that criterion 1 is met is ob-
vious. For criterion 2, the research team felt that the majority
of the intervention’s effectiveness came through attending a
specialized clinic visit and receiving an individualized eCare
plan. Thus, simply being enrolled at a hospital that was
randomized to provide the COMPASS-TC was not viewed as
having the potential to provide a meaningful degree of effi-
cacy and thus criterion 2 holds, if only approximately. Cri-
terion 3 requires appropriate adjustment for prognostic
characteristics that were imbalanced across study arms, which
we attempted to achieve using strategies described above.

It is important to note that, in the context of the
COMPASS study, having an instrument that meets criteria
1−3 above is not sufficient for the IV estimator to adequately

target the CACE. Further assumptions are necessary. Spe-
cifically, one must assume that patients enrolled in UC hos-
pitals who were compliers (an unobservable characteristic)
did not have the option to receive specialized post-acute care
akin to COMPASS-TC (ie, compliance is defined with re-
spect to specialized post-acute care, which was assumed to be
unavailable in the UC setting). In addition, one must further
assume that intervention arm patients who do not receive the
eCare plan (ie, noncompliers) received minimal specialized
post-acute care, consistent with the level of intervention
provided in UC settings to all patients. These assumptions are
admittedly strong, but not unreasonable in our opinion, for
several reasons. First, before randomization, hospitals did not
provide comprehensive post-acute care fully consistent with
COMPASS-TC.32 Second, a key reason for noncompliance to
COMPASS-TC was preference for alternative follow-up, for
example, primary care, consistent with that offered in UC.29

Two-stage least squares estimation was performed for IV
analysis and robust standard errors were computed to account
for the cluster-level heterogeneity of patient outcomes.31,33

Briefly, the first stage regression model regresses treatment
receipt on hospital-level and patient-level characteristics using
intervention arm data. In the second stage regression, the
outcome is regressed on the same set of characteristics except
that treatment receipt is replaced by the estimated probability
of receipt from the first stage regression (and set to zero for UC
patients). Use of IVs offers no protection from selection bias
related to outcome ascertainment.34 Thus, the same methods
for employing IPW coupled with MI described above were
also incorporated into the IV analysis. This has been shown to
improve the quality of IV estimation in the presence of se-
lection bias.35

Sensitivity Analysis: Complier Average Causal
Effect Estimation Using a Complier-Outcome
Mixture Model

A key limitation of IV analysis described above is
sensitivity to underlying assumptions. When its assumptions
are met, IV analysis protects against unmeasured confounding
of the effect of treatment on the outcome of interest. The
property of accounting for unmeasured confounding is unique
to the IV approach. However, previous work has shown that
weak instruments (ie, instruments weakly associated with
intervention receipt) can lead to IV-based CACE estimates
that are biased and that the bias does not disappear even under
large sample sizes.31 Ultimately, given the low rate of treat-
ment receipt, randomized study arm may be viewed as a
relatively weak instrument, and such bias was a concern to
the research team. Moreover, as described above, the IV
analysis assumes that there was essentially no specialized
post-acute care provided by UC hospitals, an assumption that
realistically can be viewed to hold only approximately.

Given the potential for biases in the IV analysis stem-
ming from assumptions that are only approximately met, we
conducted a sensitivity analysis designed to be more robust
than the IV approach to the assumptions described above
using a compliance-outcome mixture model. Unlike IV
analysis with a valid instrument, that approach remains sub-
ject to bias associated with unmeasured confounding.

YRandomization
(IV)

C

U2

U1

Treatment

FIGURE 3. Directed acyclic graph representing the COMpre-
hensive Post-Acute Stroke Services cluster-randomized trial
where randomization assignment is the instrumental variable
(IV) and Y represents the outcome of interest. U1 and U2
represent unmeasured confounders of the randomization-
outcome and treatment-outcome relationships, respectively. C
represents measured confounders that were adjusted for in the
analysis. Direct causal effects are represented by solid arrows.
Instrumental conditions require that (1) the IV is associated
with treatment; (2) there is no effect of IV on Y except through
treatment; and (3) there is no common cause of IV and Y. The
dotted arrows are included to illustrate the effects assumed to
be absent under conditions 2 and 3. Of note, the solid arrow
between C and IV is included to represent observed associa-
tions present after randomization, although these are not
causal effects.
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The compliance-outcome mixture model36 assumes that
patients can be viewed as either compliers, who by definition
will adhere to specialized post-acute care treatment recom-
mendations, or noncompliers. Unlike the IV analysis, the
approach does not require one to assume that specialized
post-acute care is not provided by UC but does assume that:
(1) outcomes for noncompliers are the same, on average, for
patients enrolled in both intervention and UC hospital units
after appropriate covariate adjustment; (2) compliers will
comply with specialized post-acute care recommendations,
regardless of whether they correspond to those from the
COMPASS intervention or those from UC; and (3) the effect
of specialized post-acute care provided as a part of UC is the
same across UC hospital units.

This analysis is based on a joint-model for the primary
endpoint and patient-level compliance status. The primary
outcome model includes a treatment effect for compliers in
the UC arm and for compliers in the intervention arm but
otherwise uses the same LMM framework described above.
From this model, one is able to directly estimate the CACE
while accounting for the fact that UC hospitals may provide
specialized post-acute care that provides some degree of ef-
ficacy. For the second part of the model, compliance status is
modeled via logistic regression. Both the LMM and logistic
model incorporated covariates associated with the primary
outcome and compliance, respectively, to address potential
confounding. Since compliance status is not observed for UC
patients, this variable is integrated out of the likelihood, re-
sulting in a mixture of LMMs for the control group. Addi-
tional details and results of these analyses are available in the
supplement to the primary paper.27

DISCUSSION
Large-scale pragmatic trials such as the COMPASS

study are designed to generate evidence on the comparative
effectiveness of interventions as delivered in real-world set-
tings. The complexity of these trials necessitates utilization of
statistical methods appropriately suited for analysis of the
complex data that arise, often due to the less controlled (ie,
pragmatic) aspects of the trial’s design. To the degree pos-
sible, these challenges should be identified a priori and ad-
dressed in a prespecified statistical analysis plan.3 However,
not all challenges can be anticipated, and analysis plans
should be flexible and incorporate sensitivity analyses. In this
paper, we have used the COMPASS study as an example to
describe the application of statistical methods to analyze
clustered data that were subject to missingness with respect to
key baseline characteristics, outcome nonresponse, and non-
adherence to the intervention.

On the basis of our experience with the COMPASS
study, we advocate that researchers proactively consider the
most appropriate balance between control in trial design and
pragmatism, which should be guided by the study goals.37 For
example, we observed that the generalizability gained from an
opt-out consent model (as compared with a patient-random-
ized design) might result in lower patient engagement and
therefore play a role, among other factors (eg, telephone-based
assessment), in increasing outcome nonresponse to levels that

present significant analytic challenges. At a minimum, col-
lection of factors associated with outcome ascertainment is
important to facilitate use of methods to address selection bias
(ie, imputation, IPW). We successfully applied such methods,
having captured extensive baseline data and key prognostic
factors on all patients enrolled. However, as a result of not
closely following the UC group due to the pragmatic nature of
our trial, we had limited data on time-varying confounders
between the index hospital discharge and 90-day outcome
assessment, limiting the statistical methods at our disposal. In
contrast, had we more closely followed UC (and intervention)
patients, we would have had better data for this purpose but a
trial that was less pragmatic. Continued efforts to more
seamlessly integrate clinical care and research, as in learning
health systems, may enhance patient engagement in research
and allow for the routine capture of patient-centered outcomes
and other important data more completely. Increased use of
technology may also offer tools to lower the patient burden of
participation in research studies.

Cluster randomization is frequently used in pragmatic
trials when interventions are necessarily system-level due to
the significant reorganization of care they require. Stratified
randomization improves balance on system-level confounders.
This technique was successfully used in the COMPASS study,
which achieved good balance in a variety of cluster-level
characteristics, including the 2 guaranteed by stratification.
Where relevant, run-in periods can be used to identify or
randomize only hospitals or systems that have the capacity to
implement a complex intervention. However, there is again a
tradeoff regarding generalizability, but this may be worthwhile
to avoid significant implementation challenges that may pre-
clude meaningful interpretation of study results.

Stepped wedge designs may offer advantages to parallel
designs (ie, improved power in certain situations, hospitals
contribute to data on both comparators) but may require more
investment of time by study staff for site training, especially if
individual clusters (eg, hospitals) are rolled into the inter-
vention phase at different times.38 Such an approach would
also necessarily lengthen the trial. However, it may have the
additional benefit of temporarily embedding research staff in
the real-word research settings to provide direct support in the
actual health care setting for a more tailored transition phase.

Implementation of complex care transitions models is
challenging for many hospitals. We have previously reported
on the substantial efforts required to recruit hospitals and to
implement COMPASS-TC.16,29 Critical to successful TC
delivery is a commitment to implementing the care model as
new standard practice and having sufficient capacity to do
so.39 In the COMPASS study, research staff provided on-
going, extensive support for training and implementation.
Providing financial support may be necessary for future
studies, given the high degree of competing demands for
health care providers and systems. Conducting research, even
if part of clinical care, requires additional investment on the
part of hospital staff to screen, notify, and enroll patients and
collect study-related data. Incentives may be particularly
important to engage hospitals with limited capacity and to
generate high-quality data that achieve the best return on
investment in pragmatic trials.14,29,39

Medical Care � Volume 59, Number 8 Suppl 4, August 2021 COMPASS Study Methods

Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. www.lww-medicalcare.com | S361



By their very nature, pragmatic trials are subject to
greater nonadherence than highly controlled trials.2,40 En-
suring the correct balance between maximizing adherence and
delivering care in a real-world setting during the design phase
is important. Pragmatic trials should plan to provide results
with a variety of stakeholders in mind.28 ITT effects (mean-
ingful to policy makers) and PP effects (meaningful to pa-
tients) provide complementary information. PP estimates, in
particular, require careful thought and rigorous collection of
data. With complex interventions such as care transitions, the
treatment is not delivered fully at the time of randomization
but rather involves ongoing chronic disease management and
multiple points of patient-provider interaction. It is critical to
carefully plan for the collection of patient-level and cluster-
level prognostic factors associated with the time-varying na-
ture of treatment receipt and adherence to facilitate estimation
of causal PP effects. Furthermore, the degree of heterogeneity
across systems may impact effectiveness of interventions. For
example, the quality and availability of resources in a given
setting may impact effectiveness. Teasing out these aspects is
challenging and requires planned evaluations of treatment
effect heterogeneity to provide information about who is most
likely to benefit and in what settings various interventions
may have the most impact.

In summary, some lessons learned from our experi-
ence with pragmatic research are the importance of col-
lecting post-randomization prognostic information and
careful measurement of the UC comparator. Maximizing site
fidelity should be carefully considered, and higher fidelity
may be achieved through use of organizational readiness
surveys, run-in periods, financial and staffing support, or
alternative study designs (eg, a stepped wedge). Balancing
the potential benefits and consequences of these and other
possible design choices is necessarily study specific and
should be closely tied to the study objectives. Our goal
herein is to highlight the universal importance of pre-
specifying appropriate analyses in light of the complex data
that arise from pragmatic studies, providing examples based
on our experience in the COMPASS study.

Pragmatic trials are an increasingly important aspect of
research design and are well suited to inform clinical practice.
However, deciding which pragmatic design elements to in-
clude in a study should not be taken lightly, as such trials
almost always entail tradeoffs. The potential benefits of
pragmatic trials can often only be realized with the concurrent
application of valid (and sometimes quite complex) statistical
methods. In this paper, we have shared our experience tack-
ling statistical issues attendant to pragmatic trials (eg, the
presence of missing data and nonadherence to treatment)
in the context of the COMPASS study to help inform
future work.
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