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Abstract

Background: Tissue development and organ growth require constant remodeling of cell-cell contacts formed between
epithelial cells. The Hippo signaling cascade curtails organ growth by excluding the transcriptional co-activator Yes
Associated Protein 1 (YAP1) from the nucleus. Angiomotin family members recruit YAP1 to tight junctions [1], but whether
YAP1 plays a specific role outside of the nucleus is currently unknown.

Methodology/Principal Findings: The present study demonstrates that the E3 ubiquitin ligase Nedd4.2 targets
Angiomotin-like 1 (AMOTL1), a family member that promotes the formation of epithelial tight junctions, for ubiquitin-
dependent degradation. Unexpectedly, YAP1 antagonizes the function of Nedd4.2, and protects AMOTL1 against Nedd4.2-
mediated degradation. YAP1 recruits c-Abl, a tyrosine kinase that binds and phosphorylates Nedd4.2 on tyrosine residues,
thereby modifying its ubiquitin-ligase activity.

Conclusions/Significance: Our results uncover a novel function for cytoplasmic YAP1. YAP1 recruits c-Abl to protect
AMOTL1 against Nedd4.2-mediated degradation. Thus, YAP1, excluded from the nucleus, contributes to the maintenance of
tight junctions.
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Introduction

Cell proliferation during development is tightly regulated to

generate tissue and organs of defined size. Signaling cascades

involved in the control of cell division and organ size include

mTOR and the recently characterized Hippo signaling cascade

[2,3,4,5]. The Hippo pathway was initially established in flies; its

core components such as Hippo, Salvador, Warts and Mats were

subsequently identified in mammals (Mst1/2, WW45, Lats1/2

and Mob1, respectively). These four components form a kinase

cascade whereby Hippo/Mst1/2 interacts with Sav/WW45 to

phosphorylate and activate the protein complex of Wts/Lats1/2

and Mats/Mob1. The major target gene of the cascade is the

transcriptional co-activator Yorkie (or its mammalian orthologue

YAP1), which promotes cell proliferation and organ growth [6,7].

When epithelial cells reach confluence, they exhibit contact

inhibition triggered by cell-cell interactions, an event associated

with nuclear exclusion and cytoplasmic retention of YAP1. This

process is largely controlled by Hippo signaling, whereby phor-

sphorylated YAP1 by Wts/Lats1/2 is bound by the cytoplasmic

14-3-3 protein [8,9].

It has been shown that apico-basal proteins intersect with the

Hippo pathway to regulate normal tissue development

[10,11,12,13]. Tight junction (TJ) proteins, specifying apical and

baso-lateral cell domains, can suppress proliferation by sequester-

ing transcription factors [14]. Angiomotin like-1 (AMOTL1), a

coiled-coil, PDZ-binding and glutamine rich domain containing

protein [15], was recently characterized as a molecule involved in

angiogenesis and cell migration [16]. AMOTL1 localizes to tight

junctions (TJ), and directly interacts with MUPP1/Patj, an

adaptor of the Crumbs complex [17]. AMOTL1 and AMOTL2

retain YAP1 in the cytoplasm, preventing YAP1-dependent gene

activation [18]. The function of YAP1 outside the nucleus is

currently unknown, although the levels of cytoplasmic YAP1 are

tightly regulated via ubiquitin-dependent degradation by the E3

ligase SCF (b-TRCP) [19].

Here, we assign a novel role to cytoplasmic YAP1 in epithelial

cells. We demonstrate that YAP1 binds AMOTL1 and prevents it

from degradation by Nedd4.2. Nedd4.2 is a member of the

NEDD4 family of E3 ligases, that contain a carboxy-terminal

catalytic HECT (homolog to E6AP C-term) domain [20]. The

NEDD4 family of E3-ligases regulates endocytosis and degrada-

tion of many channels, receptors, and transporters. NEDD4 E3

ligases typically contain an amino-terminal C2 domain as well as

two to four WW domains that bind their substrates through

recognition of (L/P)PxY motifs [21,22,23,24]. Recent evidence

suggests that NEDD4 proteins are also involved in tight junction

assembly and the regulation of paracellular conductance in the

collecting duct of the kidney [25].
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We report now that Nedd4.2 targets AMOTL1 for ubiquitin-

dependent degradation. YAP1 prevents AMOTL1 degradation

through recruitment of the non-receptor tyrosine kinase c-Abl.

Phosphorylation of Nedd4.2 by c-Abl curtails its E3 ligase activity,

which results in inhibition of the ubiquitylation and degradation of

AMOTL1.

Materials and Methods

Reagents and Plasmids
MG132 (Calbiochem) was used at a concentration of 5 mM.

AMOTL1 with an N-terminal Flag tag was generated by a clone

containing the human AMOTL1 cDNA (Imagenes). Full length

human YAP1 and c-Abl cDNAs where cloned into the MluI and

NotI sites of theV5-pcDNA6 vector. The human myc-Nedd4.2

C962S (dominant negative) construct was kindly provided by Dr.

Pawson (Samuel Lunenfeld Research Institute, Mount Sinai

Hospital, Toronto, Ontario, Canada). Dominant negative

Nedd4.2 N-terminally tagged with myc was repaired to wild-type

by QuickChange (QC) mutagenesis. Single and multiple amino

acid substitutions were made using F9.AMOTL1 as template and

QC site-directed mutagenesis with overlapping PCR primers. To

create the YAP1 WW1 (199WQDP202 to 199AQDA202) and WW2

(258WLDP261 to 258AQDA261) mutants, as well as Nedd4.2 WW1

(213WHRP216 to 213AHRA216), WW2 (385WTRP388 to
385ATRA388), WW3 (497WEDP500 to 497AEDA500), WW4

(548WEDP551 to 548AEDA551), we used the wild-type templates

for QC site-directed mutagenesis. The Nedd4.2 phosphorylation

mutants Y71F and Y457F were generated by QC mutagenesis

using the pRK5 vector. The c-Abl cDNA was re-cloned into the

F9-pcDNA6 vector to obtain an N-terminal F9-tagged construct.

The F9.cAbl construct was used as a template to generate the

K290R kinase dead mutant, according to the manufacturer’s

protocol (Stratagene Cloning systems, La Jolla, CA). Ubiquitin was

cloned into an HA tagged pMT123 vector into the NotI and EcoRI

sites.

Short Hairpin RNA (shRNA)
The pSUPER YAP1 human RNA interference (RNAi) designed

for the target sequence 59-ccagagaatcagtcagaga-39 and the human

Nedd4.2 for the target sequence 59- ggatgagaatagagaacttgc-39.

Cell culture and Transfections
Human HEK293T and MDCK cells (received from American

Type Culture Collection, ATCC, Manassas, VA) were grown in

Dulbecco’s modified Eagle’s medium containing 10% fetal bovine

serum and antibiotics. A TransPEI transfection method (Euro-

gentec, Cologne, Germany) was used for DNA transfections of

HEK293T cells. MDCK cells were transfected with plasmid DNA

using Amaxa-nucleofection (Amaxa Biosystems, Cologne, Ger-

many). The cells were used in transient-expression experiments on

the second or third day.

Immunofluorescence
MDCK cells were fixed in 4% PFA for 20 min, permeabilized

in 0.5% Triton X-100, and blocked in PBS containing 2% horse

serum. Immunostainings for AMOTL1 and ZO-1 were performed

with a rabbit anti-AMOTL1 (1:200) and a mouse anti-ZO-1

(1:250) (Zymed). HEK293T cells were fixed in 4% PFA for

10 min, permeabilized in 0.5% Triton X-100 for 10 min and

blocked in PBS (0.5% Tween-20) containing 2% horse serum.

Immunostainings were performed using the following antibodies:

goat anti-AMOTL1 (1:100), rabbit anti-Nedd4.2 (1:150) and

mouse anti-YAP1 (1:150).

Immunoprecipitations and Western Blotting
Cells were washed with ice-cold PBS and lysed with lysis buffer

(20 mM Tris, pH 7.5, 1% Triton X-100, 50 mM NaCl, 50 mM

NaF, 15 mM Na4P2O7, 0.1 mM EDTA) supplemented with

1 mM NaVO4 and protease inhibitor mixture (Roche). After

centrifugation (15,000 g,15 min, 4uC) and ultracentrifugation

(100,000 g, 30 min, 4uC) cell lysates containing equal amounts

of total protein were incubated for 1 h at 4uC with the anti-Flag

M2 resin (Sigma) or with anti-myc antibody, followed by

incubation with 50 ml of protein A-Sepharose beads for 2 h. The

beads were then washed extensively with lysis buffer and bound

proteins were analyzed by Western blotting with the following

antibodies: M2 antibody to Flag (Sigma), mouse anti-V5 (Serotec),

mouse anti-myc 9E10 (Upstate), rabbit anti-myc A-14 (Santa

Cruz), mouse anti-HA 12CA5 (Roche), rabbit anti-phosphotyr-

osine (BD Biosciences). HEK293T lysates were blotted for the

endogenous AMOTL1, YAP1 and Nedd4.2 using the following

antibodies: rabbit anti-AMOTL1 (Abcam), mouse anti-YAP1

(Abnova) and rabbit anti-Nedd4.2 (Proteintech). Rabbit anti-

CEP164 was used as a negative control.

Ubiquitylation Assay
24 h after transfection, HEK 293T cells were washed with PBS

and lysed with RIPA buffer (1% Triton X-100, 0.5% sodium

deoxycholate, 0.1% SDS, 150 mM NaCl, 50 mM NaF, 2 mM

EDTA, 13.7 mM Na2HPO4, 6.3 mM NaH2PO4). The superna-

tant obtained after ultracentrifugation (100,000 g, 30 min, 4uC)

was used for binding to anti-Flag M2 resin for 1.5 h, washed five

times and bound proteins were resolved by SDS-PAGE. The

proteins were blotted using the mouse anti-HA (Roche).

In-gel digestion
For in-gel digestion the excised gel bands were destained with

30% ACN, shrunk with 100% ACN, and dried in a Vacuum

Concentrator (Concentrator 5301, Eppendorf, Hamburg, Ger-

many). Digests with trypsin and elastase were performed overnight

at 37uC in 0.05 M NH4HCO3 (pH 8). About 0.1 mg of protease

was used for one gel band. Peptides were extracted from the gel

slices with 95% acetonitrile and 5% formic acid and dried in a

vacuum concentrator.

Phosphopeptide enrichment
Phosphorylated peptides were enriched using TiO2 (Titan-

sphere, 5 mm particle size, GL Sciences, Japan) as recently

described for phosphopeptides [26]. Briefly, peptides were re-

dissolved in 10 mL 50% acetonitrile, 0.1% formic acid and loaded

on a TiO2 nano column (0.5 cm length, 125 mm i.d.) at a flow rate

of 2 mL/min. After washing with 20 mL 30% acetonitrile, 2%

formic acid (flow rate: 2 mL/min), phosphorylated peptides were

eluted (flow rate: 2 mL/min) with 100 mM citrate pH 9.5.

LC-MS/MS and data analysis
LC-MS/MS analysis of the eluate from the TiO2 column were

performed on a Q-TOF mass spectrometer (Agilent 6520, Agilent

Technologies) coupled to a 1200 Agilent nanoflow system via a

HPLC-Chip cube ESI interface. Peptides were separated on a

HPLC-Chip with an analytical column of 75 mm i.d. and 150 mm

length and a 40 nL trap column, both packed with Zorbax 300SB

C-18 (5 mm particle size). Peptides were elutes with a linear

acetonitrile gradient with 1% per min at a flow rate of 300 nL/

min (starting with 3% acetonitrile). The Q-TOF was operated in

the 2Ghz extended dynamic range mode. MS/MS analyses were

performed using data-dependent acquisition mode. After a MS
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scan (2 spectra/s), a maximum of three peptides were selected for

MS/MS (2 spectra/s). Singly charged precursor ions were

excluded from selection. Internal calibration was applied using

two reference masses. Mascot Distiller 2.3 was used for raw data

processing and for generating peak lists, essentially with standard

settings for the Agilent Q-Tof. Mascot Server 2.3 was used for

Figure 1. Nedd4.2 interacts with AMOTL1 and mislocalizes AMOTL1 from tight junctions. A, Nedd4.2 reduces AMOTL1 protein levels. Co-
expression of myc-tagged Nedd4.2 (myc.Nedd4.2) decreased Flag-tagged AMOTL1 (F.AMOTL1), occasionally to very low protein levels (lane 2). B,
AMOTL1 interacts with Nedd4.2. HEK 293T cells were transfected with constructs encoding F.AMOTL1, myc.GFP, or myc.Nedd4.2. Cell lysates were
probed with anti-myc and anti-Flag antibodies. Precipitation of F.AMOTL1 immobilized myc.Nedd4.2, but not myc.GFP, while precipitated F.GFP did
not bind myc.Nedd4.2. C, Binding of endogenous AMOTL1 to Nedd4.2 was detected with anti-AMOTL1 and anti-Nedd4.2 antibodies, respectively.
CEP164 was used as a negative control. D, AMOTL1 co-localizes mostly at the plasma membrane with Nedd4.2 in HEK293T cells. E, MDCK cells were
transfected either with empty vector or Nedd4.2. Cells were then stained for endogenous AMOTL1 (grayscale) and the tight junction marker, ZO-1
(red). AMOTL1 is localized to tight junctions together, with ZO-1. Note that in dividing cells (yellow arrowheads) less ZO-1 as well as AMOTL1 are
observed at junctions. When Nedd4.2 is added, endogenous ZO-1 as well as AMOTL1 are mislocalized from tight junctions and appear mostly in the
cytoplasm. Scale bars represent 20 mm.
doi:10.1371/journal.pone.0035735.g001
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database searching with the following parameters: peptide mass

tolerance: 20 ppm, MS/MS mass tolerance: 0.05 Da, enzyme:

‘‘trypsin’’ with 2 uncleaved sites allowed for trypsin, and ‘‘none’’

for elastase, variable modifications: Carbamidomethyl (C), Gln-

.pyroGlu (N-term. Q), oxidation (M), and phosphorylation

(STY). For protein and peptide identification a small custom

database containing the protein sequences of Nedd4.2 was used.

All MS/MS spectra identified as phosphorylated were validated

manually.

Results

YAP1 blocks ubiquitylation and degradation of AMOTL1
by Nedd4.2

Co-expression of AMOTL1 with Nedd4.2 resulted in a drastic

reduction of AMOTL1 protein levels in HEK 293T cells; in some

experiments AMOTL1 became virtually undetectable (Fig. 1A).

Co-immunoprecipitation experiments revealed that the two

proteins form a complex (Fig. 1B). Importantly, we could detect

weak binding (Fig. 1C) and membrane co-localization of the

endogenous Nedd4.2 and AMOTL1 proteins in HEK293T cells

(Fig. 1D). Immunofluorescence experiments in MDCK cells

showed that the endogenous AMOTL1 protein colocalises with

ZO-1, a tight junction marker (Fig. 1E), but both markers are

absent in dividing cells (yellow arrowheads in Fig. 1E). However,

the presence of Nedd4.2 reduces the levels of AMOTL1, which

appears less localized to tight junctions and is mostly cytoplasmic.

In this case, ZO-1 begins to appear more diffuse and its presence

at tight junctions is less pronounced (Fig. 1E). These two findings

suggest that the absence of AMOTL1 tends to destabilize tight

junctions. The cytoplasmic region of AMOTL1 contains two

conventional WW domain binding PPxY (PY) motifs at amino

acid positions 310–313 and 367–370 and one unconventional

LPxY motif at 188–191 (Fig. S1). Since the WW domains of

Nedd4.2 (Fig. S1) recognize PPxY motifs, we asked whether

mutation of the two AMOTL1 PPxY motifs affected the

interaction with Nedd4.2. Mutation of single AMOTL1 PPxY

motifs to alanines had no detectable effect (data not shown),

Figure 2. The WW3 domain of Nedd4.2 interacts with AMOTL1.
A, The two PPxY motifs of AMOTL1 (PY1: PPEY, amino acid 310–313, and
PY2: PPEY, amino acid 367–370) are important for the interaction with
Nedd4.2. Precipitation of wild type F.AMOTL1 immobilized both
myc.Nedd4.2 and V5.YAP1 (left panel), while precipitation of mutant
F.AMOTL1PY1/2, lacking both PPxY motifs, immobilized V5.YAP1, but
only small amounts of myc.Nedd4.2 (right panel). B, The WW1, WW2,
WW3 and WW4 domains of Nedd4.2 were mutated, and co-expressed
with Flag-tagged AMOTL1. Only the interaction between the myc.-
Nedd4.2 WW3 and AMOTL1 was decreased, indicating that this domain
interacts with AMOTL1.
doi:10.1371/journal.pone.0035735.g002

Figure 3. Nedd4.2 targets AMOTL1 for proteasomal degrada-
tion. HEK 293T cells were transfected with AMOTL1, Nedd4.2 and YAP1,
as indicated. Cells were treated with 5 mM MG132 for 120 min. Lysates
were analyzed by Western blotting. AMOTL1, Nedd4.2 and YAP1 were
detected with anti-Flag, anti-myc and anti-V5 antibodies, respectively.
Actin was used as a loading control.
doi:10.1371/journal.pone.0035735.g003
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whereas substitution of both motifs (AMOTL1310–313A/367–370A)

strongly decreased the interaction with Nedd4.2 (Fig. 2A).

However, in this experiment, mutation of the two PPxY motifs

of AMOTL1 did not affect the interaction with YAP1, suggesting

that the PPxY mutations did not generally abolish protein-protein

interactions (Fig. 2A). Site-directed mutagenesis of each of the four

Nedd4.2 WW domains revealed that the third WW domain

(WW3) of Nedd4.2 mediates the interaction with AMOTL1

(Fig. 2B). Based on these findings, we assumed that the E3

ubiquitin ligase Nedd4.2 targets AMOTL1 to the proteasome. To

confirm this hypothesis, we probed whether inhibition of

proteasomal degradation with MG132 leads to the accumulation

of AMOTL1. Indeed, MG132 treatment caused partial accumu-

lation of AMOTL1 in the presence of Nedd4.2 (Fig. 3).

Furthermore, in vivo assays revealed that AMOTL1 was strongly

ubiquitylated in the presence of wild-type Nedd4.2, but not in the

presence of the dominant-negative (DN) mutant of Nedd4.2

(Fig. 4A). YAP1 protected AMOTL1 against Nedd4.2-mediated

protein turnover in a dose-dependent manner (Fig. S2) and

antagonized the ubiquitylation of AMOTL1 mediated by Nedd4.2

(Fig. 4A), suggesting that AMOTL1 recruits YAP1 to escape

ubiquitin-dependent degradation. Importantly, we found that the

same functional rules govern the relationship among endogenous

AMOTL1, YAP1 and Nedd4.2. For this, we used shRNA to knock

down YAP1 or Nedd4.2 in HEK293T cells that strongly express

AMOTL1 [27]. We found that even partial depletion of YAP1

effectively reduces the amount of endogenous AMOTL1, whereas

knockdown of endogenous Nedd4.2 maintains AMOTL1 protein

levels (Fig. 5).

YAP1, via its WW1 domain, binds and protects AMOTL1
We then asked how YAP1 protects AMOTL1. First, we

corroborated our observation that overexpressed AMOTL1 and

YAP1 interact physically (Fig. 2A) by examining their endogenous

interaction. We found that YAP1 strongly precipitates AMOTL1

(Fig. S3A) and that the two proteins co-localize mostly at the

plasma membrane (Fig. S3B). Like Nedd4.2, YAP1 contains two

WW domains (Fig. S1). Therefore, we generated mutants for these

two domains (WW1 and WW2). Co-expression of AMOTL1 and

either of WW1- or WW2-mutant versions of YAP1 demonstrated

that the interaction with AMOTL1 is mediated by the WW1

domain (Fig. S3C). In agreement with these findings, only the wild

Figure 4. YAP1 inhibits AMOTL1 degradation via its first WW domain. A, Nedd4.2 facilitates the ubiquitylation of AMOTL1. HEK293T cells
were transfected with AMOTL1, Nedd4.2 and YAP1, as indicated. AMOTL1 was precipitated and probed for incorporated HA-tagged ubiquitin.
AMOTL1 levels were determined by re-probing the blot with anti-Flag antibody. A catalytically inactive (DN) Nedd4.2 was used as a control for ligase
activity. B, Wild type YAP1 and the YAP1WW2 mutant, but not the YAP1WW1 mutant, reduce ubiquitylation of AMOTL1. HA-tagged ubiquitin
(HA.Ubiquitin) and expression vectors, as indicated, were co-expressed in HEK293T cells. AMOTL1 was precipitated by M2 sepharose beads, and then
probed with antibody to HA to identify ubiquitylated AMOTL1. C, YAP1 protects both single and double AMOTL1 PPxY mutants against Nedd4.2-
mediated ubiquitylation. Either of AMOTL1310–313A (F.AMOTL1PY1), AMOTL1367–370A (F.AMOTL1PY2) or AMOTL1310–313A/367–370A (F.AMOTL1PY1/2)
were co-expressed with different combinations of HA.Ubiquitin, myc.Nedd4.2, V5.YAP1 and V5.YAP1 WW1, as indicated. Cell extracts were
precipitated with M2 beads and blotted with anti-HA antibody. In blots for ubiquitin, brackets indicate molecular weights that correspond to poly- or
oligo-ubiquitylation of AMOTL1. Poly-ubiquitylation results in complexes with molecular weights above 220 kDa which signal degradation of the
protein by the 26S proteasome. Complexes between 100 kDa and 220 kDa indicate oligo-ubiquitylated peptides that are generally not degraded by
the 26S proteasome.
doi:10.1371/journal.pone.0035735.g004

Figure 5. Depletion of endogenous YAP1 or Nedd4.2 affects
endogenous AMOTL1 levels. HEK293T cells were transiently
transfected with either YAP1 or Nedd4.2 shRNA. Even a small reduction
of YAP1 results in almost complete absence of AMOTL1. However
depletion of Nedd4.2 maintains AMOTL1 levels. Actin was used as a
loading control.
doi:10.1371/journal.pone.0035735.g005

Figure 6. YAP1-AMOTL1 binding requires the AMOTL1 motifs
LPTY and the PPEY. Either of Flag-tagged AMOTL1188–191A (LY: LPTY,
amino acids 188–191), AMOTL1 188–191A/310–313A (LY/PY1: LPTY, amino acids
188–191 and PPEY, amino acids 310–313) or AMOTL1 188–191A/367–370A

(LY/PY2: LPTY, amino acids 188–191 and PPEY, amino acids 367–370)
mutants were used to precipitate YAP1. Immunoblotting was carried out
using the indicated antibodies.
doi:10.1371/journal.pone.0035735.g006
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Figure 7. c-Abl phosphorylates Nedd4.2 which forms a triple complex with AMOTL1 and YAP1. A, Flag-tagged c-Abl (F.cAbl),
immobilized on M2 sepharose beads, precipitates Nedd4.2. Immunoprecipitates were blotted with anti-myc antibody. AIP4, E3 ligase was used as a
negative control. B, Protein-protein interactions among AMOTL1, Nedd4.2 and YAP1. HEK293T cells transfected with Flag-tagged AMOTL1,
myc.Nedd4.2, V5.YAP1 and V5.cAbl plasmids were lysed and immunoprecipitation was performed using M2 beads. Precipitates were blotted with the
antibodies indicated. Increased levels of AMOTL1 were detected in the presence of YAP1 and c-Abl. C, HEK293T cells were co-transfected with
myc.Nedd4.2 and either wild type or kinase-dead (KD) c-Abl. Immunoprecipitation was performed with anti-myc antibody. Samples were blotted with
anti-phosphotyrosine antibody to test for Nedd4.2 phosphorylation. D, Tyrosine phosphorylation of Nedd4.2 by c-Abl inhibits AMOTL1 degradation.
Flag-tagged AMOTL1 (F.AMOTL1) and myc-tagged Nedd4.2 (myc.Nedd4.2) were co-expressed with either wild type or kinase-dead Flag-tagged c-Abl

YAP1 Protects AMOTL1 from Degradation
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type and the WW2 mutant variant of YAP1 (which has an intact

WW1 domain), prevented AMOTL1 from Nedd4.2-mediated

degradation (Fig. 4B). Because longer ubiquitin chains (poly-

ubiquitylation) are required for targeting to the 26S proteasome,

complexes migrating higher indicate strong degradation, whereas

complexes migrating lower (i.e. with shorter ubiquitin chains,

oligo-ubiquitylation) efficiently avoid being recognized and

degraded [28].

The N-terminal LPTY and PPEY binding motifs of AMOTL1
are important for binding to YAP1

WW domain-containing group I proteins such as YAP1 bind

with high affinity to proline-rich PPxY (PY) motifs [29], but also

recognize LPxY (LY) motifs [30,31,32]. For example, the group I

WW domain-containing protein MAGI-1 binds the LPTY motif

of AMOTL2 [33]. To identify the WW-binding motifs that are

recognized by YAP1, we replaced the two PY and the single LY

motifs of AMOTL1 by alanines. YAP1 precipitated the single and

double AMOTL1 PY mutants (data not shown) and protected

them from Nedd4.2-mediated ubiquitylation (Fig. 4C), suggesting

that these two motifs play only a minor role in the AMOTL1-

YAP1 complex. However, the combined LY/PY1 muta-

tion dramatically decreased the interaction with YAP1 (Fig. 6).

These findings demonstrate that AMOTL1 PPEY310–313 and

LPTY188–191 are jointly required for YAP1 binding.

Phosphorylation of Nedd4.2 by c-Abl inhibits
ubiquitylation of AMOTL1

YAP1 binds the SH3 domain of Src kinase family members, and

has been shown to interact with the non-receptor tyrosine kinase c-

Abl [34,35]. Because c-Abl phosphorylates and inactivates the E3-

ligase Parkin [36], we speculated that YAP1 recruits c-Abl to

phosphorylate and inhibit Nedd4.2 activity. Precipitation of c-Abl

immobilized Nedd4.2, but not the E3 ubiquitin ligase AIP4

(Fig. 7A). Moreover, YAP1 does not compete with Nedd4.2 for

binding to AMOTL1, but forms a multimeric protein complex

with Nedd4.2 and AMOTL1 (Fig. 7B). In addition, in the absence

of YAP1, c-Abl is able to protect AMOTL1 from degradation by

Nedd4.2 to some extent, although the simultaneous addition of

YAP1 significantly increases AMOTL1 stabilization (Fig. 7B).

Monitoring overall tyrosine-phosphorylation of Nedd4.2 revealed

that Nedd4.2 is phosphorylated on tyrosine residues in the

presence of wild type c-Abl, but not in the presence of the

kinase-dead c-Abl (c-AblK290R) (Fig. 7C). Consistent with our

hypothesis that tyrosine phosphorylation blocks Nedd4.2 E3 ligase

activity, we observed increased AMOTL1 levels in the presence of

wild-type c-Abl, but not in the presence of the kinase-dead c-Abl

mutant (Fig. 7D). To identify which Nedd4.2 tyrosine residues are

phosphorylated in the presence of c-Abl, we precipitated Nedd4.2

from cells expressing either wild-type c-Abl or c-AblK290R, and

subjected purified Nedd4.2 to mass spectrometry analysis. This

approach revealed two phosphorylation sites within the peptide

sequences WNEEFY*FR and DTLSNPQSPQPSPY*NSPK, cor-

responding to Y71 and Y457 of human Nedd4.2 (NCBI Accession

NP_001138441) (Fig. 8A). To validate the significance of Y71 or

Y457 phosphorylation, we replaced the two tyrosines of myc-

tagged Nedd4.2 with phenylalanines. Phosphorylation of Ned-

d4.2Y71F and Nedd4.2Y457F was not reduced; moderate reduction

in phosphorylation was only detected for the Nedd4.2Y71F,Y457F

double mutant (Fig. 8B). To test whether the two Nedd4.2 tyrosine

residues are important for c-Abl-mediated inhibition of Nedd4.2

function, we assessed the ubiquitylation of AMOTL1 in the

presence of c-Abl with wild type and mutant Nedd4.2Y71F,Y457F.

Nedd4.2 promoted the formation of poly-ubiquitylated AMOTL1

species with a molecular weight above 220 kDa. The presence of

c-Abl decreased the molecular weight range of ubiquitin-bound

AMOTL1 between 100 and 220 kDa, consistent with the

formation of AMOTL1 molecules with shorter ubiquitin chains

(oligo-ubiquitylation). Nedd4.2Y71F,Y457F was resistant to the

action of c-Abl and polyubiquitylated AMOTL1 was produced

even in the presence of c-Abl (Fig. 8C). As previously explained for

Fig. 4B, longer ubiquitin chains (MW greater than 220 kDa)

indicate 26S proteasome-mediated degradation, whereas shorter

ubiquitin chains are not sufficient to target the protein for

degradation. The above findings support the hypothesis that c-Abl

mediates tyrosine phosphorylation to restrain the E3 ligase activity

of Nedd4.2.

Discussion

Recent studies have shown that different members of the

AMOT protein family (AMOT, AMOTL-1 and AMOTL-2)

exhibit similar function by interacting with and regulating YAP1

subcellular localization. However, the functional importance of

these family members can vary between cell lines and tissues,

depending on their relative expression levels [18,37]. Like AMOT,

AMOTL1 has been reported to be a tight junction-associated

protein [17]. Other studies support that YAP1 adopts tight

junction localization in polarized epithelial cells in an AMOT-

dependent manner [37]. Therefore, the role of YAP1 in tight

junction maintenance through the regulation of AMOTL1 is

intriguing.

Angiomotin proteins co-evolved with the advent of vascular

epithelium [38]. Since Drosophila melanogaster lacks continuous

vasculature, functional homologs of Angiomotin proteins are

absent in flies. Thus, cytoplasmic retention of Yorkie (YAP1)

appears to rely predominantly on Hippo signaling in Drosophila.

Polarized vertebrate cells expressing AMOT family members can

prevent nuclear translocation of YAP1 by recruiting this

transcriptional activator to tight junctions [18,19]. Our results,

however, highlight a novel and unexpected function of YAP1 at

tight junctions. While Nedd4.2 targets AMOTL1 for ubiquitin-

dependent degradation, YAP1 recruits c-Abl to facilitate phos-

phorylation and inhibition of Nedd4.2.

Our findings uncover a dual and opposing role for YAP1 in the

nucleus and the cytoplasm (Fig. 8D). Polarized non-dividing cells

need to maintain cell-cell contacts and epithelial integrity, which in

turn requires TJ-associated AMOTL1 and therefore cytoplasmic

YAP1. Cytoplasmic YAP1 in this case acts as an adaptor protein

that recruits the tyrosine kinase c-Abl to associate with Nedd4.2,

resulting in its phosphorylation at Y71 and Y457. This complex

then modulates Nedd4.2 activity such, that the length of ubiquitin

chains added on AMOTL1 is limited, protecting it from 26S

proteasome degradation. On the other hand, when cells undergo

proliferation, YAP1 translocates to the nucleus to associate with

TEAD family transcription factors, implicated in tumor growth

and metastasis [39]. Meanwhile, AMOTL1 is exposed to

degradation by Nedd4.2, which leads to TJ disassembly, required

in dividing cells.

(F.cAbl). Precipitates, immobilized with anti-myc antibody, were probed with anti-phosphotyrosine and with anti-myc antibody show equal amounts
of Nedd4.2; staining with anti-Flag revealed AMOTL1 protein levels.
doi:10.1371/journal.pone.0035735.g007
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Supporting Information

Figure S1 Domain structure of AMOTL1, YAP1 and
Nedd4.2. WW domains in AMOTL1 and Nedd4.2 protein

sequence are indicated with blue rhombs. c-c, coiled coli domains;

P-rich, proline rich domains; C2, C2-domain; HECTc, Homol-

ogous to the E6-AP Carboxyl Terminus domain.

(TIF)

Figure S2 YAP1 protects AMOTL1 against Nedd4.2-
mediated protein turnover. F.AMOTL1, and myc.Nedd4.2

were co-expressed with increasing amounts of V5.YAP1 (1 mg,

3 mg and 6 mg). Western blot analysis with anti-Flag revealed

increasing AMOTL1 levels despite the presence of myc.Nedd4.2.

Actin was used as a loading control.

(TIF)

Figure S3 The WW1 domain of YAP1 is required for
binding and stabilization of AMOTL1. A, Endogenous

AMOTL1 was strongly precipitated by a mouse anti-YAP1

antibody. B, Immunostaining in HEK293T cells using anti-

AMOTL1 and anti-YAP1 antibodies revealed that the two

proteins localize to the cell membrane. C, YAP1 WW1 and

WW2 mutants were co-expressed with AMOTL1 in HEK 293T

cells. AMOTL1 was precipitated with anti-Flag. YAP1WW2, but

not YAP1WW1 was immobilized by AMOTL1, and detected by

anti-V5 antibody. GFP was used as a negative control. Scale bars

represent 20 mm.

(TIF)
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