Hindawi

International Journal of Biomedical Imaging
Volume 2018, Article ID 2046269, 9 pages
https://doi.org/10.1155/2018/2046269

Research Article

Instant Feedback Rapid Prototyping for
GPU-Accelerated Computation, Manipulation, and
Visualization of Multidimensional Data

Maximilian Malek

and Christoph W. Sensen

Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria

Correspondence should be addressed to Maximilian Malek; malek@tugraz.at

Received 16 February 2018; Accepted 10 April 2018; Published 3 June 2018

Academic Editor: Lizhi Sun

Copyright © 2018 Maximilian Malek and Christoph W. Sensen. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Objective. We have created an open-source application and framework for rapid GPU-accelerated prototyping, targeting image
analysis, including volumetric images such as CT or MRI data. Methods. A visual graph editor enables the design of processing
pipelines without programming. Run-time compiled compute shaders enable prototyping of complex operations in a matter of
minutes. Results. GPU-acceleration increases processing the speed by at least an order of magnitude when compared to traditional
multithreaded CPU-based implementations, while offering the flexibility of scripted implementations. Conclusion. Our framework
enables real-time, intuition-guided accelerated algorithm and method development, supported by built-in scriptable visualization.
Significance. This is, to our knowledge, the first tool for medical data analysis that provides both high performance and rapid
prototyping. As such, it has the potential to act as a force multiplier for further research, enabling handling of high-resolution

datasets while providing quasi-instant feedback and visualization of results.

1. Introduction

As datasets grow ever larger, so does the importance of
efficient processing by fully utilizing the information they
contain. However, most data processing is still done on
generic CPUs, even though programmable GPUs, capable of
performing arbitrary computations, have been available on
the consumer market since 2006.

Often, processing of many data types, for example, image
data, is followed by some form of visualization. Most existing
tools for medical images are either viewers or are focused on
the processing of data. Of the viewers, there is either focus on
medical insight [1], or pleasing visual rendering [2], or both,
depending on the use case. Visualization of data and human
intuition together can provide crucial insights into a given
dataset. One example is the visualization of metadata created
from patient data (e.g., 3D-renditions of data derived from
x-ray images, MR scans, and CT scans), allowing patients
to better understand the nature of their condition. Up to

now, viewers are typically not user-programmable and only
provide a limited set of parameters to adjust their output.
Twenty years ago, data transformation was integrated into
the rendering process, as a direct transformation alone was
too costly for the hardware available at the time [3]. The cur-
rent hardware has much higher capabilities and processing of
datasets, which were previously considered as too large, has
become common. With the advent of programmable GPUs
in the mid-2000s, GPUs are now used to perform general-
purpose computations (GPGPU) to process data in parallel,
reducing the computational time drastically [4-7]. Although
originally designed for graphics applications, the massively
parallel design of GPUs allows data processing much more
efficiently than is typically possible with traditional CPUs,
while at the same time reducing the hardware footprint to
the size of a graphics card. Given the increased computational
capabilities, using the GPU for both processing and rendering
is faster and more flexible compared to earlier approaches
on CPUs or fixed-function GPUs [8, 9]. GPU-accelerated

http://orcid.org/0000-0001-9200-4882
https://doi.org/10.1155/2018/2046269

computation is, however, not as ubiquitous as it could be, as
the development of parallel algorithms can be prohibitively
difficult, especially for those not familiar with the different
programming model [10]. Initial use of GPGPU techniques
involved interpreting data as textures and then performing
typical graphics operations on them, such as blending,
projection, or interpolation [11, 12].

As GPGPU techniques matured, dedicated libraries for
GPU programming became common, of which the most
well-known examples are CUDA [10] and OpenCL [13].
CUDA requires a separate compilation step and is thus inade-
quate for rapid prototyping. In contrast, OpenGL [14], which
is typically used as a backend for graphics and rendering, has
had support for a run-time compiled shading language (GLSL
[15, 16]) for a long time. This means that the GLSL source
code is passed to the graphics driver, which then dynamically
compiles an appropriate binary representation for the plat-
form. OpenGL 4.3, released in 2014, was extended to support
compute shaders, which facilitate arbitrary computation on
the graphics card directly.

We exploit this dynamism to enable interactive develop-
ment in GPU-accelerated computing and data exploration,
with medical image processing in mind. Specifically, we want
to be able to see results immediately, even while editing the
source code. This concept is used today, for example, for
entertainment in the so-called Demoscene [17-19]. We expect
this approach to also enable intuition-driven development in
the domain of medical image analysis.

2. Methods

We have created a computational framework, which facili-
tates scriptable, rapid prototyping friendly GPU-accelerated
computing and rendering of medical data. On the highest
level of the user interface is a graph editor to control the
underlying graph-based processing pipeline, where nodes
perform operations on data, and edges between them indicate
data flow (Figure 7). Internally, the framework consists of
a scene graph, describing hierarchies of objects. This is in
principle the same architecture skeleton as used by real-time
or game engines [20]. The architecture supports creating
multiple scenes, performing rendering, and subsequently
either the display of the result or further processing. As
an example, a volume (3D) texture can be rendered from
different perspectives via the integrated volume renderer into
a number of 2D textures. Since data processing happens via
a flexible user-controlled data pipeline, the resulting textures
can be further processed.

Key features are very rapid prototyping and short iter-
ation times, which allow to obtain results quickly. Since
large parts of the software are scripted, and all of the scripts
can be changed and reloaded at any time, many features,
including the user interface (UI), can be changed without
restarting the framework. GPU computation is realized with
compute shaders, which can be changed and reloaded in
the same way as the scripts. Input/output file formats are
automatically detected and support for new formats can
be added via plugins. Multiple windows and screens are
supported to maximize the usable space. This feature also

International Journal of Biomedical Imaging

Application
Lua API Plugin API| |
[car | [Plugin Apr[]

GPU abstraction | SDL | Lua | System abstraction
OpenGL/GPU Driver |

Plugin

Core library

Plugin

System

FIGURE 1: Block diagram of the software. SDL provides most of
the platform-dependent functionality; everything except the lowest
software layer is completely platform-independent.

provides support for more advanced display configurations,
such as two-projector stereoscopic 3D setups or CAVEs [21].

Scripting is realized with Lua [22], driving application
and pipeline logic, UL and node functionality. The rest of the
application and library is implemented in C++. Aside from
Lua, the external libraries utilized include SDL [23] (for cross-
platform support), OpenGL, and Dear ImGui [24] (for the
UI). A custom plugin interface is implemented to enable sup-
port for extensions, third-party file formats, and additional
Lua functions. The GPU backend used is currently OpenGL
version 4.5 [25]. OpenGL is a cross-platform graphics API,
which combines rendering and GPU-accelerated computa-
tion. The implementation of the backend follows modern
AZDO (approaching zero driver overhead [26]) principles,
where applicable. Accelerated processing is performed via
compute shaders, which are written in GLSL. Due to the
pipelined nature of OpenGL, most of its operations are per-
formed in the background, while the main CPU can perform
other tasks [25]. The core library also supports semi-auto-
matic multithreading of CPU-bound tasks, but since the
heavy compute jobs are usually performed by the GPU; mul-
tithreading is rarely necessary. Figure 1 shows an overview of
the overall framework design.

From a developer’s perspective, the following functions
are provided: Vertex and fragment shaders facilitate the
rendering tasks and compute shaders perform the computa-
tional tasks. Shader introspection is used to determine
inputs, outputs, and parameters of the particular shaders. This
information is used by the UL Textures are used for image and
data storage and can be one- to three-dimensional, with 1-4
channels, using various internal formats (e.g., 8 bits to save
space, 16 bits for high detail, and float for HDR data). Texture
fetches can optionally be customized with a swizzle mask; that
is, the order in which color components are sampled is user-
controllable. GPU Buffer objects provide support for arbi-
trary, unformatted memory, using persistent and coherent
memory mapping. Manipulating them from either, the CPU
or GPU side, respectively, is possible without special con-
straints. The following OpenGL extensions are automatically
used when supported by the system: ARB_bindless_texture,
ARB_gpu_shader_int64, ARB_gpu_shader5, memory info, and
various robustness extensions to recover from driver crashes:
ARB_robustness, ARB_robust_buffer_access_behavior, and
ARB_create_context_robustness as provided by SDL. Despite
their benefits and simplicity, OpenGL compute shaders are
not intended for very large datasets, as their running time

International Journal of Biomedical Imaging

is usually limited by the graphics driver; two seconds is the
default for recent NVidia drivers on Windows. If a compute
shader has not finished within that time limit, the shader is
forcefully terminated. On Windows, the graphics driver is
reset, which usually causes program termination. In order
to overcome this limitation, large datasets are automatically
split into smaller tiles, which are then processed individually
across multiple shader invocations.

A simple custom file format to store up to three-
dimensional image data is included. It supports lossless com-
pression via the ZStandard algorithm [27] and is optimized
for fast loading and simplicity in order to keep the core clean.
Two optional standard plugins are provided. The first one
uses ITK [28] to add support for the Bitmap, JPEG, GDCM,
DICOM, GIPL, Metalmage, Nrrd, TIFF, PNG, Stimulate,
VTK, Nifti, Gipl, and HDF5 [29] file formats. A full list can be
found in the ITK wiki [30]. The second one uses the stb_image
library [31] and adds support for PNG, Bitmap, TGA, HDR,
JPEG, PSD (Photoshop), PNM/PPM, and GIF files. The two
plugins are independent of each other, and we consider
especially the latter as a good starting point for users trying
to implement their own plugins. The API does not expose
implementation details or the GPU backend and is version-
compatible in both directions. Details about the plugin API
can be found in the supplement. In order to facilitate scripting
and script debugging, a built-in real-time data inspector is
included, which can be used to traverse any Lua object along
with attached variables, functions, and classes, making it
possible to preview values and data objects where supported.

From a user’s perspective, a number of nodes are already
included, implementing the following filters/algorithms: cur-
vature, derivative (edge detection), distance transform, vari-
ous simple math operations (element-wise addition, subtrac-
tion, multiplication, division, power function; i.e. all func-
tions supported by GLSL), min/max/average region filter,
median filter, surface normal extraction, 3D — 2D slice
extraction, convolution (Gaussian blur), type conversion,
and thresholding. Two nodes accept a custom GLSL code
snippet from the user, enabling live programming. The first
compiles the entered code to a compute shader to process
or generate arbitrary data. The second node compiles to
a fragment shader that generates an arbitrary 2D texture,
with limited compatibility to Shadertoy [17]. Other nodes
that do not perform computation can act as data sources or
sinks, although there is no clear separation between the two
roles. Image or memory buffer loaders are pure sources. A
volume renderer essentially transforms a 3D dataset into a
2D image given a perspective. A universal memory viewer
with included hex-editor (that works on CPU and GPU
memory) is useful to diagnose low-level memory layout prob-
lems.

The layered architecture allows even novice users to
design a processing pipeline visually and interact with the
provided widgets without any programming being required
from the user. For quick familiarization with the UI, context-
sensitive help, descriptions, and tooltips, as well as a general
guide, are displayed when appropriate. The novice user is only
limited by their knowledge of what existing algorithms do,
how to use them, and how to combine them to perform a

higher-level task. More advanced users can quickly develop
new nodes, using GLSL for the computation and Lua for the
interface; thus computation is always GPU-accelerated, and
scripting facilitates the rapid development. This also enables
users to quickly write prototype code for specific use cases.
A node is implemented as a single Lua script, optionally
containing GLSL code. Figure 5 shows a complete example.
The supplement contains more information and examples
detailing the node API and implementation of custom nodes.

3. Results

3.1. User Interface. Our Ul is designed for fast iteration, real-
time interaction, and parameter adjustment to provide as
much visual feedback as possible and to clearly highlight
user errors, when (and also how) they occur. Data manipu-
lation effectively happens by linking nodes together to form
a directed acyclic graph (DAG). Color-coded connectors
prevent accidental, type-incompatible connections. It is also
not possible to construct cycles. Any attempt to perform these
erroneous graph constructions will lead to an immediate
display of an appropriate error message (Figure 6).

For developers writing their own nodes there are automa-
tisms in place that attempt to predict input/output properties
and how to invoke a compute shader for commonly used
scenarios, simplifying the development even more. Figure 5
shows an example and the software documentation provides
an even more detailed explanation. If more customization is
required, almost all functionality of a node can be specially
implemented, including the UL

3.2. Comparison to Existing Tools. We have compared our
software package to MeVisLab [32], DeVIDE [33], GRAPE
[34], GraphMIC [35], and FAST [4]. While FAST is a stand-
alone library for OpenCL-accelerated image manipulation
and visualization, the other packages are mainly focused on
graph-based image processing and all of these utilize ITK,
VTK [36], MITK [37, 38], or a variation of these libraries to
perform the computation and rendering tasks. Consequently,
they share ITK’s main weakness, that is, the CPU-bound
processing without (or with very limited) GPU acceleration
[39]. All tools except MeVisLab are provided as open source
packages.

In comparison to our package, DeVIDE requires detailed
knowledge of ITK, as it directly maps ITK functions to graph
nodes. A version of the package that does not require ITK
exists but has limited functionality. The DeVIDE UI is not
usable intuitively, as nodes use internal names and their
function is not always clear. Connectors are neither labelled
nor color-coded, and any input can be connected to any
output. Mismatched connectors or cycles cause an error when
trying to execute the graph. Missing parameters for a node
are not signaled until an attempt is made to execute the graph,
upon which an error is shown. We were unable to do anything
meaningful with DeVIDE since we were unable to identify a
valid combination of nodes which, when connected together,
would produce output and not cause graph execution to
fail. The UT has no apparent preview functionality available.
DeVIDE is scriptable in Python.

MeVisLab is a large, well-established, commercial soft-
ware package intended for rapid prototyping and image
manipulation applications. It is rapid prototyping friendly in
the sense that results can be quickly obtained and previews at
every stage provide visual feedback. However, implementing
any custom extension requires the MeVisLab SDK and a
C++ compiler; therefore the actual development of custom
extensions is not rapid prototyping friendly. Constructing a
graph containing a cycle resulted in a crash. MeVisLab is
scriptable in Python.

GraphMIC is only available for macOS; thus we decided
not to test it, as we wanted to focus on platform-independent
packages. From the documentation, it seems to be very simi-
lar to DeVIDE concept-wise, but it should be more rapid pro-
totyping and user-friendly, since it supports previews, param-
eters can be adjusted directly on the nodes, and input/output
connectors are clearly labelled. This package is also scriptable
in Python.

GRAPE is similar to GraphMIC and DeVIDE and men-
tioned for completeness.

FAST is not a graph editor, but a C++ library similar
to ITK and VTK that aims to cover similar use cases. It
uses OpenCL to accelerate image operations and OpenGL to
render results. There is no scripting or UI and it is not very
rapid prototyping friendly in the current form since it targets
usage by C++ programmers only.

In conclusion, all of the listed graph-based tools are based
on ITK and VTK. Other common dependencies are Qt [40],
Python [41], and boost [42]. These libraries are very large and
can be a hassle to build or to get working properly. In contrast,
our package only depends on a single external library, SDL,
which is small and easy to build on many operating systems.
We have tested our package on Windows and Linux, and as
soon as a working OpenGL 4.5 driver for macOS is available
it will be supported as well. Therefore, we expect that in
comparison to similar packages our solution will be the
easiest to deploy, as long as the system’s graphics driver is able
to support at least OpenGL 4.5.

3.3. Usage Examples. The test system used for our bench-
marking efforts was a consumer notebook with an Intel
Core i7-4790S CPU @ 3.2GHz (4 cores, 8 threads) and
a NVIDIA GeForce GTX 965M graphics card with 4 GB
memory, operating under Windows 8.1. The software was
compiled using Visual Studio 2015 Update 3. All pipelines
shown below are included in the release package as examples.
We do not include MRI source data due to data protection.
Good sources for initial test data are the Digimouse [43] and
the V"3 [44] datasets. Figure 2 is an example for some of the
rendering modes possible with the built-in volume renderer
node.

3.4. Distance Transform. We have performed a benchmark
test, comparing the performance of a 3D distance transform
implemented in multithreaded C++ and GLSL, respectively.
Specifically, we chose the fast distance transform method
from [45] because the algorithm is not a pointwise operation
(and therefore not trivially GPU-parallelizable) and needs an
initial preparation pass plus one pass for each axis (4 in total).

International Journal of Biomedical Imaging

FIGURE 2: Selection of different renderings of CT data produced by
the included volume renderer node and some supporting nodes.
From left to right: solid with curvature as color; solid rescaled with
curvature as color; edge/step function; solid rescaled; translucent.

The distance transform can be used for further processing. An
example is given in Figure 3.

Given the result in Table 1, we conclude that our GPU
variant is about two orders of magnitude faster than the CPU-
based 3D distance transform for this specific computation,
enabling almost interactive operation (e.g., changing the
threshold and observing results). Figure 3 is an example for
an extended use case: a custom compute node executes a
snippet of GLSL code, which utilizes the distance transform
algorithm to remove most of a human skull. The entire
snippet runs in less than 4 ms for a 256 x 256 x 176 volume.
While the rendered result is not perfect and a bit noisy,
the approach was developed within few minutes on the
fly, including the parameters used for the transformation.
Excluding the distance transform (which has to be computed
only once) but including volume rendering of the result in
stereo 3D, the pipeline takes less than 20 ms to execute.

3.5. Segmentation. A typical operation for medical image
analysis is tissue segmentation. We have developed a simple
proof-of-concept segmentation pipeline that extracts a spe-
cific intensity range followed by a smoothing and threshold
operation to form a mask. This mask is then used to
segment skin and skull from the remaining tissue. Another
quickly developed code snippet performs the remaining
segmentation and contrast enhancement. For visualization,
aslice is extracted (Figure 4). Note that the segmentation was
performed on the complete 256 x 256 x 176 volume instead of
asingle slice only. The whole pipeline executes in about 161 ms
for this volume, of which the final segmentation snippet took
4 ms. An alternative pipeline that processes the same volume
in 22 ms is also included in the examples.

3.6. Other Benchmarks. We have included two more exam-
ples for point-wise operations into the benchmarks in Table 1:
median filtering and intensity rescaling. Intensity rescaling is
a two-step operation. First, minimal and maximal intensity
value are determined and then each pixel value is scaled
accordingly so that the output values are in [0---1]. Simple
point-wise operations like this can benefit even more from
GPU acceleration, such as Gaussian smoothing, arbitrary
convolutions, edge detection, thresholding, and filtering.
This kind of relatively simple operation can finish in a few
milliseconds (ms) for typical input sizes (e.g., a volume of
size 512° voxels), allowing fully interactive use and parameter

International Journal of Biomedical Imaging 5

writeonly uniform image3D out_Tex;
uniform sampler3D in_Tex, in_DT;

uniform float u_f 10.0, u_dtmul = 37.0;
uniform float u_postsub = 1.1;

void func(ivec3 p)

{

vecd v = texelFetch(in_Tex, p, 0);
vecd s = texelFetch(in_DT, p, 0);
vecd vo = v;

v == (1.0 - s*u_dtmul);

v.xyz *= u_f£f;

V.Xyz —= u_postsub;

V.XYZ *= VO.XYZ;

v.xyz = clamp(v.xyz,0.0,1.0);
imageStore (out_Tex, p, V);

FIGURE 3: The distance transform from Table 1 combined with a custom compute node running the GLSL snippet on the right is a simple way
to remove most of the skull in a head MRI scan. The result is red/cyan stereo-rendered.

(a) (®)

FIGURE 4: Slice of a brain MRI scan. (a) is normalized but otherwise unprocessed. (b) is segmented into skull/skin (teal), cerebrospinal fluid
(red), and brain (grey) tissue. The brain tissue is contrast-enhanced.

TaBLE 1: Timings for selected operations on 3 different volumes. The speedup factor between CPU and GPU is calculated as the lowest CPU
time (8 threads) divided by the GPU time. The 3D Euclidian distance transform operates on normalized (pixel values in [0---1]) volumes
with a solidity threshold of 0.5. The CPU implementation is our own, including the multithreading. Intensity rescaling and median filtering

use ITK’s CPU-based implementation. The median filter takes the direct neighborhood of each voxel into account, that is, a box of 27 voxels
in total.

Volume CPU (1 thread) CPU (8 threads) GPU Speedup 1 versus 8 threads Speedup CPU versus GPU
Distance transform
256 x 256 x 176 134.5s 459s 630 ms 2.9x 73x
512 x512x 19 63.2s 20.3s 217 ms 3.1x 93x
380 x 992 x 208 1631s 627s 4900 ms 2.6x 128x
Rescale intensity to [0 - 1]
256 x 256 x 176 88 ms 68 ms 10.1 ms 1.29x 6.7x
512 x 512 x 19 38 ms 30 ms 7.2ms 1.27x 4.17x
380 x 992 x 208 603 ms 457 ms 97.5ms 1.31x 4.7x
Median filter

256 x 256 x 176 4155 ms 1544 ms 97 ms 2.7x 15.9x
512 x 512 %19 2120 ms 671 ms 48 ms 3.15x 14x

380 x 992 x 208 14 4800 ms 715 ms 2.9x 6.7x

local code = [[#version 430
layout (local_size_x = 32, local_size_y = 32) in;
uniform sampler2D in_Tex;
writeonly restrict uniform image2D out_Tex;
uniform float u_exp = 1.0; // default values
uniform float u_add = 0.0;
void main ()
{
uvec2 i, sz = imageSize (ocut_Tex);
AUTOTILE(i, sz)
{
vecd v=texelFetch(in_Tex,ivec2(i),0);// get pixel
v = pow (v + u_add, vec4d(u_exp)); // calculate
imageStore (out_Tex, ivec2(i), v); // write result
}
i1l
—— return node definition table
return { name = "Example 2D pow", src=code, maxsize=1024}

FIGURE 5: A minimal working example. This node calculates (v +
add)®® for every pixel and color channel in a 2D image, resulting
in contrast enhancement. The only Lua code is the definition
table in the last line; the rest is GLSL embedded in a Lua string.
Missing interface functions are automatically induced. The resulting
graphical representation is displayed in the small box/node (dark
background, green title bar). More information can be found in the
supplement (available here).

adjustment in real-time (Figures 4 and 5). Median filtering
on the GPU is costly due to the sorting involved; sorting is
implemented using a parallel sorting network [46].

4. Discussion

We expect that our framework will make GPU-accelerated
data processing more accessible. While the examples given
so far mainly target use cases in the medical domain, our
method is not limited to these and can be used for many kinds
of 3D data processing that involve images or parallelizable
operations on a block of data. The motivation to create a
self-contained framework for rapid prototyping and built-
in visualization came from difficulties when developing
certain methods to operate on CT/MRI data. The intended
algorithms were too costly to execute on CPUs in any
reasonable time, so GPU acceleration was a necessity. Many
time-consuming problems during development could have
been avoided if not only the inspection of data had been
supported visually, but also the in-memory representation
had been easily accessible. Our prototype of the pipeline
was hardcoded in C++, using plain OpenGL [47], with-
out rapid prototyping functionality or automatic memory
management, thus changing parameters or rewiring pipeline
connections required recompiling, and rerunning the whole
program, often causing problems due to technical oversights
and remaining bugs. Our current framework attempts to
solve these problems. It accelerates the once time-consuming
part of pipeline development, so that the implementation
cycles for new features are much shorter and also much more
efficient. Regarding the implementation, we intentionally rely

International Journal of Biomedical Imaging

solely on OpenGL for GPU acceleration, because it is the most
compatible, complete, and platform-independent graphics
and compute API currently available. Other options either
are vendor-locked (CUDA), have no graphics capabilities
(OpenCL), or are exclusive to an operating system family
(DirectX, Metal). OpenGL does not come without problems
however. GPU drivers are mostly proprietary, each imple-
menting a different interpretation of the OpenGL specifi-
cation, sometimes exposing implementation differences and
bugs [4, 47]. This may affect the core implementation; there-
fore care has been taken to adhere to the OpenGL 4.5 specifi-
cation, but some drivers may still cause problems. Practically,
this may also cause user-written GLSL shaders to work fine on
a specific setup but fail to compile or misbehave on another,
if the respective driver’s GLSL compilers exhibit differences.

We also chose deliberately to not only enable but also
enforce all node computations to be performed by the GPU.
While this rules out incorporating popular libraries such
as ITK and OpenCV, we believe that this is the only way
to ensure a consistently fast pipeline without unnecessarily
slow legacy components. The current focus/use case of the
application is novel development instead of reusing existing
components in a new package. This is not expected to be a
problem for most users, as this is what sets our framework
apart from others.

Given the ability to type in code at run-time and
inspecting results immediately, intuition-guided exploration
of data is much easier and more interactive in comparison
to existing solutions, as they offer mostly premade building
blocks. The combination of rapid prototyping throughout our
entire implementation, while at the same time also GPU-
accelerating all calculations, allows a user to process larger
datasets faster than with any of the other tools, as these were
apparently not built with this kind of dynamism in mind.

A selection of algorithms is included in the first public
release. They might not be sufficient to cover all use cases;
therefore the use for medical research is not yet the primary
focus of our package. However, even at this early stage of
development, our software is useful for teaching and exten-
sion for specific tasks by anyone.

4.1. Future Work. In its current state the software is a stand-
alone application rather than a library. Future functionality
may include a program exporter to design entire processing
pipelines inside the user interface and then export a single
script that implements this dataflow graph. This would be
useful for batch processing and inclusion in existing pipelines
and is expected to greatly simplify deployment for end users.
We also plan to include support for point clouds and regular
3D meshes, as they are strongly tied to graphics development
and benefit greatly from GPU-accelerated processing. We
believe combining the ability to manipulate and visualize
these types of data in one package will be beneficial to other
related fields. Moving away from OpenGL is not a plan for the
immediate future but a long-term goal. Switching to Vulkan
[48] as a backend would not only enable multithreaded,
multi-GPU computation but also enable support for mobile
devices (e.g., Android-based tablets) and hopefully minimize
driver-specific behavior when compared to OpenGL.

International Journal of Biomedical Imaging

lRl?ec:der

dvmO A

Image file

Vqurr_\eRender [TKtoVTK
dvmdicsd " dvm?2 4

: P!
vitkimageShiftScale
dvm3 »

()

3D distance transfaorm
o, 580 threshold

in_Tex oukb_Tex Show 2D image

(b)

FIGURE 6: Comparison of our graph editor (b) with the interface of DeVIDE (a). Our graph editor shows a lot more detail, including a preview
when hovering in-/outputs if possible. It also checks for misuse, that is, ensures connector type compatibility and prevents cycles. The depicted
DeVIDE graph did not work, despite trying multiple variants. There was no sign of error when building the graph.

sigma
ouklL Sl 2D
outR

inzD outad

Custom code (simple)

ouk

ouklL i ouk_Tex
oukR

image

out_Tex ouk2D

oukzD

FIGURE 7: A dataflow graph to visualize a mouse CT volume. Both “3D Volume” nodes render a volume texture into a 2D image, given
individual settings. In this example, the resulting 2D image is set to 4K resolution (3840 x 2160). An estimate of the time in milliseconds that
a node spent computing on the GPU is displayed on each node, respectively. Any parameter/image changes propagate downstream, so that

the whole graph updates itself as necessary.

Data Availability

Program and source code are accessible at https://bitbucket
.org/maxmalek/xcv. The mouse volume used in some of the
examples was converted from the Digimouse dataset [43]. The
human head MRI data set was donated under the condition
of anonymity and cannot be published.

Conflicts of Interest

There are no conflicts of interest, financial or otherwise,
associated with this paper.

Acknowledgments

This work was supported by TU Graz Open Access Publishing
Fund.

Supplementary Materials

The supplement is a quick-start and developer’s guide for our
software, xcv. It describes how to extend the program, related
APIs, and good GLSL practices to maximize compatibility
across graphics drivers. The supplement also provides a

hands-on example for the implementation of a new node
type. (Supplementary Materials)

References

[1] D. Fortmeier, Direct volume rendering methods for needle inser-
tion simulation [Ph.D. Dissertation], University of Liibeck,
Germany, 2016, http://www.zhb.uni-luebeck.de/epubs/ediss1748
.pdf.

J. Zhou, X. Wang, H. Cui et al., “Topology-aware illumination

design for volume rendering,” BMC Bioinformatics, vol. 17, no.

1, 2016.

[3] R. Srinivasan and S. Fang, “Integrating volume morphing and
visualization,” Computational Geometry, vol. 15, no. 1-3, pp. 149-
159, 2000.

[4] E. Smistad, M. Bozorgi, and F Lindseth, “FAST: framework
for heterogeneous medical image computing and visualization,”
International Journal for Computer Assisted Radiology and
Surgery, vol. 10, no. 11, pp. 1811-1822, 2015.

[5] M. A. Akhloufi, . Gariepy, and G. Champagne, “GPGPU real-
time texture analysis framework;” in Proceedings of the Con-
ference on Parallel Processing for Imaging Applications, 2011, J.
D. Owens, L. Lin, Y. Zhang, and G. B. Beretta, Eds., vol. 7872,
pp. 7872-7872, San Francisco Airport, CA, USA, 2011.

S

https://bitbucket.org/maxmalek/xcv
https://bitbucket.org/maxmalek/xcv
http://downloads.hindawi.com/journals/ijbi/2018/2046269.f1.pdf
http://www.zhb.uni-luebeck.de/epubs/ediss1748.pdf
http://www.zhb.uni-luebeck.de/epubs/ediss1748.pdf

[6] R. P. Broussard and R. W. Ives, “Using a commercial graphical
processing unit and the CUDA programming language to accel-
erate scientific image processing applications,” in Proceedings of
the Conference on Parallel Processing for Imaging Applications
2011,]. D. Owens, I. Lin, Y. Zhang, and G. B. Beretta, Eds., SPIE
Proceedings, San Francisco Airport, California, USA.

[7] A.Eklund, M. Andersson, and H. Knutsson, “MRI analysis on

the GPU—Possibilities and challenges,” Computer Methods and

Programs in Biomedicine, vol. 105, no. 2, pp. 145-161, 2012.

E Dachille, K. Kreeger, B. Chen, I. Bitter, and A. E. Kaufman,

“High-quality volume rendering using texture mapping hard-

ware,” in Proceedings of the 1998 ACM SIGGRAPH/EURO-

GRAPHICS Workshop on Graphics Hardware, A. E. Kaufman,

W. Strafler, G. Knittel, H. Pfister, and S. N. Spencer, Eds., vol. 31,

Lisbon, Portugal, 1998.

[9] M. D. Hanwell, K. M. Martin, A. Chaudhary, and L. S. Avila,
“The Visualization Toolkit (VTK): Rewriting the rendering
code for modern graphics cards,” SoftwareX, vol. 1-2, pp. 9-12,
2015.

[10] J. Sanders and E. Kandrot, CUDA by example: an introduction
to general purpose GPU programming, Addison-Wesley, 2011,
http://www.worldcat.org/oclc/699702402.

(11] R.Yangand G. Welch, “Fast image segmentation and smoothing

using commodity graphics hardware,” Journal of Graphics (GPU

& Game) Tools, vol. 7, no. 4, pp. 91-100, 2002.

E. D. Igual, R. Mayo, T. D. R. Hartley, U. V. Catalyiirek, A. Ruiz,

and M. Ujaldon, “Exploring the GPU for enhancing parallelism

on color and texture analysis,” in Proceedings of the in Parallel

Computing: From Multicores and GPUs to Petascale, Proceedings

of the conference ParCo, B. M. Chapman, E Desprez, G. R.

Joubert, A. Lichnewsky, E. J. Peters, and T. Priol, Eds., vol. 19,

pp. 299-306, 10S Press, 2009.

[13] K. O. W. Group, The opencl specification, version 2.2, 2017, https://
www.khronos.org/opencl/.

[14] P. Cozzi and C. Riccio, OpenGL Insights, CRC Press, 2012,
http://www.openglinsights.com/.

(15] M. Bailey and S. Cunningham, “Computer graphics shaders
using OpenGL 4.X.” in Proceedings of the ACM SIGGRAPH
ASIA 2010 Courses, pp. 1-173, Seoul, Republic of Korea, Decem-
ber 2010.

[16] M. Bailey and S. Cunningham, Eds., Graphics Shaders: Theory
and Practice, Taylor & Francis, 2nd edition, 2011.

[17] P.Jeremiasand L. Quilez, “Shadertoy: Learn to create everything
in a fragment shader,” in Proceedings of the SIGGRAPH Asia
2014 Courses, pp. 1-15, New York, NY, USA, December 2014.

[18] M. Reunanen, Times of change in the demoscene: A creative com-
munity and its relationship with technology [Ph.D. dissertation],
University of Turku, 2017.

[19] D. Hartmann, Digital Art Natives: Praktiken, Artefakte und
Strukturen der Computer-Demoszene, Kulturverlag Kadmos,
Berlin, http://digitalartnatives.de.

[20] H. Marin-Vega, G. Alor-Hernandez, R. Zatarain-Cabada, M. L.
Barron-Estrada, and J. L. Garcia-Alcaraz, “A Brief Review of
Game Engines for Educational and Serious Games Develop-
ment,” Journal of Information Technology Research, vol. 10, no.
4, pp. 1-22, 2017.

[21] A.L. Turinsky, E. Fanea, Q. Trinh et al., “CAVEman: Standard-
ized anatomical context for biomedical data mapping,” Anato-
mical Sciences Education, vol. 1, no. 1, pp. 10-18, 2008.

[22] R.Ierusalimschy, L. H. de Figueiredo, and W. C. Filho, “Lua-an
extensible extension language,” Software: Practice and Experi-
ence, vol. 26, no. 6, pp. 635-652, 1996.

[8

[12

International Journal of Biomedical Imaging

[23] S. Lantinga, Simple DirectMedia Layer, 2017, http://libsdl.org.
[24] O. Cornut, https://github.com/ocornut/imgui/.

[25] K. O. W. Group, The opengl graphics system: A specification (ver-
sion 4.5 (core profile), https://www.khronos.org/registry/OpenGL/
specs/gl/glspec45.core.pdf.

[26] C. Everitt, G. Sellers, J. McDonald, and T. Foley, https://www
.slideshare.net/CassEveritt/approaching-zero-driver-overhead.

[27] Y. Collet, Zstandard, 2015, http://zstd.net/.

[28] H. J. Johnson, M. McCormick, L. Ibdiiez, and T. I. S. Con-
sortium, The ITK Software Guide, Kitware, Inc., 3rd edition,
https://itk.org/ItkSoftwareGuide.pdf.

[29] The HDF Group, (1997-2017) Hierarchical data format, version
5, http://www.hdfgroup.org/HDF5/.

[30] https://itk.org/Wiki/ITK/File_Formats.
[31] S. Barrett, https://github.com/nothings/stb.

[32] E Ritter, T. Boskamp, A. Homeyer et al, “Medical image
analysis,” IEEE Pulse, vol. 2, no. 6, pp. 60-70, 2011.

[33] C. P. Botha, “DeVIDE: The delft visualisation and image proc-
essing development environment,” Tech. Rep., Delft Technical
University, 2004, https://graphics.tudelft.nl/Publications-new/
2004/BO04a.

[34] R. E. Gabr, G. B. Tefera, W. J. Allen, A. S. Pednekar, and P. A.
Narayana, “Erratum to: GRAPE: a graphical pipeline environ-
ment for image analysis in adaptive magnetic resonance imag-
ing,” International Journal for Computer Assisted Radiology and
Surgery, vol. 12, no. 3, pp. 459-459, 2017.

[35] A.E. Szalo, A. Zehner, and C. Palm, “GraphMIC,” in Bildverar-
beitung fiir die Medizin 2015, Informatik aktuell, pp. 395-400,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[36] W. Schroeder, K. Martin, and B. Lorensen, The Visualization
Toolkit, Kitware Inc., 3rd edition, 2004, http://www.worldcat
.org/isbn/1930934122.

[37] 1. Wolf, M. Vetter, I. Wegner et al., “The medical imaging
interaction toolkit,” Medical Image Analysis, vol. 9, no. 6, pp.
594-604, 2005.

[38] M. Nolden, S. Zelzer, A. Seitel et al., “The medical imag-
ing interaction toolkit: Challenges and advances: 10 years of
open-source development,” International Journal for Computer
Assisted Radiology and Surgery, vol. 8, no. 4, pp. 607-620, 2013.

[39] W.-K. Jeong, H. Pfister, and M. Fatica, “Medical image process-
ing using GPU-accelerated ITK image filters,” GPU Computing
Gems Emerald Edition, pp. 737-749, 2011.

J. Blanchette and M. Summerfield, C++ GUI Programming with
Qt 4, Prentice Hall, 2006.

[41] G. van Rossum, “Python programming language,” in Proceed-
ings of the 2007 USENIX Annual Technical Conference, J. Chase
and S. Seshan, Eds., Santa Clara, CA, USA, 2007, https://www
.usenix.org/publications/proceedings/?f[0]=im_group_audience%
3Al14.

[42] A. Polukhin, Boost C++ Application Development Cookbook,
Packt Publishing, 2nd edition, 2017.

[43] B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy,
“Digimouse: a 3D whole body mouse atlas from CT and cryo-
section data,” Physics in Medicine and Biology, vol. 52, no. 3, pp.
577-587, 2007.

[44] S. Roettger, http://lgdv.cs.fau.de/External/vollib/.

[45] P.E Felzenszwalb and D. P. Huttenlocher, “Distance transforms
of sampled functions,” Theory of Computing. An Open Access
Journal, vol. 8, pp. 415-428, 2012.

(40

http://www.worldcat.org/oclc/699702402
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
http://www.openglinsights.com/
http://digitalartnatives.de
http://libsdl.org
https://github.com/ocornut/imgui/
https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec45.core.pdf
https://www.slideshare.net/CassEveritt/approaching-zero-driver-overhead
https://www.slideshare.net/CassEveritt/approaching-zero-driver-overhead
http://zstd.net/
https://itk.org/ItkSoftwareGuide.pdf
http://www.hdfgroup.org/HDF5/
https://itk.org/Wiki/ITK/File_Formats
https://github.com/nothings/stb
https://graphics.tudelft.nl/Publications-new/2004/BO04a
https://graphics.tudelft.nl/Publications-new/2004/BO04a
http://www.worldcat.org/isbn/1930934122
http://www.worldcat.org/isbn/1930934122
https://www.usenix.org/publications/proceedings/?f[0]=im_group_audience%3A114
https://www.usenix.org/publications/proceedings/?f[0]=im_group_audience%3A114
https://www.usenix.org/publications/proceedings/?f[0]=im_group_audience%3A114
http://lgdv.cs.fau.de/External/vollib/

International Journal of Biomedical Imaging

[46] K. E. Batcher, “Sorting networks and their applications,” in
Proceedings of the the April 30-May 2, 1968, spring joint com-
puter conference, p. 307, Atlantic City, New Jersey, April 1968.

[47]]. Barczak, OpenGL Is Broken. The Burning Basis Vector [blog],
2014, http://www.joshbarczak.com/blog/?p=154.

[48] T. K. V. W. Group, Vulkan 1.0.66 - a specification, 2017, https://
www.khronos.org/vulkan/.

http://www.joshbarczak.com/blog/?p=154
https://www.khronos.org/vulkan/
https://www.khronos.org/vulkan/

