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Abstract

The adoptive transfer of labelled cell populations has been an essential tool to determine

and quantify cellular dynamics. The experimental methods to label and track cells over time

range from fluorescent dyes over congenic markers towards single-cell labelling techniques,

such as genetic barcodes. While these methods have been widely used to quantify cell dif-

ferentiation and division dynamics, the extent to which the applied labelling strategy actually

affects the quantification of the dynamics has not been determined so far. This is especially

important in situations where measurements can only be obtained at a single time point, as

e.g. due to organ harvest. To this end, we studied the appropriateness of various labelling

strategies as characterised by the number of different labels and the initial number of cells

per label to quantify cellular dynamics. We simulated adoptive transfer experiments in sys-

tems of various complexity that assumed either homoeostatic cellular turnover or cell expan-

sion dynamics involving various steps of cell differentiation and proliferation. Re-sampling

cells at a single time point, we determined the ability of different labelling strategies to

recover the underlying kinetics. Our results indicate that cell transition and expansion rates

are differently affected by experimental shortcomings, such as loss of cells during transfer

or sampling, dependent on the labelling strategy used. Furthermore, uniformly distributed

labels in the transferred population generally lead to more robust and less biased results

than non-equal label sizes. In addition, our analysis indicates that certain labelling

approaches incorporate a systematic bias for the identification of complex cell expansion

dynamics.

Introduction

The ability to distinguish cells and organisms by certain markers and labels has been an indis-

pensable asset in many biological experiments addressing population dynamics and develop-

ment. For example, tracking differently labelled cells not only allows the identification of

lineage pathways [1], but also the observation of dynamical changes in cell populations over

time [2]. The application of labels also helps to determine the migration dynamics of cells

between organs [3], or the colonisation dynamics of specific tissues by bacteria [4, 5]. In
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addition, the information obtained by labelling can be used to quantify cellular turnover, such

as cell activation, proliferation and differentiation dynamics [6].

For cells, there exists a large variety of experimental techniques to label and track individual

populations. Besides the application of markers that are taken up during cell proliferation,

such as BrdU [7, 8], deuterated glucose and heavy water [9–11], this especially concerns tech-

niques that involve the adoptive transfer of pre-labelled cell populations. Staining cells by the

fluorescent dye CFSE [12, 13] has been used extensively to infer cellular turnover and prolifer-

ation dynamics (reviewed in [6]). More fine-grained approaches that involve several different

markers—e.g. by transferring cell populations bearing congenic markers [14–16] or by using

naturally diverse markers, such as T cell receptor sequences [17–20]—allow to distinguish the

dynamics of individual subpopulations in more detail. Finally, artificially labelling cells by

unique, inheritable genetic barcodes makes it possible to follow cellular dynamics on a single

cell level [21]. By this, one is able to address cell heterogeneity and to identify individual cell

differentiation pathways [2, 21–23].

The adoptive transfer of labelled cells is particularly useful, if the experimental conditions

prevent sampling at different times. When organs or cell cultures need to be harvested, indi-

vidual measurements can only be obtained at one particular time point. In these cases, the

intra-individual variability in the population dynamics of each label can provide enough infor-

mation to estimate cellular turnover. Interestingly, it is also possible to quantify interacting

dynamics, such as entangled migration and proliferation dynamics, even if measurements are

only obtained from one of the involved compartments [4]. Thus, using multiple labels can

compensate for both the lack of time-resolved data and compartments that cannot be

measured.

Several different labelling strategies have been used to analyse population dynamics given

these experimental limitations. These approaches differed in the number of labels and the size

of each label within the transferred population [2, 4, 16]. However, it has not been determined

so far if these labelling strategies allow to reliably infer the assumed dynamics, and how these

different approaches influence the quantification of the kinetics: does the estimation of a cell

proliferation rate benefit from a high or a small number of cells per label? To what extent

would parameter estimation be improved if more labels are used? And how does the time

point of sampling affect parameter identification? The impact of a labelling strategy on param-

eter identification needs to be evaluated in order to determine the reliability of obtained

parameter estimates.

To this end, we studied the appropriateness of different labelling strategies to quantify cellu-

lar dynamics. Here, we focus on labelling approaches based on inheritable and stable markers,

such as congenic markers or genetic barcodes. We considered cellular systems of various com-

plexity that assumed either homoeostatic turnover, as e.g. for naïve T cells, or cell expansion

dynamics involving various steps of cell differentiation and proliferation (Fig 1A). We then

simulated adoptive transfer experiments varying the composition of the labelled cell popula-

tion (Fig 1B). Data sampled at a single time point were used to quantify the underlying kinetics

and to evaluate the impact of the labelling strategy on parameter estimation. In addition, we

analysed how experimental shortcomings, such as incomplete transfer or sampling of the

labelled cell population (Fig 1C), affected the results.

Our results show that labelling strategies and the experimental limitations affect parameter

estimates in multiple ways: The appropriateness of a labelling approach depends on the under-

lying cellular system, but also on the type of parameter that is to be identified. Labelling strate-

gies might be biased to favour the identification of certain types of cellular characteristics, e.g.

proliferation rates, with some approaches being more robust than others with respect to loss of

cells during transfer or sampling.

Cell-labeling strategies and population dynamics
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In general, our findings argue for the use of multiple labels with an intermediate number of

cells per label to reliably infer cellular transition and expansion dynamics. Furthermore, they

also suggest the use of simulations to determine a-priori the appropriateness and limitations of

the experimentally used labelling strategy, or to later validate obtained parameter estimates.

Materials and methods

The mathematical models of cellular dynamics

We distinguish three scenarios of cellular dynamics that consider different levels of complexity

(see Fig 1A). These scenarios are described as follows.

(1) Homoeostatic turnover. Under homoeostatic conditions, a cell population is consid-

ered to be in equilibrium, meaning the total number of cells is assumed to be constant over

time. However, the cell population is usually not static as cells constantly die and are replaced.

Examples of homoeostatic turnover among immune cells are the dynamics of naïve T cells

before antigen encounter, or the pool of memory T cells that is maintained after an infection

[24]. In our model, we assume that a cell population, here termed naïve cells, N, proliferates with

rate ρ and dies with rate δ. The dynamics are described by the following differential equation:

dN
dt
¼ ðr � dÞN: ð1Þ

Fig 1. Population dynamics, experimental setups and technical shortcomings. (A) Schematic of

different models with increasing complexity describing cellular turnover: (1) Homoeostatic turnover: Naïve

cells proliferate only to compensate cell death, therefore maintaining a stable number of cells. (2) Simple

expansion dynamics: By encountering their respective antigen naïve cells are activated and start to

proliferate. (3) Complex expansion dynamics: In comparison to (2), we consider several steps of cell

differentiation and proliferation. Upon activation, naïve cells differentiate into central memory precursor (CM)

and subsequently into effector memory precursor cells (EM), and finally effector cells (E). For simplicity, net-

proliferation rates combining cell proliferation and death are considered at this point [16]. (B) A labelling

strategy using inheritable labels is defined by the number of different labels and the label size, i.e. the number

of cells per label. The depicted labelling strategies show a shared and a unique labelling approach. After

transfer into a host, these cells are thought to follow one of the three cellular dynamics. At a specific time, cells

are sampled and used for evaluation. Data are gathered in the form of count data measuring the number of

cells of a specific label within the sampled population. (C) Potential experimental shortcomings: Cells can be

lost during transfer and/or sampling.

https://doi.org/10.1371/journal.pone.0185523.g001
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To ensure homoeostatic turnover, ρ = δ. In the following, we set ρ = δ = 0.5 d−1 to allow for

reasonable simulation times. This is done without loss of generality as the timescale of the sim-

ulations can be rescaled to allow interpretation for much lower turnover rates, as e.g. observed

for naïve T cells [6] (see also S1 Fig).

(2) Simple expansion dynamics. Another dynamics is the activation and subsequent pro-

liferation of cells (Fig 1A). After encountering their cognate antigen, naïve T cells are activated

and start to fight effectively against the invading pathogen by massively expanding in numbers

and simultaneously differentiating into effective subpopulations [16]. To model a simple

expansion dynamics, we distinguish between naïve, N, and activated cells, A [25]. Naïve cells

are activated with rate μ, and activated cells start to proliferate with rate ρ. The dynamics of

this model can be described by the following system of ordinary differential equations:

dN
dt

¼ � mN

dA
dt
¼ mN þ rA

ð2Þ

For simplicity, cell death of both naïve and activated cells is neglected in this model, as we

are mainly interested in the net-expansion rates.

(3) Complex expansion dynamics. In a third step, we extended the simple expansion

model by additionally accounting for heterogeneous subpopulations among the activated cells.

As for example for T cells, several functionally diverse subsets are distinguished that indicate

different steps of cell differentiation [2, 26]. Each of these subsets is assumed to follow individ-

ual proliferation and differentiation dynamics. Following the study by Buchholz et al. [16], we

distinguish between central memory precursor (CM), effector memory precursor (EM) and

effector cells (E). The relation between these compartments is assumed to follow a linear differ-

entiation pathway as depicted in Fig 1A and is defined by the following system of ordinary dif-

ferential equations:

dN
dt

¼ � mNN

dCM
dt

¼ mNN þ ðrCM � mCMÞCM

dEM
dt

¼ mCMCM þ ðrEM � mEMÞEM

dE
dt
¼ mEMEM þ rEE;

ð3Þ

where μx and ρx describe the differentiation and proliferation rates, respectively of the corre-

sponding compartments. We used estimates derived from Buchholz et al. [16] to parametrise

the model; the respective values are given as μN = 2.2 d−1, μCM = 0.2 d−1, μEM = 0.04 d−1,

ρCM = 0.85 d−1, ρEM = 1.42 d−1 and ρE = 1.6 d−1.

Simulating labelling experiments

To simulate experimental data, we performed stochastic simulations of the systems defined by

Eqs (1)–(3) based on the Gillespie algorithm [27]. Simulations were carried out in the R-lan-

guage of statistical computing using the package adaptivetau [28]. Each simulation starts with

a specified number of labelled naïve cells at time t = 0. These cells then proliferate, differentiate

or die stochastically, according to the underlying model. We assume inheritable markers,

Cell-labeling strategies and population dynamics
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meaning that the label of each individual cell is retained during activation or differentiation,

and it is passed onto every daughter cell while proliferating. At a specified sampling time T> 0

the system is stopped and the number of cells per label in each cellular subset is assessed.

In addition to the model parameters characterising the cellular dynamics, each simulation

depends on the following experimental parameters: The sampling time, T, at which cells are

sampled, and the labelling strategy, which is defined by the number of different labels, L, and

the label size M, i.e. the number of cells per label in the initial cell population. Unless stated

otherwise, we assume uniformly distributed labelling strategies, i.e. every label has initially the

same number of cells.

To account for possible loss of cells during transfer (Fig 1C), the fraction of cells that is

assumed to pass the transfer is sampled randomly from the initial cell population. This sam-

pled transfer fraction is then used as an initial condition for the model systems. Similarly, by

randomly sampling a predefined fraction of cells from the stochastically generated simulation

output, we account for incomplete sampling that might occur during experiments. The sam-

pled cell population is then used to estimate the parameters of the underlying system.

Parameter estimation

Parameter estimates for the rates describing cell activation, proliferation and differentiation

are obtained by fitting the predicted summary statistics for each cell population to the sampled

count data, which provide the absolute number of cells for each label. Each sample is evaluated

individually. The considered summary statistics include the expected mean, the coefficients of

variation (CV) and, if applicable, the correlation coefficients (CC). The predicted summary

statistics are obtained by solving the corresponding master equations of the systems (Eqs (1)–

(3)) (see S1 Appendix for a detailed description of the calculations). Fitting is then performed

based on χ2-minimisation using the optim-function in the R-language of statistical comput-

ing [28].

Confidence intervals for parameter estimates are obtained by bootstrapping the data using the

built-in R-package boot. These intervals are calculated based on Efron’s non-parametric and

accelerated bootstrap (BCa) method [29] with 999 repeats and a significance level of α = 0.05.

To allow for comparison with the original approach by Buchholz et al. [16], the compart-

ment of naïve cells, N, was not considered when fitting both the simple and the complex

expansion model.

Evaluating the quality of parameter estimates

The appropriateness of different labelling strategies to retrieve the underlying cellular dynam-

ics is determined by different quantities [30]. These quantities characterise the robustness of

parameter estimates and their deviation from the true parameter.

Bias. The bias indicates on an absolute scale how much the average parameter estimate

deviates from the true value.

In mathematical terms, if ŷ i, i = 1, . . ., m are estimates for the true parameter θ with

ŷ :¼ 1

m

Pm
i¼1

ŷ i defining the empirical mean, the bias is calculated by

Bias ≔ ŷ � y: ð4Þ

Percentage bias. The percentage bias determines on a relative scale how much the average

estimate differs from the true value. This allows the simultaneous comparison of estimates for

several parameters of different scales.

Cell-labeling strategies and population dynamics
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The percentage bias is defined by

pBias ≔
ŷ � y

y
: ð5Þ

Mean confidence interval length (MCIL). The MCIL serves as a measure of uncertainty

for the parameter estimate. If CIi = [ai, bi] is the estimated confidence interval for parameter θ
in run i, with l(CIi) = bi − ai defining the length of the confidence interval, then the mean confi-

dence interval length is calculated by

MCIL ≔
1

m

Xm

i¼1

lðCIiÞ: ð6Þ

Here, m denotes the total number of individual runs performed. In some cases the MCIL can-

not be calculated (e.g. due to an unlimited confidence interval of at least one of the confidence

intervals used for calculation). This is indicated in the corresponding plots by a grey coloured

box for the respective parameter combination.

False coverage rate (FCR). The false coverage rate is defined as the fraction of simulation

runs in which the estimated confidence interval does not contain the predefined rate.

Results

The influence of transfer loss on parameter estimation

During adoptive transfer of cells into a living host, it is unlikely that all cells will survive the

transit. Common obstacles include experimental limitations, such as imperfect injections to

the target tissue, or host-induced rejection of cells, e.g. when using congenic markers [31].

Therefore, one would expect that only a fraction of the original labelled cell population enters

the system and can be recovered later. As we show below, neglecting this transfer fraction
when evaluating sampled data can strongly impact parameter estimates of the cellular

dynamics.

Assuming homoeostatic cell turnover where cells proliferate and die at similar rates, we

tested the ability of two different labelling strategies to infer the underlying kinetics in case of

incomplete transfer (Fig 2A). Both labelling strategies involve the adoptive transfer of N = 800

cells that are labelled according to a unique (L = 800 labels with M = 1 cell each) or a shared

labelling approach (L = 8, M = 100); both of which have been successfully used in experiments

[2, 16]. Cells that survive the transfer and undergo stochastic homoeostatic turnover are sam-

pled at a single time point and used for parameter estimation.

Incomplete transfer results in an overestimation of both the proliferation and the death rate

in either of the two labelling strategies (Fig 2B). In addition, the parameter estimates indicate

an exponential decay of cells rather than a homoeostatic turnover as the death rate δ is always

estimated to be higher than the corresponding proliferation rate ρ. This is due to the fact that

the system has to compensate for the smaller number of cells that are recovered compared to

the number of labelled cells in the inoculum. A higher transfer loss also results in a larger varia-

tion of the parameter estimates whereby a unique labelling approach allows more robust

estimation.

If prior knowledge on the transfer fraction can be obtained, as for example by additional

experiments [16], it is possible to adjust the estimation procedure and to obtain appropriate

parameter estimates for the homoeostatic turnover (see Fig 2C and S1 Appendix). This works

reliably for both labelling strategies even if large fractions of cells are lost during transfer.

Cell-labeling strategies and population dynamics
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However, in more complex scenarios of cell expansion dynamics, even full knowledge on

the transfer fraction might not be sufficient to correctly quantify the underlying dynamics.

Buchholz et al. [16] studied the proliferation and differentiation dynamics of T cells and identi-

fied a linear differentiation pathway with naïve (N) cells differentiating into central memory

(CM) and effector memory precursor cells (EM), and further into effector cells (E) (Fig 3A).

Using a shared labelling strategy adapted from their experiment, we find that all parameter

estimates besides the naïve differentiation rate μN seem unaffected by a loss of cells during

transfer (Fig 3B). Accounting for the transfer fraction in the estimation procedure leads to

more robust but not necessarily correct estimates (S2 Fig). Even if no cells are lost during

transfer, the proliferation and differentiation rates associated with the naïve and central mem-

ory compartment, i.e. μN, μCM and ρCM, are under- and overestimated with a relative bias of

0.5 and 1.5, respectively (Fig 3B). In contrast, the unique labelling approach allows identifica-

tion of the underlying kinetics for all cellular subsets if all cells survive the transfer, or if the

effective transfer fraction is known and accounted for (Fig 3B, S2 Fig). If the transfer fraction

is not known, this labelling approach also leads to biased estimates of the proliferation and dif-

ferentiation rates μN, μCM and ρCM, but does not affect the estimates of the remaining parame-

ters. As in the homoeostatic scenario, the larger number of labels of the unique labelling

strategy leads to less variation in the parameter estimates compared to the shared labelling

approach.

Fig 2. The influence of incomplete transfer on estimating homoeostatic cell turnover. (A) Only a fraction of the

initially labelled cell population might survive the transfer and follows homoeostatic turnover where cells proliferate with

rate ρ and die at rate δ. (B) Panels show the distribution of estimates for the proliferation rate, ρ (left), and the death

rate, δ (right), for different fractions of cells surviving the transfer. Parameter estimates for two labelling strategies with

N = 800 cells initially using either shared (L = 8, M = 100, blue) or unique labelling (L = 800, M = 1, orange) are shown.

The estimation procedure did not account for the transfer loss. (C) Prior knowledge on the transfer loss improves

parameter estimates even if only small fractions of cells survive the transfer. Each boxplot is based on the results of 100

individual stochastic simulations with ρ = δ = 0.5 d−1 and cells being sampled 8 days after transfer. Red lines indicate

the true parameter values.

https://doi.org/10.1371/journal.pone.0185523.g002
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In summary, our results show that incomplete transfer mainly affects the quantification of

cellular kinetics in early compartments while the estimation of later differentiation and expan-

sion steps is not affected.

The influence of incomplete sampling on parameter estimation

Sampling cells from the host system represents another source of error. Most likely only a frac-

tion of the labelled cell population can be recovered as cells migrate into different tissues or are

lost during circulation [32]. In addition, pre-treatment of harvested tissue for experimental

measurements can lead to additional loss of cells [33]. To determine the impact of incomplete

sampling on the quantification of cellular kinetics we repeated our analysis but only consid-

ered a fraction of the cell population at the time point of sampling in the estimation procedure.

For simplicity, we assumed that all cells survived the adoptive transfer.

Given homoeostatic cell turnover, not accounting for incomplete sampling results in an

underestimation of both the proliferation, ρ, and the death rate, δ (Fig 4B). This bias decreases

with increasing sampling fractions. However, in comparison to a scenario with incomplete

transfer, the relative bias of the death rate is on average substantially smaller than the relative

bias of the proliferation rate (compare Fig 2B). These observations can be seen for both label-

ling strategies used.

In contrast, more diverse effects are observed when quantifying the cellular dynamics in the

complex expansion model (Fig 4C). Incomplete sampling seems to affect the two types of

Fig 3. The influence of incomplete transfer on estimating complex cell differentiation and expansion dynamics. (A) Schematic of a

linear pathway for cell differentiation and proliferation as assumed for the complex expansion model [16]. Naïve cells (N) turn into central

memory precursor cells (CM), which subsequently turn into effector memory precursor (EM) and effector (E) cells. Cells differentiate and

proliferate according to the corresponding rates μ and ρ, respectively. (B) Panels show the distribution of estimates for the differentiation

(upper row) and proliferation rates (lower row) for the different cellular subsets for various fractions of cells surviving the transfer. The

estimation procedure did not account for the transfer loss. Parameter estimates for two labelling strategies with N = 800 cells initially using

either shared (L = 8, M = 100, blue) or unique labelling (L = 800, M = 1, orange) are shown. Every boxplot is based on the results of 100

individual stochastic simulations. Differentiation and proliferation rates are defined as μN = 2.2 d−1, μCM = 0.2 d−1, μEM = 0.04 d−1, ρCM = 0.85

d−1, ρEM = 1.42 d−1 and ρE = 1.6 d−1 [16]. Red lines indicate the true parameter values.

https://doi.org/10.1371/journal.pone.0185523.g003
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rates, i.e. differentiation and proliferation rates, differently: While estimates of the differentia-

tion rates are not affected by different sampling fractions, proliferation rates are generally

underestimated. This trend is especially visible for the unique labelling approach, while shared

labelling is less affected by incomplete sampling (Fig 4C). However, as already seen for incom-

plete transfer, the shared labelling approach leads to a biased estimation of the cellular dynam-

ics, especially for non-intermediate compartments, e.g. N, CM and E (Fig 4C).

Similar to the shortcoming of incomplete transfer, incomplete sampling can be addressed

in the estimation procedure by rescaling the measured cell numbers by the sampled fraction

(see S3 Fig). However, it might be experimentally difficult to obtain an estimate for this

fraction.

Thus, while incomplete transfer especially affects the quantification of transition rates,

incomplete sampling particularly leads to underestimation of the proliferation rates.

Fig 4. The influence of incomplete sampling on parameter estimation. (A) Schematic depicting the problem of incomplete sampling:

Only a fraction of the labelled cells is sampled and can be used for analysis. (B) Panels show the distribution of the estimated proliferation, ρ,

and death rate, δ, for the homoeostatic system shown in (A) using the shared (blue) and unique (orange) labelling approach given different

sampling fractions. (C) The distribution of the estimated parameters for the complex expansion dynamics analogous to (B). Every boxplot is

based on the results of 100 individual stochastic simulations. Parameters used to simulate the dynamics and the time point of sampling are

defined as before. Red lines indicate the true parameter values.

https://doi.org/10.1371/journal.pone.0185523.g004

Cell-labeling strategies and population dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0185523 October 18, 2017 9 / 17

https://doi.org/10.1371/journal.pone.0185523.g004
https://doi.org/10.1371/journal.pone.0185523


The influence of labelling strategies on parameter identification

Our previous analyses indicate that the composition of the labelled cell population affects

parameter estimates. The unique labelling approach leads to more robust and less biased esti-

mates than the shared labelling strategy (Figs 2–4). This increased robustness is expected, as

the unique labelling strategy provides up to 800 individual measurements, i.e. one for each

label. This is 100-fold the number we obtain when using the shared labelling approach. How-

ever, the latter strategy might still comprise useful aspects, because less labels are lost by sto-

chastic effects or during sampling due to the larger number of cells per label. In addition,

larger population sizes usually allow more robust experimental measurements.

In order to investigate the qualitative influence of different labelling strategies on the quan-

tification of cellular dynamics, we studied a system of simple cell expansion in which trans-

ferred cells, N, are activated with an activation rate μ and activated cells, A, proliferate with

rate ρ (Fig 1A) [25]. Here, we analysed the impact of different factors on the ability to infer the

cellular kinetics. This included (i) the actual labelling strategy for the transferred cell popula-

tion characterised by the number of labels, L, and the number of cells per label, M, (ii) the sam-

pling time, T, and (iii) the activation, μ, and proliferation rate, ρ that determine the cellular

dynamics. To focus on the impact of each individual factor, we always assumed complete

transfer and sampling.

Influence of the labelling strategy. By varying the number of labels, L, from 2 to 50 and

the number of cells per label, M, from 1 to 50, we assessed the influence of a total of 2450 dif-

ferent labelling strategies on their ability to quantify the cellular turnover.

We find that increasing the number of labels, L, continuously improves the estimation qual-

ity for both the activation and the proliferation rate (Fig 5). The absolute bias, as well as the

false coverage rate, i.e. the probability that the actual rate is not within the calculated confi-

dence interval, is reduced. Increasing the number of cells per label, M, only improves the

robustness of parameter estimates judged by a decreasing mean confidence interval length

(MCIL). Here, we observe a sharp decline between a strategy using unique labels and those

relying on multiple cells per label. However, this effect quickly saturates in our scenario with

increasing label sizes.

In some cases, confidence intervals for the activation rate, μ, cannot be obtained and the

MCIL cannot be calculated. This is indicated by grey colour in the plots. In these cases, all acti-

vation rates above a certain threshold are equally likely to generate the observed outcome, lead-

ing to unlimited confidence intervals. This effect is mostly limited to labelling strategies with a

low number of labels, L, but is also observed for unique labelling approaches having an inter-

mediate number of labels (Fig 5C).

In summary, these results argue for the use of a large number of labels with medium num-

bers of cells per label as a reliable and robust labelling strategy.

Influence of the distribution of labels. Our previous analyses indicate that a large num-

ber of different labels reduces estimation bias while the use of larger label sizes generally

improves the robustness of parameter estimates. As only a limited number of cells can be

transferred, this leads to the question if estimation can be improved by a combination of both

approaches. For example, does a strategy relying on many labels with small label sizes and few

labels with more cells per label perform better than one using unique labels for all cells?

To address this question, we repeated our analyses by using a fixed total number of cells

that were labelled with L different markers using either a uniformly, linearly or exponentially

distributed label size (Fig 6A). The evaluation of data from non-uniformly distributed label

sizes required the adaptation of our approach for the calculation of the corresponding sum-

mary statistics (S1 Appendix). To compare the performance of the different labelling strategies,
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we then calculated the difference between the bias, the FCR, and the mean-confidence interval

length (e.g. ΔMCIL = MCILUniform − MCILLinear).

We find that a uniformly distributed labelling strategy always performs best in terms of esti-

mation bias and robustness of parameter estimates independent of the total number of cells

transferred (Fig 6B–6E for ΔMCIL, plots for pBias and FCR not shown). This observation is

consistent for the activation, μ, and proliferation rate ρ. Increasing the inequality between label

sizes impairs the quality of parameter estimates as an exponentially distributed labelling strat-

egy always performs worst. Thus, a combination of several uniquely labelled cells with few

labels comprising multiple cells does not improve parameter identification compared to an

approach based on the same number of labels uniformly distributed among the cells.

The influence of the sampling time. In our scenario, we investigate the impact of various

labelling strategies on inferring cellular dynamics if measurements can only be obtained at a

Fig 5. The influence of the labelling strategy on parameter estimates. (A) Schematic depicting the dynamics of the simple expansion

model: Cells are activated with rate μ and activated cells proliferate with rate ρ. (B) Calculation of heatmaps: Each labelling strategy is used

to generate 100 stochastically simulated data samples. Each data sample is then bootstrapped with 999 repeats (see Materials and

Methods) to calculate the corresponding distribution of parameter estimates and the respective confidence interval. Combining these results

allows the calculation of the depicted statistical quantities for the corresponding parameter combination. (C-D) The bias, the mean

confidence interval length and the false coverage rate for the estimation of the activation rate, μ (C), and the proliferation rate, ρ (D),

assuming a system of simple expansion dynamics. The estimation for each parameter combination is based on 100 independent stochastic

simulations. Parameters not varied are fixed to μ = 0.3, ρ = 0.3 and cells were sampled at T = 3. Grey colour indicates values being above or

below the shown range (Bias), or that the method is not able to estimate the respective confidence interval for the corresponding parameter

combination (MCIL and FCR, see Materials and Methods).

https://doi.org/10.1371/journal.pone.0185523.g005
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single time point. Thereby, the choice of this sampling time point, T, also has an influence on

the ability to estimate the kinetics.

For example, if in our scenario of cell activation and subsequent proliferation the sampling

time point is chosen too late, the activation rate μ cannot be reliably estimated (Fig 7A). In

contrast, sampling too early leads to increased uncertainty in the estimates due to stochastic

effects. Thus, sampling at an intermediate time point gives the most reliable estimates for the

Fig 6. Influence of the label size distribution on parameter estimation. (A) Examples of the three different

distributions of label sizes investigated: Uniform, linear and exponential distribution (from top to bottom). Each distribution

comprises a total of 1000 cells and 50 labels. The red dotted line indicates the average label size of 20 cells. (B-C) The

difference in the MCIL for the estimation of the activation rate μ between the uniformly and linearly distributed labels (B),

and the difference between uniformly and exponentially distributed labels (C). (D, E) Analogous to (B, C) the difference in

the MCIL for the estimated proliferation rate ρ.

https://doi.org/10.1371/journal.pone.0185523.g006

Fig 7. Influence of the sampling time on parameter estimation. MCIL of the activation rate, μ (A), and proliferation rate, ρ (B), using

varying combinations of sampling times, T, and proliferation rates, ρ, in the simple system of cell activation and proliferation. Panel (C)

shows the cross sections of panels (A & B) indicating the MCIL of the activation rate, μ, (red) and the proliferation rate, ρ, (blue) dependent

on the sampling time for a fixed proliferation rate (ρ = 0.3). The black dotted line defines the time after which the estimation of the activation

rate failed as all labels were sampled. The estimation for each parameter combination is based on 100 independent stochastic simulations.

Parameters that were kept fixed are μ = 0.3, L = 50 and M = 5. Grey colour indicates that the method is not able to estimate the respective

confidence interval for the corresponding parameter combination (see Materials and Methods).

https://doi.org/10.1371/journal.pone.0185523.g007
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activation rate. In contrast, for the proliferation rate ρ we observe that a later sampling time

continuously improves robustness of the estimates (Fig 7B, MCIL) and parameter identifica-

tion, i.e. leading to a reduced percentage bias (S4 Fig). Thus, there is a trade-off regarding the

time point of sampling leading to more certainty in the estimates for either the activation or

the proliferation rate (Fig 7C).

This trade-off is also found in the complex expansion system (see S1 Fig). Here, prolifera-

tion rates are estimated more reliably as time increases, while the transition from naïve to cen-

tral memory precursor cells is captured especially well for early sampling time points. In case

of the homoeostatic system, no effect of the sampling time on the parameter estimation is

observed, and both the proliferation and death rate are estimated reliably irrespective of the

sampling time (S1 Fig).

In summary, our results show that the identification of proliferation rates benefits from

later sampling times, while initially occurring transition dynamics might already be masked by

then. Hence, an appropriate estimation of all involved dynamics might not be possible in

many systems.

Discussion

Over the last decades, technical advances have steadily increased the possibilities to label cells

by specific markers. As of today, a huge variety of labelling methods in various levels of detail

exists, relying on naturally occurring or artificially induced cellular markers. These methods

have been applied in adoptive transfer experiments to quantify cellular differentiation and

expansion dynamics (reviewed in [6, 21]). However, to which extent the various labelling strat-

egies actually allow the appropriate identification and quantification of the processes charac-

terising the cellular dynamics has not been systematically studied.

To address this question, we simulated adoptive transfer experiments with various labelling

strategies for different scenarios of cellular turnover. These scenarios included homoeostatic

cell proliferation, as well as simple and complex expansion dynamics involving several steps of

cell differentiation. We particularly focused on the situation where only one single measure-

ment can be obtained, as e.g. due to organ harvest [2, 16].

In general, we found that a larger number of labels continuously improves parameter esti-

mation in all of the different models tested. This is not completely surprising, as each label pro-

vides an additional measurement that can be used in the analysis and, thereby, reduces

estimation bias and variance.

Testing two extreme labelling strategies involving either the transfer of 800 uniquely

labelled cells [2] or using only 8 labels with 100 cells each [16], we found that the complexity of

the system influences the required number of labels. Both labelling strategies showed a similar

average bias for the quantification of cell proliferation and death within a homoeostatic model,

with the unique labelling approach leading to less variation (Figs 2 and 4). However, within a

system of complex cell expansion and differentiation dynamics as considered by Buchholz

et al. [16], a shared labelling approach similar to the one used in their experiment generally

leads to a slight systematic bias when estimating cell differentiation and proliferation rates.

Only rates associated with intermediate compartments for which measurements of the previ-

ous and subsequent differentiation steps can be obtained (i.e. EM compared to CM and E, as

N was not measured) can be reliably identified (Figs 3 and 4). In addition, the relative relation-

ship between the cell proliferation and expansion rates of the different compartments could

not be recovered in the estimates. This suggests that previous estimates for the proliferation

and differentiation dynamics of T cells [16] should be taken with care as the labelling approach

might be insufficient to determine those rates reliably.
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Unique labelling is usually preferred to infer lineage differentiation pathways, such as for

immune cell differentiation [1, 2, 16, 26] or hematopoiesis [34–36]. However, our analysis

indicates that unique labelling is not always the best approach when estimating cellular turn-

over or expansion. Estimates on the proliferation dynamics are more robust if larger label sizes

are used. Such label sizes will make the labelled population less prone to stochastic effects,

although this improvement quickly saturates with increasing label sizes—at least for the ana-

lysed simple expansion dynamics.

Interestingly, we found that strategies combining labels with smaller and larger label sizes

perform worse than uniformly distributed labels. In general, a strategy using uniformly distrib-

uted label sizes provided the most reliable results. However, an approach combining unique

and large labels can still be beneficial, as the unique labels can be used to estimate the potential

fraction of cells lost during transfer [16]. Due to the varying dependency of cell differentiation

and proliferation rates on population sizes, a trade-off can be observed with regard to the

choice of the sampling time. Proliferation rates belonging to continuously expanding cell com-

partments are estimated more reliably given later sampling times. However, harvesting cells at

a late time point might severely impair the estimation of activation or initial transition dynam-

ics. Hence, a robust estimation for all parameters might not be achievable if only one sampling

time point is available.

The possible loss of cells during adoptive transfer or by incomplete sampling are experi-

mental limitations that can strongly impact the quantification of cellular dynamics. Prior-

knowledge on these quantities could be used to correct parameter estimation. However, while

transfer loss could be experimentally approximated by using unique labels [16], determining

the actual fraction of cells sampled remains difficult. Experimental methods might bias mea-

surements against certain cellular subsets and thereby underestimate the total cell population

[32]. However, sampling only a fraction of cells particularly affected cellular expansion rates

while transition rates remained mostly identifiable.

In our analyses, we generally assumed that each label is independent and stable. Further-

more, we assumed that the label itself does not interfere with the underlying cellular dynamics.

While this is appropriate for artificial markers, such as genetic barcodes [2] or unrelated con-

genic markers [4, 16], this assumption will most likely be violated in case of naturally occurring

markers, such as α− and β-chains of T cell receptors (TCR) [20, 37, 38]. Here, the actual β-

chain could affect T cell affinity and, thus, influences T cell activation [39, 40]. In addition, due

to TCR β-chain rearrangements, these labels might not be considered as stable, impairing the

possibility to track populations of cells [41, 42]. Novel analysis methods have to be developed

to determine if such markers can still be used to infer cellular dynamics.

In summary, our results suggest that a generally suitable labelling strategy consists of a

large number of shared labels, with an intermediate number of cells per label. This approach

would likely lead to reliable estimates for different cellular systems, even in the case of

incomplete transfer or sampling. In general, assumed model systems should always be tested

in the context of the applied experimental labelling strategies in order to validate obtained

parameter estimates. Performing a-priori simulations or a-posteriori testing allows to iden-

tify potential pitfalls, such as consistent bias or a susceptibility of parameter estimates to

incomplete transfer or sampling. More systematic analyses of the relationship between label-

ling strategies and specific cellular systems are needed to infer appropriate labelling strate-

gies in terms of actual cell numbers. Advances in single cell technologies [43, 44] and cell

sorting might provide the necessary techniques to customise labelled cell populations used

for adoptive transfer.
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