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The measurement-device-independent quantum key distribution (MDI QKD) was proposed to make BB84
completely free from any side-channel in detectors. Like in prepare & measure QKD, the use of other
protocols in MDI setting would be advantageous in some practical situations. In this paper, we consider
SARG04 protocol in MDI setting. The prepare & measure SARG04 is proven to be able to generate a key up
to two-photon emission events. In MDI setting we show that the key generation is possible from the event
with single or two-photon emission by a party and single-photon emission by the other party, but the
two-photon emission event by both parties cannot contribute to the key generation. On the contrary to
prepare & measure SARG04 protocol where the experimental setup is exactly the same as BB84, the
measurement setup for SARG04 in MDI setting cannot be the same as that for BB84 since the measurement
setup for BB84 in MDI setting induces too many bit errors. To overcome this problem, we propose two
alternative experimental setups, and we simulate the resulting key rate. Our study highlights the
requirements that MDI QKD poses on us regarding with the implementation of a variety of QKD protocols.

T
he security of quantum key distribution (QKD) can be guaranteed based on some mathematical models of
the users’ devices1–3. Unfortunately, the actual devices do not necessarily follow mathematical models, and
we need to close the gap (side-channel) between the actual device and the mathematical model to implement

secure QKD systems in practice. Among side-channels, the side-channel of a photon detector seems to be most
easily exploited by an eavesdropper (Eve) since it accepts any input from Eve who can generate an arbitrary optical
state such that it causes an unexpected behavior in the detector. In fact, the famous bright-pulse illumination
attacks are based on side-channel in detectors4. In order to countermeasure such attacks, measurement-device-
independent (MDI) QKD5 was proposed to make BB846 free from any possible side-channel in a detector. We
note that MDI QKD for continuous variable was proposed by7,8. In MDI QKD, Alice and Bob do not perform any
measurement but only send quantum signals to be measured by Eve. Therefore, bit strings generated by Alice and
Bob are free from side-channels in photon detectors since they do not employ photon detectors. Since its
invention, MDI QKD has been actively studied both theoretically9–12 and experimentally13–16.

As is the case in prepare & measure scheme, implementation of protocols other than BB84 in MDI setting could
be suitable for some practical situations. In fact, many experiments for non-BB84 type prepare & measure
schemes, including B9217, DPS QKD18, coherent one-way protocol19, SARG0420, etc, have been reported21.
Therefore, it is useful in practice to use non-BB84 type protocols in MDI setting, and in this paper we consider
to use SARG04 protocol in MDI setting, which we refer to as MDI SARG04. SARG04 was originally proposed to
make BB84 robust against photon number splitting (PNS) attacks22,23 just by changing the classical post-proces-
sing part in BB84. It is proven that SARG04 can indeed generate a key from two-photon emission event by Alice in
addition to single-photon emission event24,25, showing robustness against PNS attack in some parameter regimes.
Note in MDI setting is that both Alice and Bob are the sender of the signals, and as a result, the information
leakage from the signals seems to be larger than the one in prepare & measure setting. Therefore, it is not trivial
whether both single and two-photon emission events can contribute to the key generation or not. Our work
answers this question, and we have found that the single-photon emission event by both Alice and Bob, or single-
photon and two-photon emission by each of Alice and Bob can contribute to generating a key, but two-photon
emission by the two parties cannot make the contribution when a probability of Eve’s announcement of the
successful measurement for the two-photon emission event is smaller than 1/16.
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Another important issue to be addressed in MDI setting is what
kind of measurement setup should be implemented experimentally
at Eve’s laboratory. Naively thinking, as SARG04 differs from BB84
only in the post-processing part, the same measurement setup for
MDI BB84 should also work for MDI-SARG04 protocol. On the
contrary, however, it turns out that the measurement setup for
MDI BB84 results in high bit error rate when applied to MDI-
SARG04 protocol, and consequently, no significant key can be gen-
erated. To generate a key in practice, we propose two alternative
measurement schemes for the MDI-SARG04 protocol, and simulate
the resulting key generation rate.

Results
MDI-SARG04 QKD protocol. In this section, we introduce the MDI-
SARG04 QKD protocol. First, we summarize the assumptions and
mathematical definitions made in this paper, and then we describe
how the protocol runs.

Assumptions and definitions. We assume that each of Alice and Bob
has a phase randomized photon source, i.e. the vacuum, a single
photon, and multi photons are emitted probabilistically. The prob-
abilities of the n-photon emission from Alice and Bob are pn and pn’,
respectively, which satisfy

X
n

pn~
X

n’
pn’~1. We encode the bit

information in polarization of photons, and we assume that the
preparation of the polarization is precise without any flaw. For sim-
plicity, we consider the asymptotic case to neglect any statistical
fluctuation, i.e., the number of the signals sent by Alice and Bob is
infinite. In our paper, horizontal and vertical polarization states of a
single photon are represented by Z-basis qubit states, namely j0zæ and
j1zæ, respectively. We also define X (rectilinear)-basis states as

ixj i~ 0zj iz {1ð Þi 1zj i
� �. ffiffiffi

2
p

for i 5 0, 1. By using a creation oper-

ator a{h for a single photon in a polarization h and the vacuum state
jvacæ, we denote an n-photon number state with polarization h by

nhj i~ a{h

� �n
vacj i

. ffiffiffiffi
n!
p

. (note that when the subscript h is z or x, it

refers to the qubit state rather than the photon number state). Other
definitions we use are as follows: jQiæ 5 cos(p/8)j0xæ 1 (21)i sin(p/
8)j1xæ for i 5 0, 1 and jQiæ 5 sin(p/8)j0xæ 1 (21)i21 cos(p/8)j1xæ for i
5 2, 3. R 5 exp(2p/2Y), where Y 5 2ij0zæÆ1zj 1 ij1zæÆ0zj, which

satisfies Ra{QiR
{~a{Qiz1 mod4ð Þ

for all i. y+
�� �

~ 0x1xj i+ 1x0xj ið Þ
. ffiffiffi

2
p

and wz
�� �

~ 0x0xj iz 1x1xj ið Þ
. ffiffiffi

2
p

. We denote P(?) 5 (?)(?){.

The protocol of the MDI-SARG04 QKD. The protocol runs as follows:

(a1) Alice and Bob choose a bit value i and i9 (i, i9 5 0, 1), respect-
ively, and they encode the bit value into the photonic states of
their pulses as

X
n

pn nQi

�� �
nQi

	 �� and
X

n’
pn’ n’Qi’

�� �
n’Qi’

	 ��.
(a2) Alice and Bob rotate the polarization of their pulses by applying

rotation Rk and Rk’ with randomly-chosen values of k(50, 1, 2,
3) and k9(50, 1, 2, 3), respectively, where Rk is defined by Rk ;
Rk. After the rotation, Alice and Bob send the pulses to Eve’s
measurement unit (MU) through quantum channels.

(a3) Eve performs a measurement on the incoming pulses and
announces to Alice and Bob over the authenticated public
channel whether her measurement outcome is successful or
not. When the outcome is successful, she also announces types
of the successful events, either Type1 or Type2.

(a4) Alice and Bob broadcast k and k9, over the authenticated public
channel. If the measurement outcome in (a3) is successful with
Type1 and k 5 k9 5 0, …, 3, they keep their bit values i and i9 in
(a1), and Alice flips her bit. If the measurement outcome in (a3)
is successful with Type2 and k 5 k9 5 0, 2, they keep their bit
values i and i9 in (a1). In all the other cases, they discard their bit
values.

(a5) Alice and Bob repeat from (a1) to (a4) until the number of the
successful events with rotation k 5 k9 5 0, …, 3 in Type1
becomes N1 and k 5 k9 5 0, 2 in Type2 becomes N2. Let
NiQ

tot
i be the number of the successful detection event of

Type i. Alice and Bob announce randomly-chosen NiQ
tot
i f bits

over the authenticated public channel, where f is much smaller
than 1, and estimate the error rate etot

i in the remaining code
bits. The estimated number of the bit error in the code bits is
denoted by etot

i NiQ
tot
i 1{fð Þ.

(a6) Alice and Bob perform error correction and privacy amplifica-
tion on the remaining NiQ

tot
i 1{fð Þ bits by their discussion

over the public channel. As a result, they share a final key of
length G1N1(1 2 f) 1 G2N2(1 2 f).

At Eve’s MU in (a3), honest Eve performs the Bell measurement in
order to establish quantum correlations between Alice and Bob to
generate the key. In Fig. 1, the experimental setup for the Bell mea-
surement is depicted. It employs a half beam splitter (BS), two polar-
ization BSs (PBSs), and the photon detectors. In the case where both
Alice and Bob emit a single photon, the simultaneous photon detec-
tion events matching the pattern Type1 (Type2), listed in Table I,
corresponds to the detection of jy2æ (jy1æ). We emphasize that in the
security proof we assume that Eve is malicious and has a control over
the quantum channels, and all the bit errors are attributed to the
consequence of the eavesdropping.

Limitation of the experimental setup. In prepare & measure setting,
the SARG04 protocol is different from the BB84 protocol only in the
post-processing part, i.e., no modification is needed in the
experimental setup. In the MDI setting, however, the experimental
setup for the BB84 protocols5 cannot be directly used in MDI-
SARG04 as it induces a high bit error rate, and this is a significant
qualitative difference of MDI setting from prepare & measure setting,
implying that not all the prepare & measure QKD protocols cannot
be directly converted to MDI setting. Therefore, we need to consider
an alternative experimental scheme for MDI-SARG04. In this
section, we first discuss why the setup for MDI-BB84 gives the
high bit error rate, and then we propose alternative experimental
schemes for MDI-SARG04.

For the explanation we denote by F(n,m) the joint probability that
Eve receives n and m photons from Alice and Bob, respectively, and

Figure 1 | Schematic of an experimental setup for the MDI-SARG04
QKD. The role of Eve’s measurement unit (MU) is to perform entangling

operation on the photons from Alice and Bob, which is implemented by

using a half beamsplitter (BS) followed by polarization BSs (PBSs) and

photon detectors. We note that the PBS passes the photons in 45u
polarization and reflects the photons in 245u polarization.

www.nature.com/scientificreports
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obtains the successful measurement outcome. Note that while we do
not deal with the types of Eve’s successful outcomes separately, the
following discussion is valid for both types. For simplicity, we neglect
all the losses, including those in the quantum channel and the photon
detectors, and therefore we can also regard F(n,m) as Q(n,m), which is the
joint probability that Alice and Bob respectively emit n and m
photons and Eve obtains the successful measurement outcome.
Like in the MDI-BB84 protocols, we assume that Alice and Bob
use a phase randomized weak coherent light whose average
photon number is much smaller than 1. Thus, we have

Q 1,1ð Þ
.

2*Q 2,0ð Þ*Q 0,2ð Þ?Q n,mð Þ for n 1 m $ 3. For simplicity,

we assume Eve is honest, namely the bit error rate for n 5 m 5 1
is zero, and all photon detectors have unit quantum efficiency and no
dark counting. In the following, we show that even with this simpli-
fication favorable to Alice and Bob, no significant key is expected. To
see this, we consider the bit error rate, and the total bit error rate etot is
expected to be

etot*
Q 2,0ð Þe 2,0ð Þ

bit zQ 0,2ð Þe 0,2ð Þ
bit

Q 1,1ð ÞzQ 2,0ð ÞzQ 0,2ð Þ , ð1Þ

where e n,mð Þ
bit is the bit error probability under the condition that Alice

emits n photons and Bob emits m photons, and Eve announces the
successful outcome. Note that equation (1) holds in both the MDI-
BB84 and MDI-SARG04 protocols. It is clear from equation (1) that
the bit error is caused by the case where one party emits two photons

and the other party emits the vacuum. It is also clear that e 2,0ð Þ
bit cannot

be zero since the vacuum emission carries no bit information. In the
case of MDI-BB84, this event is always discarded from the sifted key,
and consequently the bit error rate in the key generation basis, i.e.,
rectilinear basis, is zero. This is so because the two-photon states
2450j i and 2{450j i, which contribute to the bit values, are orthogonal

and they never produce the successful outcomes in Eve’s projection
measurement for the basis {j0xæ, j1xæ}. Therefore, in the experiment of
MDI-BB84, the bit error rate is very small. In the case of MDI-
SARG04, however, two states j2Q0æ and j2Q1æ consisting bit values
are not orthogonal. This means that the two-photon emission con-
tributes to the successful outcome. More precisely,

etot*e 0,2ð Þ
bit

.
2~0:25 holds from the direct calculation of

e 2,0ð Þ
bit ~e 0,2ð Þ

bit ~0:5 Note that Q(1,1)/2 , Q(2,0) , Q(0,2) and etot , 0.25
hold for any linear loss transmittance channel. Therefore, we con-
clude that the use of the phase randomized coherent light source
gives no significant key in MDI-SARG04. In order to generate a
key in the MDI-SARG04 protocol, Eve’s MU or the photon sources
should be modified such that the probability of obtaining the suc-
cessful outcome due to the two photons and the vacuum state is
suppressed. In order to suppress the probability, we propose two
experimental setups: (i) Eve performs quantum nondemolition
(QND) measurement on the two incoming pulses from Alice and
Bob just before mixing them as shown in Fig. 2(a). The QND mea-
surement discriminates whether the photon number in the pulse is 0,

1 or more. Eve accepts only the case where n # 1 and m # 1 and
discards the other cases with multiple photons. Thanks to the QND
measurement, the total bit error rate is suppressed even if the phase
randomized coherent light is used as a photon source. (ii) Without
the modification of Eve’s MU, Alice and Bob replace the phase ran-
domized coherent light by a heralded single photon source based on a
spontaneous parametric down-conversion (SPDC) and a threshold
photon detector (see Fig. 2(b)). This dramatically reduces the prob-
abilities of the events of (n, m) 5 (2, 0) and (0, 2). We will show that
these setups enable us to generate the key later.

Security proof. In this section, we discuss the unconditional security
proof (i.e., the security proof against most general attacks) of our
scheme. The security proof is independent of the specific device
models like in Fig. 2, namely it is valid for any Eve’s MU and any
photon sources of Alice and Bob. Our proof employs the security
proof based on the entanglement distillation protocol (EDP)3,26,
where the distillation of jy2æ is considered for Type1 and that of
jy1æ is considered for Type2. The proposed EDP-based virtual
protocol, which is equivalent to the MDI-SARG04 QKD from
Eve’s viewpoint, runs as follows.

(V1) Alice and Bob prepare Wn mð Þ,k k’ð Þ
�� �

A1 B1ð Þ,A2 B2ð Þ, where

Wn,kj iC1,C2
~ 0zj iC1

nQk

�� �
2
z 1zj iC1

nQ1zk

�� �
C2

� �. ffiffiffi
2
p

for C 5

A,B. Here k(50, 1, 2, 3) and k9(50, 1, 2, 3) are randomly
chosen. The probability distribution of the photon number is
equal to that of the photon source in the actual protocol. Alice
and Bob send the n and m photon states in A2 and B2 to Eve’s
MU, respectively.

(V2) Eve performs a measurement on the photons coming from
Alice and Bob, and announces to them whether the measure-
ment is successful (including the type of the event) or not. If the
measurement result is not successful, Alice and Bob discard
their qubits.

(V3) Alice and Bob broadcast the labels k and k9, respectively. In the
cases of k 5 k9 5 1, 3 with the announcement of Type2 or k ?
k9, Alice and Bob discard their qubits.

(V4) Alice and Bob repeat (v1) – (v3) many times until the number
of the successful events for k 5 k9 becomes Ni for i 5 1, 2, where
i corresponds to the type of the events.

(V5) Let NiQ
tot
i be the number of the successful detection event for

Type i. Alice and Bob announce randomly chosen NiQ
tot
i f-

photon pairs over the authenticated public channel, where f
is much smaller than 1, and then they perform Z-basis mea-
surement on their qubits of the chosen pairs. By sharing their

Table I | Two types of the successful events announced by Eve’s MU.
Type1 is the coincidence detection events of DLD&DRD

2 or DRD&DLD
2

denoted in Fig. 1. Type2 is the coincidence events of DLD&DLD
2 or

DRD&DRD
2. When the successful events are Type1 and Type2, Alice

and Bob distill the states | y2æ and | y1æ, respectively, in the virtual
protocol.

successful event output

Type1 (DLD&DR �D or DRD&DL�D) | y2æ
Type2 (DLD&DL�D or DRD&DR �D) | y1æ

Figure 2 | Two experimental setups for generating the key in the MDI-
SARG04 protocol. Both setups significantly eliminate the events caused by

(n, m) 5 (2, 0), (0, 2) and other problematic photon number

configurations. (a) Eve performs the QND measurements on the pulses

from Alice and Bob, and she does not perform the interference

measurement for n $ 2 or m $ 2. Eve accepts only when n # 1 and m # 1

are satisfied. (b) A quasi single-photon source used by Alice and Bob,

which is composed of the heralded SPDC process. When detector D0 clicks,

Alice/Bob sends her/his pulse at the remaining mode to Eve’s MU.

www.nature.com/scientificreports
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measurement results over the authenticated public channel,
they estimate the bit error rate on the code qubits denoted by
etot

i . As a result, the number of the bit error is estimated to be
etot

i NiQ
tot
i 1{fð Þ.

(V6) They estimate the upper bound on the phase error rate e n,mð Þ
i,ph

for n and m photons from the bit error rate e n,mð Þ
i,bit for n and m

photons. Here the phase error is defined by the bit error that
would have been obtained if they had measured the qubit pairs
by X basis, which is the complementarity basis of the computa-
tional basis.

(V7) When the bit and the phase errors are smaller than a threshold
value for entanglement distillation, they perform the distil-
lation for NiQ

tot
i 1{fð Þ qubit pairs. For the cases of Type1

and Type2, they distill the photon pairs in states jy2æ and
jy1æ, respectively. We denote the number of the distilled max-
imally entangled qubit pairs as GiNi(1 2 f). Finally, by per-
forming Z-measurements on the distilled photon pairs, they
obtain the key.

The important quantities in the proof is the bit and phase errors,
and the phase error rate determines the amount of privacy amplifica-
tion. The bit error rate in the code bits of the virtual protocol, which is
exactly the same as the one of the actual protocol, is directly esti-
mated by test bits. On the other hand, the phase error rate is defined
by the complementary basis X, which Alice and Bob never employ,
and therefore this rate is not directly estimated in the protocols. Note
that we are allowed to work on Alice’s n-photon emission and Bob’s
m-photon emission separately, because Alice’s and Bob’s photon
sources in the protocols are phase randomized. In the following
subsections, we present the estimation of the phase error rates for
the cases of Type1 and Type2 independently. We derive an upper

bound on the phase error e 1,1ð Þ
i,ph for i 5 1, 2, where the superscript (1,

1) denotes n 5 m 5 1 and the subscript represents the type of the
successful outcome, and derive an upper bound on the phase error

e 1,2ð Þ
i,ph . We show that in the case of n 5 m 5 2, no key can be generated

when the probability of Eve’s successful outcome for the two-photon
emission event is smaller than 1/16. We note that in the cases of
either n $ 3 or m $ 3, Eve can perform an unambiguous state
discrimination to one of the three-photon emission part27,28, and thus
we cannot extract the key from such events, given that the channel is
lossy enough.

Finally, we note that given the phase error rates, Qtot
i ~P

n,m Q n,mð Þ
i and etot

i ~
X

n,m
Q n,mð Þ

i e n,mð Þ
i,bit

.
Qtot

i , the asymptotic key

rate for Type i is written by29

Gi~Q 1,1ð Þ
i 1{h e 1,1ð Þ

i,ph

� �h i
zQ 1,2ð Þ

i 1{h e 1,2ð Þ
i,ph

� �h i

zQ 2,1ð Þ
i 1{h e 2,1ð Þ

i,ph

� �h i
{f etot

i

� �
Qtot

i h etot
i

� �
:

ð2Þ

Here h(x) 5 2x log2 x 2 (1 2 x) log2(1 2 x) is the binary shannon
entropy.

phase error estimation for (n, m) 5 (1, 1) and (1, 2). By the analysis
based on the virtual protocol, we give the phase error estimation
formula for (n, m) 5 (1, 1) and (n, m) 5 (1, 2). The estimation is
performed for Type1 and Type2, separately, and we detail the deriva-
tion of the phase error estimation in Methods section.

In the case of Type 1, we have

e 1,1ð Þ
1,ph ~

3
2

e 1,1ð Þ
1,bit ð3Þ

for (n, m) 5 (1, 1) and

e 1,2ð Þ
1,ph ~ min

s1

s1e 1,2ð Þ
1,bit zf s1ð Þ

n o
ð4Þ

for (n, m) 5 (1, 2), where

f s1ð Þ~
3{2s1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6{6

ffiffiffi
2
p

s1z4s2
1

q

6
: ð5Þ

In the case of Type 2, we have

e 1,1ð Þ
2,ph ƒ3e 1,1ð Þ

2,bit ð6Þ

for (n, m) 5 (1, 1) and

e 1,2ð Þ
2,ph ~ min

s2

s2e 1,2ð Þ
2,bit zg s2ð Þ

n o
ð7Þ

for (n, m) 5 (1, 2), where g(s2) is the maximal solution of the fol-
lowing equation for x

4
ffiffiffi
2
p

x3z2 1{3
ffiffiffi
2
p

z3
ffiffiffi
2
p

s2

� �
x2

z2 {1z
ffiffiffi
2
p

z 1{3
ffiffiffi
2
p� �

s2z
ffiffiffi
2
p

s2
2

� �
x

z
ffiffiffi
2
p

{1
� �

s2z 1{
ffiffiffi
2
p� �

s2
2~0:

ð8Þ

We depict the dependencies of the phase error rates on the bit error
rates in Fig. 3.

Impossibility of generating a key from n 5 m 5 2. For the case of n 5

m 5 2, the key cannot be obtained for n 5 m 5 2 in Type1 and Type2
by giving an explicit Eve’s attack which give a phase error of 0.5, as
long as the success probability of Eve’s measurement conditioned
that both Alice and Bob emit two photons is not larger than 1/16. We

Figure 3 | The relations between the phase error rates and the bit error
rates (a) for (n, m) 5 (1, 1) and (b) for (n, m) 5 (1, 2).

www.nature.com/scientificreports
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show the proof in Methods section. We will prove that we cannot
generate a key from n 5 m 5 2 in the virtual protocol, and it follows
that we cannot generate a key from n 5 m 5 2 in the actual protocol
either. To see this, note that the virtual protocol differs from the
actual protocol only in the way to prepare the state, and the state
prepared and post data-processing are exactly the same in both
protocols. In other words, only the local operation needed in state-
preparation process by the legitimated parties are different in the two
protocols. By recalling that any local operation cannot convert a
separable state into a non-separable state, we conclude that if we
cannot generate a key from a virtual protocol, then we cannot gen-
erate a key from the actual protocol.

Simulation. Here we show the results of the key generation rate for
the two experimental setups as shown in Figs. 2(a) and (b) by using
typical experimental parameters taken from Gobby-Yuan-Shields
(GYS) experiment30, where the quantum efficiency and the dark
counting of the all detectors in Eve’s MU are g 5 0.045 and d 5

8.5 3 1027, respectively, the loss coefficient of the quantum channel
is j 5 0.21 dB/km, and the inefficiency of the error correcting code is
1.22. In the simulation, we use infinite number of decoy states31 in

order to obtain Q 1,1ð Þ
i , e 1,1ð Þ

i,bit , Q 1,2ð Þ
i and e 1,2ð Þ

i,bit . Assuming that the bit
error is stemmed only from dark countings of the detectors, we
ignore the other imperfections such as the misalignment of the
devices. We also assume that the mean photon numbers of the
signal pulses prepared by Alice and Bob are the same, and the MU

in Eve is the middle of Alice and Bob. The mean photon number for
the signal is optimized for maximizing the key generation rate at each
distance. By using equation (2) with the above parameters and
assumptions, we calculate the key generation rate as a function of
the distance between Alice and Bob (i) when Eve postselects the
events with n # 1 and m # 1 with the QND measurement as
shown in Fig. 2(a) and Alice and Bob use the coherent pulses, and
(ii) when Eve uses the MU in Fig. 1 and Alice and Bob use quasi single
photon sources prepared by the SPDC in Fig. 2(b).

Case (i) – The simulation result of the key rate is shown in Fig. 4(a),
and the mean photon number which maximizes the key rate is shown
in Fig. 5. We also plot the key rates of Type1 and Type2 separately in
Fig. 4(b). The details for obtaining these figures are shown in
Supplementary. When the distance is zero, since there is no photon
loss before the BS and the multi-photon emissions are excluded, the
events of multi-photon input have no contribution to the key rate. In
fact, in Fig. 4(a), the two key rates at zero distance obtained from only
(n, m) 5 (1, 1) and from both (n, m) 5 (1, 1), (1, 2) and (2, 1) are
exactly the same. When the distance becomes longer, we see from
Fig. 5 that the contribution of the multi photons becomes larger. For
the key rate from only (n, m) 5 (1, 1), the mean photon number is
monotonically decrease because the multi-photon emissions give
only adverse effect. On the other hand, when we extract the key
additionally from the multi photons, the mean photon number does
not decrease monotonically, which shows an advantage in using
multi-photon emission.

Case (ii) – Alice and Bob use quasi single photon sources by SPDC
as shown in Fig. 2(b). Detector D0 is the same as that used in Eve’s
MU, namely it is the threshold detector with the quantum efficiency
of g 5 0.045 and the dark counting of d 5 8.5 3 1027. Eve’s MU is the
same as that shown in Fig. 1. The key rate is shown in Fig. 6. The
details for calculating the key rates are shown in Supplementary. The
mean photon number which maximizes the key rate is shown in
Fig. 7. From Fig. 6, we see that the key rate only from Type1 and
that both from Type1 and Type2 intersect. For the distribution dis-
tance longer than the cross point, Type2 has no contribution of the
key, which is shown by the blue line in the figure, and therefore it is
better to generate a key from Type1 only. From Fig. 7, we see that the
mean photon number is very small. This is so because the use of
larger mean photon numbers results in two-photon emission, which
increases the bit error rate. From all the figures of the key rate, one
sees that the key rates of MDI-SARG04 are lower than those of MDI-
BB84. This tendency holds also for prepare & measure SARG0424,32,

Figure 4 | The key rate when Alice and Bob use coherent pulses and Eve
performs non-destructively exclusion of the multi-photons from Alice
and Bob. (a) Bottom: the key rate of the MDI-SARG04 protocol from (n,

m) 5 (1, 1) only. Middle: the key rate of the MDI-SARG04 protocol from

(n, m) 5 (1, 1), (1, 2) and (2, 1). Top: the key rate of the MDI-BB84

protocol. (b) The upper and lower solid lines are the key rates from (n, m)

5 (1, 1), (1, 2) and (2, 1) for Type1 and Type2, respectively. The upper and

lower dashed lines are the key rates from (n, m) 5 (1, 1) for Type1 and

Type2, respectively.

Figure 5 | The optimal mean photon number for the key rate in Fig. 4. For

the key rates from (n, m) 5 (1, 1), the three lines show the mean photon

number when we consider only Type1, both types and only Type2 from the

top. The mean photon numbers for the key rates from (n, m) 5 (1, 1), (1, 2)

and (2, 1) show a similar tendency. The dashed line is for the MDI-BB84

protocol.
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and the higher phase error rates of SARG04 protocol than that of
BB84 is the main reason of this tendency.

Discussion
As shown in Figs. 4(a) and 6, the key rates of the MDI-SARG04
protocol are smaller than those of the MDI-BB84 protocol for any
distance. This is because the phase error rate of MDI-SARG04 is
larger than that of MDI-BB84 and the scaling of all key rates for both
protocols linearly depend on the total channel transmittance TAB 5
TATB between Alice and Bob thanks to an infinite number of decoy
states31, where TA(B) is the transmittance between Alice (Bob) and
Eve. On the other hand, the scaling of the key rate of MDI-SARG04
can be better than that of MDI-BB84 in a high loss and small error
regime when we do not employ the decoy states in the experimental
setup in Fig. 2(a), which one can see as follows. For the positive key
rate, the joint probability that both of Alice and Bob emit single
photons and those photons are detected must be higher than the
probability of the emission of the photons satisfying n 1 m $ 4 since

Eve causes the detection event preferentially from the multi-photon
events such as n 1 m $ 4. Noting that the joint probablity is given by
O mAmBTATBð Þ, where mA(B) is the mean photon number of Alice
(Bob)’s coherent source, we have O mAmBTATBð Þ?O m2

Am2
B

� �
,

O mAmBTATBð Þ?O mAm3
B

� �
and O mAmBTATBð Þ?O m3

AmB

� �
. These

lead to mA Bð Þ*O
ffiffiffiffiffiffiffiffiffiffiffi
TATB

p� �
, and we see that the scaling of the

key rates of MDI-SARG04 is in the order of O T2
AB

� �
. By using a

similar argument for MDI-BB84, O mAmBTATBð Þ?O mAm2
B

� �
and

O mAmBTATBð Þ?O m2
AmB

� �
must hold for the positive key rate, lead-

ing to mA Bð Þ*O TATBð Þ and the scaling of the key rate ofO T3
AB

� �
. As

a result, the key rates of MDI-SARG04 is larger than those of MDI-
BB84 in a high loss and small error regime, and this is one of the
advantage of MDI-SARG04 over MDI-BB84. This tendency is simi-
larly seen in the prepare & measure setting, where the key rates of

SARG04 and BB84 scaleO T3=2
AB

� �
andO T2

AB

� �
, respectively25. Note

that implementation of the decoy state method makes the QKD
system complicated as it requires the additional amplitude modu-
lation, it increases the amount of classical communications, and the
software must be modified such that it processes the data depending
on whether the pulse is the decoy state or the signal state. Therefore,
in some practical situations where simple implementation is prefer-
able, MDI-SARG04 is advantageous over MDI-BB84.

In our analysis, we have considered the asymptotic length of the
key. It is interesting to consider the security with finite
resources12,33,34. Regarding with the analysis of the decoy state
method with finite number of signals, we can directly apply the
technique developed for MDI-BB8412 to MDI-SARG04 since the
estimation of the yields and the bit error rates of the single/two-
photon part in a particular signal/decoy state is totally independent
of the protocol that we run, and it is solely independent on the
intensities of the signal/decoy states. On the other hand, however,
the phase error estimation of MDI-SARG04 is essentially different
from that of MDI-BB84. In the case of BB84-type protocol, Alice and
Bob directly measure both the bit and phase errors in the test bits,
which enables them to apply the random sampling theory for the
phase error estimation in the code bits. In the case of MDI-SARG04,
on the other hand, the phase error is not directly measured, and it is
estimated via symmetry, i.e., the random rotations and the filtering
operation, as well as Azuma’s inequality35. Therefore, the phase error
estimation is essentially different from the one in BB84-type pro-
tocol, and we leave it for future works.

In the conclusion, we first proved the unconditional security of the
MDI QKD based on the SARG04 protocol. In our security proof, we
gave the upper bounds on the phase error rate when Alice and Bob
emit single photons and when one party emit one photon and the
other half emit two photons. For the case of the two photon emissions
from both parties, we proved that a key cannot be generated as long
as the probability of success in her measurement conditioned that
both Alice and Bob emit two photons is not larger than 1/16. Another
important issue to be addressed in MDI setting is what kind of
measurement should be implemented experimentally at Eve’s labor-
atory. We have shown that the measurement setup for BB84 in MDI
setting cannot be used in SARG04 in MDI setting, and we proposed
two measurement schemes for MDI SARG04. In the first one, Alice
and Bob use heralded single photon sources prepared by SPDC. In
the second one, Eve performs QND measurement on the two pulses
coming from Alice and Bob individually. In our simulation based on
these experimental setups, it was confirmed that these setup can
generate a key.

Methods
Proof of the phase error estimation for n 5 m 5 1. Here, we give the phase error
estimation for n 5 m 5 1. For this, it is convenient to recall a mathematical property
of the maximally entangled state that I16M2ð Þ wz

�� �
12

~ MT
1 6I2

� �
wz
�� �

12
is satisfied

Figure 6 | The key rate when Alice and Bob use quasi single-photon
sources prepared by the SPDC and Eve’s MU is the same as the circuit
used in the MDI-BB84 protocols. In this case, the total the key is

approximately obtained from only the case of (n, m) 5 (1, 1), and the

successful events of (n, m) 5 (1, 2) and (n, m) 5 (2, 1) give little

contribution to the key rate. This is so because the probability of the two-

photon component in the heralded photon source is negligibly small

compared with the probability of the single-photon component. The lines

are for MDI-BB84 (black), for both types (red), Type1 (green) and Type2

(blue) of the MDI-SARG04.

Figure 7 | The optimal mean photon number for the key rate in Fig. 6.
The upper line (black) is the mean photon number for the MDI-BB84

protocol. The lower three lines are for the key rates of the MDI-SARG04

protocol obtained from Type1 (green), both types (red) and Type2 (blue)

from the top.
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for any operator M. Therefore W1,kj iA1A2
in (v1) is expressed as W1,kj iA1A2

!
F1,A

0
1
RT

k,A
0
1

wz
�� �

A
0
1 A2

, where F1,A
0
1
~ cos P=8ð Þ 0xj iA1

0xh jA01 z sin P=8ð Þ 1xj iA1
1xh jA01 .

Physically, this identification can be interpreted as the situation where jw1æ is
prepared by each of the parties, the filtering operation, of which successful case is
described by F1, is applied, and then each party sends the photons to Eve only when
the filtering operation succeeds (also see Fig. 8). For the simplicity of the security
proof, we make an overestimation of Eve’s ability in terms of the accessibility of the
photons, namely, we imagine Eve who has a direct access to photons of A’1 and B’1
rather than A2 and B2, and she can prepare any joint state of the photons of A’1 and B’1.

For later convenience, we denote by r
1,1ð Þ

A’1B’1 jsuc the state prepared by Eve.

In the following, we first discuss the case of Type1. We define

~e 1,1ð Þ
1,bit=ph~tr P

1,1ð Þ
1,bit=phr

1,1ð Þ
A’1B’1 jsuc

� �
as the joint probability that the photons in r

1,1ð Þ
A’1 B’1 jsuc

pass through the filtering operation and induces a bit/phase error to the state jy2æ
after the rotation. Here P 1,1ð Þ

1,bit and P
1,1ð Þ

1,ph are POVM elements of the bit and phase

error measurements on r
1,1ð Þ

A’1B’1 jsuc, respectively. The probability that the two photons in

r
1,1ð Þ

A’1B’1 jsuc pass through the successful filtering operation is described by

p 1,1ð Þ
1,f il ~tr P

1,1ð Þ
1,f il r

1,1ð Þ
A’1B’1 jsuc

� �
, where the POVM element of the successful filtering

operation on the two photons is

P
1,1ð Þ

1,f il ~
1
4

X3

k~0

P Rk,A’1 FT
1,A’1 Rk,B’1 FT

1,B’1

� �
, ð9Þ

where P(?) 5 (?)(?){. The POVMs for the bit and the phase errors are written as

P
1,1ð Þ

1,bit=ph~
1
4

X1

i~0

X3

k~0

P Rk,A’1 FT
1,A’1 iz=x

�� �
A1

Rk,B’1 FT
1,B’1 iz=x

�� �
B1

� �
: ð10Þ

Applying the Bayes’ rule, the bit error rate e 1,1ð Þ
1,bit and the phase error rate e 1,1ð Þ

1,ph in the

final state in modes A1 and B1 are described by

e 1,1ð Þ
1,bit=ph~

~e 1,1ð Þ
1,bit=ph

p 1,1ð Þ
1,f il

: ð11Þ

The phase error estimation can be established by directly writing down the explicit
form of equation (10) comparing each matrix element, and one can conclude that

P
1,1ð Þ

1,ph ~
3
2
P

1,1ð Þ
1,bit : ð12Þ

Thus from equations (9) and (11), the phase error rate is precisely estimated, by using
the bit error rate, as shown in equation (3). Thanks to Azuma’s inequality35, equation
(3) holds for any eavesdropping including coherent attacks.

Next, we estimate the phase error rate for Type2. Because only the cases of k 5 k9 5

0, 2 are accepted for Type2, the definition of the POVM element of the successful
filtering operation is changed to

P
1,1ð Þ

2,f il ~
1
2

X
k~0,2

P Rk,A’1 FT
1,A’1 Rk,B’1 FT

1,B’1

� �
, ð13Þ

and the probability that the two photons in r
1,1ð Þ

A’1B’1 jsuc pass through the successful

filtering operation is expressed by p 1,1ð Þ
2,f il ~tr P

1,1ð Þ
2,f il r

1,1ð Þ
A’1B’1 jsuc

� �
. We describe a joint

probability that the two photons in r
1,1ð Þ

A’1 B’1 jsuc pass through the successful filtering

operation after the rotation and then the photons in modes A1 and B1 have a bit/phase

error to the state jy1æ by~e 1,1ð Þ
2,bit=ph~tr P

1,1ð Þ
2,bit=phr

1,1ð Þ
A’1 B’1 jsuc

� �
. Like in the case of Type1, the

POVM elements of P 1,1ð Þ
2,bit and P

1,1ð Þ
2,ph are written by

P
1,1ð Þ

2,bit ~
1
2

X1

i~0

X
k~0,2

P Rk,A’1 FT
1,A’1 izj iA1

Rk,B’1 FT
1,B’1 i+1zj iB1

� �
ð14Þ

and

P
1,1ð Þ

2,ph ~
1
2

X1

i~0

X
k~0,2

P Rk,A’1 FT
1,A’1 ixj iA1

Rk,B’1 FT
1,B’1 ixj iB1

� �
: ð15Þ

By using the Bayes’ rule, the bit/phase error rate of e 1,1ð Þ
2,bit=ph in the final state is

expressed by

e 1,1ð Þ
2,bit=ph~

~e 1,1ð Þ
2,bit=ph

p 1,1ð Þ
2,f il

: ð16Þ

In order to see the relation between the bit and phase error rates, we consider an

inequality to bound the phase error as se 1,1ð Þ
2,bit {e 1,1ð Þ

2,ph §0, where s is a real number,

which is equivalent to sP 1,1ð Þ
2,bit {P

1,1ð Þ
2,ph §0 for p 1,1ð Þ

2,f il w0. By considering a non-neg-

ativity condition of sP 1,1ð Þ
2,bit {P

1,1ð Þ
2,ph §0, we see that this inequality always holds when s

$ 3, and therefore, we have the relation between the phase error rate and the bit error
as shown in equation (6).

Proof of the phase error estimation for n 5 1 and m 5 2. Below, we give the phase error
estimation for n 5 1 and m 5 2. By using the similar argument as n 5 m 5 1, W2,kj iB1 ,B2

at Bob’s side in (v1) is defined by 0xh jB3
F2,B’1B’3 RT

k,B’1 RT
k,B’3 wz
�� �

B’1 B2
wz
�� �

B’3B’4
as in Fig. 9,

where F2,B’1 B’3 ~ cos2 P=8ð Þ 0x0xj iB1 B3
0x0xh jB’1B’3 z sin2 P=8ð Þ 0x0xj iB1B3

1x1xh jB’1 B’3 z
ffiffiffi
2
p

cos P=8ð Þ sin P=8ð Þ 1x0xj iB1 B3
yz
	 ��

B’1 B’3
. Here we note that two-

photon emission part is simulated by preparing two pairs of jw1æ followed by the rotation
and the filtering operation on two qubits (see also Fig. 9). In this virtual protocol, while we
consider two photons in different modes, this never underestimates Eve’s ability. This is so
because two photons in the different modes and two photons in a single mode can be
converted just by an unitary transformation as Qij iB2

Qij iB4
? 2Qi

�� �
B2

. We note that

because the photon in mode B3 is in j0xæ after the filtering operation, and it is decoupled
from all the other systems, the component is not related to the security proof. Again, we
employ the overestimation that Eve has the control over the state of the systems of A’1, B’1
and B’3, and we denote the three-photon state by r

1,2ð Þ
A’1B’1 B’3 jsuc, which is prepared by Eve

after her announcement of the success. Like in the case for n 5 m 5 1, we estimate a
phase error for each case of Type1 and Type2 separately.

For Type1, define a POVM element of the successful filtering operations on

r
1,2ð Þ

A’1 B’1B’3 jsuc as

P
1,2ð Þ

1,f il ~
1
4

X3

k~0

P Rk,A’1 FT
1,A’1 Rk,B’1 Rk,B’3 FT

2,B’1 B’3

� �
: ð17Þ

Here the probability of the successful filtering operation is written by

p 1,2ð Þ
1,f il ~tr P

1,2ð Þ
1,f il r

1,2ð Þ
A’1 B’1B’3 jsuc

� �
. We define ~e 1,2ð Þ

1,bit=ph~tr P
1,2ð Þ

1,bit=phr
1,2ð Þ

A’1 B’1B’3 jsuc

� �
as a joint

probability that the photons in r
1,2ð Þ

A’1 B’1B’3 jsuc pass through the filtering operation and

induces a bit/phase error to the state jy2æ after the rotation. the successful filtering

operation after the rotation is performed on the two photons in r
1,2ð Þ

A’1 B’1B’3 jsuc and then

the photons in modes A1 and B1 have a bit/phase error to the state jy2æ. Here, POVM

elements of P 1,2ð Þ
1,bit=ph are written by

P
1,2ð Þ

1,bit=ph~
1
4

X1

i~0

X3

k~0

P Rk,A’1 FT
1,A’1 iz=x

�� �
A1

�

Rk,B’1 Rk,B’3 FT
2,B’1B’3 iz=x

�� �
B1

0xj iB3

�
:

ð18Þ

The actual bit error rate e 1,2ð Þ
1,bit and phase error rate e 1,2ð Þ

1,ph for n 5 1 and m 5 2 are

obtained by accommodating the normalization by p 1,2ð Þ
1,f il , and they are expressed as

e 1,2ð Þ
1,bit=ph~

~e 1,2ð Þ
1,bit=ph

p 1,2ð Þ
1,f il

: ð19Þ

Figure 8 | Schematic that is equivalent to the EDP for n 5 m 5 1. While

Eve accesses only the photons in modes A2 and B2 in the actual protocol, we

pessimistically suppose that she can prepare any state in A’1 and B’1 for

simplicity of the proof.

Figure 9 | Schematic which is equivalent to the EDP for n 5 1 and m 5 2.
By Eve’s announcement for the successful measurement on the photons in

A2, B2 and B4, the three-photon state r
1,2ð Þ

A’1B’1B’3 jsuc is prepared.
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In order to see the relation between the bit and phase error rates, we consider an

inequality to bound the phase error as e 1,2ð Þ
1,ph ƒs1e 1,2ð Þ

1,bit zt1, where s1 and t1 are real
numbers. By using equations (17) – (19), and the linearity of the trace, we obtain an

inequality as s1P
1,2ð Þ

1,bit zt1P
1,2ð Þ

1,f il {P
1,2ð Þ

1,ph §0, which is satisfied when

t1§f s1ð Þ~
3{2s1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6{6

ffiffiffi
2
p

s1z4s2
1

q

6
: ð20Þ

Therefore the phase error rate is given by using the bit error as shown in equation (4).

For Type2, we define a POVM element P 1,2ð Þ
2,f il of the successful filtering operation

by limiting the summation only to k 5 0, 2 and by replacing 1/4 with 1/2 in equation
(17). The probability of the successful filtering operation is described by

p 1,2ð Þ
2,f il ~tr P

1,2ð Þ
2,f il r

1,2ð Þ
A’1B’1 B’3 jsuc

� �
. We also define joint probabilities of r

1,2ð Þ
A’1B’1B’3 jsuc passing

through the filtering and presenting bit and phase errors to the state jy1æ by

~e 1,2ð Þ
2,bit ~tr P

1,2ð Þ
2,bit r

1,2ð Þ
A’1B’1 B’3 jsuc

� �
and ~e 1,2ð Þ

2,ph ~tr P
1,2ð Þ

2,ph r
1,2ð Þ

A’1 B’1B’3 jsuc

� �
. We define the POVM

element of P 1,2ð Þ
2,ph by limiting the summation only to k 5 0, 2 and replacing 1/4 with 1/

2 in equation (18), and that of P 1,2ð Þ
2,bit is defined by limiting the summation only to k 5

0, 2, replacing 1/4 with 1/2, and jizæ with ji › 1zæ for mode B1. In a similar manner as
the case of Type1 for n 5 1 and m 5 2, by using the bit error rate defined by

e 1,2ð Þ
2,bit ~~e 1,2ð Þ

2,bit

.
p 1,2ð Þ

2,f il , the phase error rate as e 1,2ð Þ
2,ph ~~e 1,2ð Þ

2,ph

.
p 1,2ð Þ

2,f il and real numbers s2

and t2, we consider an inequality as e 1,2ð Þ
2,ph ƒs2e 1,2ð Þ

2,bit zt2, which leads to

s2P
1,2ð Þ

2,bit zt2P
1,2ð Þ

2,f il {P
1,2ð Þ

2,ph §0. From this inequality, we obtain t2 $ g(s2), where g(s2)
is the maximal solution of equation (8). Using g(s2), we have the relation between the
phase error rate and the bit error as shown in equation (7).

Proof of the impossibility of generating a key from n 5 m 5 2. For the case of n 5 m
5 2, like in the previous subsection, W2,kj iA1 ,A2

at Alice’s side in (v1) is obtained by

0xh jA3
F2,A’1A’3 RT

k,A’1 RT
k,A’3 wz
�� �

A’1A2
wz
�� �

A’3A4
, and W2,kj iB1 ,B2

at Bob’s side is prepared by

the same manner. As a result, the virtual protocol for n 5 m 5 2 is equivalent to the
successful situation of the filtering operations, which we depict in Fig. 10. We denote
the state of Alice’s and Bob’s four qubits after Eve’s successful announcement by

r
2,2ð Þ

A’1A’3B’1 B’3 jsuc. In the following, we prove that the key cannot be obtained for n 5 m 5 2

by giving an explicit Eve’s attack, namely we give explicit states of A’1, A’3, B’1 and B’3
which give a phase error of 0.5. The key ingredient is that while Eve cannot
manipulate these four qubits, she conclusively prepare such a state on their qubits by
announcing the success of her measurement only when she succeeds an
eavesdropping measurement on Eve’s photons A2, A4, B2 and B4. This attack gives Eve
the perfect information on the bit values when her measurement succeeds.

For Type1, the probability of the successful filtering operation is expressed by

p 2,2ð Þ
1,f il ~tr P

2,2ð Þ
1,f il r

2,2ð Þ
A’1A’3B’1 B’3 jsuc

� �
, where

P
2,2ð Þ

1,f il ~
1
4

X3

k~0

P Rk,A’1 Rk,A’3 FT
2,A’1 A’3 Rk,B’1 Rk,B’3 FT

2,B’1B’3

� �
: ð21Þ

The joint probability, that the filtering operation succeeds and the bit/phase error to

the state jy2æ is detected, is expressed by ~e 2,2ð Þ
1,bit=ph~tr P

2,2ð Þ
1,bit=phr

2,2ð Þ
A’1 A’3 B’1B’3 jsuc

� �
, where

P
2,2ð Þ

1,bit=ph~
1
4

X1

i~0

X3

k~0

P Rk,A’1 Rk,A’3 FT
2,A’1A’3 iz=x

�� �
A1

0xj iA3

�

Rk,B’1 Rk,B’3 FT
2,B’1 B’3 iz=x

�� �
B1

0xj iB3

�
:

ð22Þ

The bit/phase error rate is expressed as e 2,2ð Þ
1,bit=ph~~e 2,2ð Þ

1,bit=ph

.
p 2,2ð Þ

1,f il . One can confirm by

direct calculation that a four-photon state of m1j iA’1B’1 A’3 B’3 ~ y{j iA’1B’3 0x1xj iA’3B’1 gives

e 2,2ð Þ
1,bit ~0 and e 2,2ð Þ

1,ph ~0:5, and another four-photon state

m2j iA’1B’1A’3B’3 ~ 0z0z1z0zj iA’1A’3B’1 B’3 z 1z0z0z1zj iA’1A’3B’1 B’3

� �. ffiffiffi
2
p

, which is orthogonal to

m1j iA’1B’1A’3B’3 , gives e 2,2ð Þ
1,bit ~0:5 and e 2,2ð Þ

1,ph ~0:5. Therefore, although Eve cannot touch
the four modes A’1, B’1, A’3 and B’3, Eve can prepare the two states by a projective
measurement on the four photons in A2, B2, A4 and B4 as

P m1j ið Þ,P m2j ið Þ, I{
X

2
i~1P mij ið Þ

n o
. One sees this fact from the equation

A2 B2A4 B4 mijwz
	 �

A’1 A2
wz
�� �

B’1B2
wz
�� �

A’3 A4
wz
�� �

B’3B4
~ mij iA’1B’1 A’3 B’3

. ffiffiffiffiffi
16
p

, which also

implies that the preparation succeeds with a probability of 1/16. Thus a malicious Eve
achieves the phase error rate of 0.5 for any bit error rate by distributing these states
with a relevant probability. This means that the state in A1 and B1 is separable, and it

follows that no key can be generated for q 2,2ð Þ
1 ƒ1=16, where q 2,2ð Þ

i is the probability of
Eve’s successful detection of Type i conditioned that both Alice and Bob emit two
photons.

For Type2, with the same fashion as the case of n 5 1 and m 5 2, POVM

elements P 2,2ð Þ
2,f il for the successful filtering operation and P

2,2ð Þ
2,bit=ph for the bit/phase

error are defined by replacing the summation range of k, the prefactor and the proper
inversion of the bit value of the projection in equations (21) and (22). We
consider the following four orthogonal four-photon states for systems A’1, B’1, A’3 and
B’3 n1j iA’1B’1 A’3 B’3 ~ yz

�� �
A’1B’1

0x0xj iA’3B’3 , n2j iA’1B’1A’3B’3 ~ yz
�� �

A’1 B’1
0x1xj iA’3 B’3 ,

n3j iA’1B’1A’3B’3 ~ yz
�� �

A’1B’1
1x0xj iA’3B’3 and n4j iA’1 B’1A’3B’3 ~ y{j iA’1B’1 0x0xj iA’3 B’3 . Each state

can be prepared by Eve’s projective measurement P n1j ið Þ,P n2j ið Þ,P n3j ið Þ,f
P n4j ið Þ, I{

P
4
i~1P nij ið Þg on the four photons in A2, B2, A4 and B4 with a probability

of 1/16. By calculating the error probabilities, we see that mixed states 0.25jn1æÆn1j1
0.75jn2æÆn2j and 0.75jn3æÆn3j 1 0.25jn4æÆn4j give e 2,2ð Þ

2,bit , e 2,2ð Þ
2,ph

� �
~ 0,0:5ð Þ and

e 2,2ð Þ
2,bit , e 2,2ð Þ

2,ph

� �
~ 0:5,0:5ð Þ, respectively. Therefore Eve achieves any bit error rate

below 0.5 while keeping e 2,2ð Þ
2,ph ~0:5 by distributing the above two mixed states with an

appropriate probability. As a result, we conclude that for q 2,2ð Þ
2 ƒ1=16, the key cannot

be obtained.
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