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Skeletal muscle secretes several hundred myokines that facilitate communication from
muscle to other organs, such as, adipose tissue, pancreas, liver, gut, and brain. The
biological roles of myokines include effects on e.g., memory and learning, as well as
glucose and lipid metabolism. The present minireview focuses on recent developments
showing that exercise-induced myokines are involved in immunometabolism of
importance for the control of e.g., tumor growth and chronic inflammation. In this
review, immunometabolism is discussed as the non-immune related pathologies
leading to an immune response and some degree of inflammation, which promotes
metabolic abnormalities.
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INTRODUCTION

The term “immunometabolism” was introduced as the interplay between metabolic and
immunologic processes (Mathis and Shoelson, 2011). Immunometabolism refers to two concepts.
One is how leukocyte and lymphocyte function is regulated by their internal metabolism. The other
is how pathologies considered to be non-immune – such as obesity – result in an activation of the
immune system, which promotes metabolic abnormalities increasing the risk of type 2 diabetes,
cardiovascular diseases and cancer (Mathis and Shoelson, 2011). In this review, the main focus
is on the latter understanding of the immunometabolism concept, and on how muscle activation
through exercise can counteract some of the inflammatory processes related to these diseases.

Myokines are involved in mediating the multiple physiological, metabolic and immunological
effects of physical activity (Pedersen et al., 2003a; Pedersen and Febbraio, 2012).

A single bout of exercise provokes an increase in systemic levels of IL-6 (Pedersen, 2013). In
relation to exercise, IL-6 is released as a myokine from muscle into the circulation, and IL-6 plasma
levels increase exponentially with exercise duration. Recent findings consolidate the pleiotropic
nature of IL-6 and demonstrate a physiological role of this myokine in regulating clinically relevant
parameters related to energy homeostasis and immune cell regulation in cancer (Severinsen and
Pedersen, 2020).

Following the identification of muscle-derived IL-6, it has become evident that skeletal
muscle cells are able to secrete more than 650 myokines (Khan and Ghafoor, 2019).
The role of myokines has previously been reviewed (Pedersen et al., 2007; Pedersen,
2009, 2011, 2019; Walsh, 2009; Brandt and Pedersen, 2010; Arnold et al., 2011; Hamrick,
2011; Trayhurn et al., 2011; Pedersen and Febbraio, 2012; Raschke and Eckel, 2013; Pal
et al., 2014; Ahima and Park, 2015; Benatti and Pedersen, 2015; Indrakusuma et al., 2015;
Schnyder and Handschin, 2015; Whitham and Febbraio, 2016; Hoffmann and Weigert, 2017;
Rodriguez et al., 2017; Ruiz-Casado et al., 2017; Diaz et al., 2018; Fiuza-Luces et al.,
2018; Coelho-Junior et al., 2019; Das et al., 2019; Eckel, 2019; Garneau and Aguer, 2019;
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Graf and Ferrari, 2019; Lee and Jun, 2019). Until now the
biological function has been described for only approximately
5% of all known myokines. Nonetheless, the identification of the
myokinome has provided a new paradigm and a conceptual basis
for understanding by which mechanisms muscles communicate
with other organs. Several of these myokines relate to
immune function and inflammation. Low-grade inflammation
is associated with several types of obesity-related diseases such
as diabetes, cardiovascular disease, cirrhosis, and cancer. We
suggest that control of this pathology-related inflammation can in
part be ascribed by the release of immunogenic myokines. These
are highlighted in Figure 1.

MUSCLE-IMMUNE-INFLAMMATION
CROSSTALK

Muscle has impact on lymphocyte and neutrophil trafficking and
inflammation (Duggal et al., 2019). During exercise, neutrophils
as well as natural killer (NK) cells and other lymphocytes enter
the blood. Exercise of high intensity and long duration leads
to a decline in lymphocyte number, while the concentration of
neutrophils increase (McCarthy and Dale, 1988; Pedersen and
Hoffman-Goetz, 2000) via mechanisms that include adrenaline
and cortisol. IL-6 has been shown to be involved in mediating the
increase in cortisol (Steensberg et al., 2003).

Lack of exercise and obesity are accompanied by low level
chronic inflammation (Pedersen et al., 2003b; Petersen and
Pedersen, 2005; Pedersen, 2006; Pedersen, 2006, 2017; Benatti
and Pedersen, 2015; Knudsen and Pedersen, 2015; Karstoft
and Pedersen, 2016). The anti-inflammatory effects of exercise
training are induced with each single bout of exercise as well
as via training adaptation leading to a decrease in the amount
of abdominal fat.

IL-6 increases with exercise and promotes the occurring of
two cytokines with anti-inflammatory effects (Steensberg et al.,
2003). IL-1 receptor antagonist (IL-1ra) blocks IL-1β signaling
(Dinarello, 1994) and IL-10 prevents TNF-α production (Opp
et al., 1995). A study in healthy humans showed that a bout of
exercise or administration of IL-6 before infusion of endotoxin
abolished the increase in plasma levels of TNF-α that was seen
in a control situation (Starkie et al., 2003). It was concluded that
a single bout of exercise mediates an anti-inflammatory signal,
which is likely to be partly mediated by IL-6 (Pedersen, 2017).

Exercise can also induce anti-inflammatory effects via a
reduction in abdominal fat (Rosenkilde et al., 2016). Abdominal
adiposity, reflecting a high amount of visceral fat, is associated
with cardiovascular disease, type 2 diabetes, dementia and all-
cause mortality (Pedersen, 2009). Accumulation of visceral fat
represents an important source of origin of chronic systemic
inflammation, as it has been shown to be more inflamed
than subcutaneous fat, constituting an important source of
inflammatory markers (Yudkin, 2007).

Physical inactivity leads to an increased amount
of visceral fat and consequently an environment of
inflammation, which provokes a network of chronic diseases
(Benatti and Pedersen, 2015).

Recent evidence exists that exercise training decreases the
amount of visceral and cardiac fat mass (Christensen et al.,
2019a,b; Wedell-Neergaard et al., 2019) mediated by muscle-
derived IL-6 (Wedell-Neergaard et al., 2019) as described below.

MUSCLE-ADIPOSE CROSSTALK

Exercise-induced IL-6 has significant effects on fat metabolism
(Pedersen, 2013, 2018). In vivo studies in humans show that
rhIL-6 enhances lipolysis and fat oxidation (van Hall et al., 2003;
Petersen et al., 2005). Epidemiological studies demonstrate that
an association exists between abdominal adiposity and low fitness
(Wedell-Neergaard et al., 2018a,b). Intervention studies show
that reduced number of daily steps provoke accumulation of
visceral adipose tissue (Olsen et al., 2008; Benatti and Pedersen,
2015), whereas exercise training reduced abdominal adiposity
(Ross et al., 2000; Nordby et al., 2012). In a recent study,
abdominally obese humans were randomized to tocilizumab (IL-
6 receptor antibody) or placebo during an intervention of 12-
weeks with either aerobic exercise or no exercise (Christensen
J. F. et al., 2018; Wedell-Neergaard et al., 2019). While exercise
training led to a reduction in visceral adipose tissue mass,
this effect was completely abolished by IL-6 receptor blockade
(Wedell-Neergaard et al., 2019).

It has also been hypothesized that exercise may induce
browning of white adipose tissue (Rodriguez et al., 2017; Eckel,
2019; Townsend and Wright, 2019). Myokines with browning
properties include irisin (Bostrom et al., 2012), meteorin-like
(Rao et al., 2014), and IL-6 (Knudsen et al., 2014). The finding
that exercise-induced myokines may induce browning of white
adipose tissue has been demonstrated in rodent models, but not
consistently so in humans (Norheim et al., 2014; Vosselman et al.,
2015; Severinsen et al., 2020).

MUSCLE-CANCER CROSSTALK

Metabolic syndrome has been tied to risk of several types of
cancer (Esposito et al., 2012). The vast amount of epidemiological
studies demonstrate that exercise training decreases the risk of
cancer and contributes to control disease progression. Exercise
has also beneficial impact on anti-cancer therapy and improves
physical and mental health in general. Being physically active
reduces the risk of approximately 13 different cancer types
(Moore et al., 2016; Pedersen et al., 2016; Christensen R. H. et al.,
2018; Hojman et al., 2018). Exercise training after a diagnosis of
breast cancer, prostate cancer and colorectal cancer are associated
with an increased survival rate (Pedersen, 2018).

Given that cancer is associated with low level chronic
inflammation, which may contribute to tumor progression, it
is possible that the ability of physical training to create an
anti-inflammatory environment, may facilitate exercise-induced
protection on cancer growth (Hojman et al., 2018).

Pernille Hojman studied exercise effects on tumor growth
in rodent models (Pedersen et al., 2016). She established a
B16F10 melanoma model and exposed tumor-bearing mice to
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FIGURE 1 | I Irisin and Cathepsin B enhance BDNF production and thereby hippocampal neurogenesis. IL-6 inhibits appetite and stimulates lipolysis. IL-6 also plays
a role in decreasing the amount of visceral fat. IL-6, irisin and meteorin-like are involved in turning white adipose tissue into a brown phenotype. IL-15 retards skin
aging. IL-6, decorin, FGF-2 and IGF-1 positively influence bone formation. Myostatin negatively influence bone formation. Musclin, LIF, IL-4, IL-6, IL-7, and IL-15 are
involved in mediating muscle hypertrophy, whereas myostatin obstructs muscle hypertrophy. IL-6 and BDNF stimulate AMPK activation and hence fat oxidation. IL-6
e stimulates glucose uptake and hepatic glucose output during exercise. IL-6 induces the expression of GLP-1 by the L cells of the intestine leading to enhanced
insulin secretion. IL-6 exerts anti-inflammatory effects by inhibiting TNF production and by stimulating IL-1ra and IL-10 production. IL-6 enhances cortisol production,
leading to neutrocytosis and lymphopenia. FSTL-1 has beneficial effects on endothelial function and revascularization of atherosclerotic blood vessels.
Osteoprotegerin, angiogenin, and IL-6 possess beta-cell protective actions against inflammatory cytokines. AMPK, 5’-AMP-activated protein kinase; BDNF,
brain-derived neurotrophic factor; FGF-2, fibroblast growth factor 2; FGF-21, fibroblast growth factor 21; FSTL-1, follistatin-related protein 1; GLP-1, glucagon-like
peptide 1; IGF-1, insulin-like growth factor I; IL-1ra, IL-1 receptor antagonist; LIF, leukemia inhibitory factor; TGF-β, transforming growth factor β; TNF, tumor necrosis
factor. Adapted with permission from Severinsen and Pedersen (2020).

wheel running or control. It appeared that exercising mice had
a significant decrease in tumor mass and incidence.

Myokines are involved in mediating the effect of exercise on
tumor growth. When breast cancer cells were treated with irisin,
they were more likely to undergo apoptosis (Hojman et al., 2018).

The myokine oncostatin M (Pedersen et al., 2016) was shown
to inhibit breast cancer cell proliferation. The myokine, secreted
protein acidic and rich in cysteine (SPARC) was shown to reduce
tumor in the colon of exercising mice (Aoi et al., 2013).

Exercise also induces acute increases in epinephrine and
norepinephrine, which are involved in recruiting NK cells
in humans during exercise. Breast cancer cells exposed to
serum collected after a single bout of acute exercise and
thereafter injected into mice, led to a reduction of tumor
formation (Dethlefsen et al., 2017). This effect was, however,
completely blunted when we blocked β-adrenergic signaling, the
pathway through which epinephrine and norepinephrine work
(Dethlefsen et al., 2017).
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FIGURE 2 | (1) Exercising muscles release multiple compounds known as myokines. Several of these have been shown to affect cancer cell proliferation in culture,
and some, including interleukin-6, slow tumor growth in mice. (2) Exercise stimulates an increase in levels of the stress hormones epinephrine and norepinephrine,
which can both act directly on tumors and stimulate immune cells to enter the bloodstream. (3) Epinephrine also stimulates natural killer cells to enter circulation. (4)
In mice, interleukin-6 appears to direct natural killer cells to home in on tumors. Reprinted with permission from Pedersen (2020). Illustrator: Scott Leighton. (5)
Epinephrine and norepinephrine along with some myokines can inhibit tumor growth.

These findings suggested that epinephrine and
norepinephrine play a key role in the cancer-inhibiting
effects of exercise. To this end, catecholamine release has been
linked to the best-characterized myokine, IL-6, which increases
exponentially during exercise in humans. Muscle cells from
rats have been shown to release IL-6 upon stimulation with
epinephrine (Frost et al., 2004), and injection of a high dose of
IL-6 in human subjects resulted in increased epinephrine levels
(van Hall et al., 2003).

In the cancer-setting, Pernille Hojman and her team found
that the inhibitory effects of exercise on tumor growth were
mediated via a direct regulation of natural killer (NK) cells,
where these were mobilized to the circulation and redistributed
to the tumor tissue by a mechanism involving both epinephrine
and IL-6. Blocking IL-6 signaling during exercise abolished the
exercise-induced inhibition of tumor growth, suggesting that IL-
6 plays a role in mediating anti-cancer effects (Aoi et al., 2013;
Hojman et al., 2011; Hojman et al., 2018; Lucia and Ramirez,
2016; Manole et al., 2018; Figure 2).

In addition to the crucial increase of tumor-infiltrating NK
cells with exercise, microarray analyses of the tumors revealed
that 52% of the upregulated gene ontology pathways were
linked to immunological and inflammatory responses, and
qPCR analyses showed increased tumoral expression of several
cytokines (Pedersen et al., 2016). Amongst these upregulated
cytokines were Interferon-γ, which has been reported to
stimulate immunoregulatory molecules on a wide selection of

both healthy and diseased cells (Sun et al., 2018), and IL-15
known to stimulate activation and cytotoxicity of both NK cells
and T cells (Guo et al., 2017). These clear associations between
exercise and the immunogenic profiles of tumors makes it higly
relevant to study the possible benefits of combining exercise with
immunotherapy. These could either be checkpoint inhibitors or
immune-stimulatory treatments.

MUSCLE-CARDIAC TISSUE CROSSTALK

The inflamed arterial wall is a hallmark in the development of
cardiovascular disease. Given that each bout of exercise induces
anti-inflammatory effects, mediated by IL-6, it is likely that
transient increases in this myokine contributes to the protection
against atherosclerotic disease.

Another myokine of importance for cardiac disease is
follistatin-like 1 (FSTL1), which is expressed by skeletal as well as
cardiac muscle cells (Shimano et al., 2012). FSTL1 promotes the
function of endothelial cells and is involved in revascularization
(Oshima et al., 2008; Ouchi et al., 2008), although its role in
humans need to identified.

MUSCLE-LIVER CROSSTALK

Exercise stimulates an augmented production of glucose from
the liver (Wasserman et al., 1991). In 1961, Goldstein (1961)
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proposed that contracting muscle produced an exercise factor
that could stimulate hepatic glucose output. Evidence exists
that IL-6 plays a role in hepatic glucose output. This was the
conclusion from a study in which young healthy males did 2 h
of cycle ergometer exercise on 3 different days at: (1) a high
intensity; (2) a low intensity; and (3) a low intensity + infusion
of IL-6 at a concentration to mimic the systemic increase in
IL-6 during exercise of high intensity. The results from this
human experiment demonstrated that exercise-induced IL-6 is
involved in triggering hepatic glucose output during exercise
(Febbraio et al., 2004).

Muscle-Beta-Cell
Studying human primary muscle cell cultures established from
triceps brachii, soleus and quadriceps identified two myokines,
angiogenin and osteoprotegerin, which were shown to be triceps
specific myokines, mediating anti-inflammatory actions and
protecting beta-cell survival (Rutti et al., 2018). Moreover, it has
been shown that IL-6 positively regulates β-cell mass in vivo
(Ellingsgaard et al., 2008). The increase in IL-6 with each bout
of exercise may be involved in protecting pancreatic β-cell
mass and function.

OTHER MUSCLE-ORGAN CROSS-TALKS

Muscle-Brain Crosstalk
Regular exercise has beneficial effects on brain health (Cotman
et al., 2007; Mattson, 2012). The fact that exercise is sensed by
the brain suggests a direct crosstalk between working muscle
and brain function (Pedersen and Febbraio, 2012; Benatti
and Pedersen, 2015; Leardini-Tristao et al., 2019; Pedersen,
2019). Studies in humans (Erickson et al., 2011) and rodents
(Kobilo et al., 2011) demonstrate a positive effect of exercise on
hippocampus volume (Kobilo et al., 2011). In humans, brain-
derived Neurotic factor (BDNF) Studies in humans demonstrate
that BDNF is released from the brain in relation to exercise
(Rasmussen et al., 2009; Seifert et al., 2010) and regular
exercise for 3 months leads to an increase in the volume of
hippocampus (Pajonk et al., 2010). In rodents, BDNF mRNA
and protein increase in response to exercise (Pedersen and
Febbraio, 2012; Benatti and Pedersen, 2015; Leardini-Tristao
et al., 2019; Pedersen, 2019) and stimulate hippocampus growth
(Loprinzi and Frith, 2019) as well as memory and learning
(Vaynman et al., 2004a,b). Interesting studies in mice show
that the myokines cathepsin-B (Moon et al., 2016) and irisin
(Wrann et al., 2013) may be released from muscle to blood
during exercise, passing from the blood to the brain and
directly provoking an increase in brain BDNF. When IL-6 is
centrally applied in mice, it suppresses feeding (Timper et al.,
2017). Moreover, a much higher IL-6 concentration applied
peripherally reduces the intake of food, suggesting that high
systemic IL-6 concentrations may pass from the blood to the
brain and regulate appetite. The latter results indicate that IL-
6 released from muscle during exercise of high intensity and
long duration (Febbraio and Pedersen, 2002), may lead to a
decrease in appetite.

Muscle-Muscle
Some myokines can exert their effects on the muscle itself. One
of these is IL-6, which can work in both an endocrine and a
paracrine manner within the muscle (Pedersen and Febbraio,
2008, 2012). In a metabolic perspective, studies in humans show
that IL-6 is capable of increasing glucose uptake by a mechanism
that involves activation of AMPK (Carey et al., 2006). Moreover,
IL-6 increases insulin-stimulated glucose uptake in vitro as well as
in in vivo in health humans (Carey et al., 2006). Furthermore, IL-
6 increases fatty acid oxidation via AMPK activation (Kahn et al.,
2005; Carey et al., 2006). BDNF is yet another myokine, which
stimulates AMPK activation and thereby lipid oxidation. BDNF
works in an autocrine or paracrine manner (Matthews et al.,
2009). Finally, Musclin is an exercise-induced factor (Nishizawa
et al., 2004) that promotes mitochondrial biogenesis in murine
muscle (Subbotina et al., 2015).

Muscle-Gut
IL-6 stimulates glucagon-like peptide-1 (GLP-1) secretion in
mice from both pancreatic β-cells and intestinal L-cells, thereby
enhancing insulin secretion. A recent human study from our
group (Lang Lehrskov et al., 2018) demonstrates that IL-6 slows
down the rate of gastric emptying. Thereby IL-6 indirectly exerts
beneficial effects on postprandial glucose (Woerle et al., 2008).

Muscle-Skin
Studies in exercising mice and humans suggest that muscle-
derived IL-15 contributes to avoid aging of the skin (Crane
et al., 2015). The latter study showed that that exercise regulates
muscular IL-15 expression via skeletal muscle AMPK.

THE POTENTIAL CLINICAL IMPACT OF
MYOKINES IN IMMUNOMETABOLISM

Myokines have been identified which include effects on e.g.,
lipid and glucose metabolism, browning of white fat, beta-
cell-function, endothelial cell function and tumor growth. The
biological and physiological identification of several myokines
has identified these to be useful biomarkers for monitoring the
exercise training, which is necessary in order to apply exercise
as medicine for patients with specific diseases, such as diabetes,
cardiovascular diseases and cancer. The identification of new
myokines, playing specific roles in immunometabolism, may lead
to new therapeutic targets for lifestyle-related diseases.

CONCLUSION

During exercise, myokines play a role in regulating immune
cell trafficking, inflammation and metabolism. Exercise training
thereby represents a strategy to induce a anti-inflammation and
improved metabolism, which may contribute to decrease the risk
or progression of cancer and type 2 diabetes as well as other
chronic disorders.
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