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Abstract: 

Various methods to determine the connectivity scores between groups of proteins associated with lung adenocarcinoma are 
examined. Proteins act together to perform a wide range of functions within biological processes. Hence, identification of key 
proteins and their interactions within protein networks can provide invaluable information on disease mechanisms. Differential 
network analysis provides a means of identifying differences in the interactions among proteins between two networks. We use 
connectivity scores based on the method of partial least squares to quantify the strength of the interactions between each pair of 
proteins. These scores are then used to perform permutation-based statistical tests. This examines if there are significant differences 
between the network connectivity scores for individual proteins or classes of proteins. The expression data from a study on lung 
adenocarcinoma is used in this study. Connectivity scores are computed for a group of 109 subjects who were in the complete 
remission and as well as for a group of 51 subjects whose cancer had progressed. The distributions of the connectivity scores are 
similar for the two networks yet subtle but statistically significant differences have been identified and their impact discussed. 
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Background: 
For some prevalent types of cancer such as lung 
adenocarcinoma where the effectiveness of standard 
chemotherapy is limited, alternative treatments based on 
targeting critical genes are desired [1]. Consequently, it is 
important to examine the differences between the interactions 
of the proteins encoded by genes between patients whose 
cancer progress differently. Identifying such proteins or 
groups of proteins helps to identify potential targets for new 
treatments. In order to identify a protein or a class of proteins 
which is differentially expressed, we need a formal statistical 
framework.  Previously, a framework for differential network 
analysis was developed [2] and applied to microarray data 
from a pair of networks.  In this paper, methods from the 
above mentioned were adapted to analyze protein expression 

data and include tests for differential connectivity for 
individual proteins relative to all other proteins as well as tests 
for differential connectivity within a class of proteins. 
 
Methodology: 
Dataset used 
Herein, the methods are applied to data from a study on lung 
adenocarcinoma. The data set is freely available in the 
International Cancer Genome Consortium (ICGC) data 
repository [3]. It was also featured as one of the challenge data 
sets at the recent Critical Assessment of Massive Data Analysis 
(CAMDA) conference [4]. We used version 14 of the data, 
which includes expression values of 174 protein antibodies. 
Some antibody IDs correspond to the same gene so the data set 
only includes protein expression values for 139 genes.  There 
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are protein expression values for each of the 160 subjects, 109 
of whom are in the complete remission group and 51 of whom 
are in the progression group. 
 
Model 
To quantify the strength of pairwise interactions between 
protein expression values within a group, we use connectivity 
scores based on the method of partial least squares.  
Specifically, the scores for each protein are computed by fitting 
a regression model with all of the other proteins as covariates 
using estimates obtained from partial least squares.  For each 

network, this creates a 𝑝 × 𝑝 square matrix of coefficients for 
each pair of proteins where 𝑝 is the number of proteins 
common to both networks.  Finally, the matrix for the 𝑘th 
network is symmetrized to obtain the connectivity scores 𝑠𝑖,𝑗 ;𝑘  

where 𝑖 and 𝑗 refer to the row and column numbers of the 
matrix of scores. See [2] and [5] for a complete description of 
the algorithm for obtaining association/interaction scores 
based on partial least squares and [6] for discussion of a freely 
available R package dna which provides a flexible 
implementation of the methods. 

 

 
Figure 1: Flow diagram illustrating the test for differential connectivity for an individual protein, starting with the expression 
values from both groups. The values from both groups are pooled.  Then the labels are randomly permuted 1000 times to form new 
pairs of groups for each data set.  The connectivity scores are computed for each actual and permuted group.  These connectivity 
scores are then used to calculate the test statistic for both the observed and permuted data sets.  Finally, a p-value is determined by 
comparing the observed test statistic with the values of the test statistic based on the permuted data sets and is used to make a 
decision on whether there is a significant difference between the scores for the two proteins between the two groups.   
 
Statistical tests 
Next, formal statistical tests can be formulated based on these 
connectivity scores, similar to the framework proposed in [2].  
To test the differential connectivity of the scores corresponding 
to protein 𝑎, compared with all other proteins, we use the 
mean absolute difference statistic 

𝑑 𝑎 =
1

𝑝 − 1
  𝑠𝑎 ,𝑗 ;1 − 𝑠𝑎 ,𝑗 ;2 .

𝑝

𝑗 =1

 

 
This statistic measures the difference between the groups for 
all pairs of proteins involving the 𝑎th protein.  The estimated 
p-value for this test statistic is computed by a permutation 
procedure.  The observed protein expression values from both 

groups of proteins are first combined.  Then 1000 new 
permuted data sets are constructed by randomly permuting 
the labels of the combined data set and splitting the combined 
data into two new groups.  For each permuted data set, the test 
statistic is computed, and the distribution of test statistic 
values is compiled from the 1000 permuted data sets.  If the 
null hypothesis that both networks are the same holds, then 
the random variable corresponding to the test statistic for the 
observed data has the same distribution as the permuted data 
sets and we do not expect a large value.  On the other hand, 
large values of the observed test statistic give evidence against 
the null hypothesis in favor of the statement that the 
associations/interactions among the two networks differ for 
this protein.  Hence, the estimated p-value is the proportion of 
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test statistic values among the permuted data sets which are at 
least as large as the observed test statistic, and the hypothesis 
that the networks are the same is rejected if the p-value is 
sufficiently small. A flowchart summarizing the procedure for 

this significance test is given in Figure 1. A more detailed  
mathematical description of a similar permutation test is given 
in [2]. 

 

 
Figure 2: Histograms for the distribution of connectivity scores for the complete remission and progression networks. The scores 
were computed for each pair of proteins using expression values for 174 proteins from a group of 109 subjects with lung 
adenocarcinoma who went into complete remission and from a group of 51 subjects with lung adenocarcinoma whose cancer 
progressed. For each network, the connections involving scores greater than 0.085 are illustrated in a graph to the right of each 
corresponding histogram. The edges represent pairs of proteins with connectivity scores which exceed 0.085.  The proteins in the 
graph (with labels for vertices in parentheses) are alpha-Catenin(1), ACC_pS79(2), ACC1(3), c-Met(4), Caspase-3(5), Caspase-8(6), 
CD20(7), E-Cadherin(8), EGFR_pY1068(9),ERCC1(a),HER2_pY1248(b),MAPK_pT202_Y204(c), MEK1_pS217_S221(d), p27_pT157(e), 
PARP(f), PKC-alpha(g),PKC-alpha_pS657(h),Rab25(i),Rb(j), 6_pS235_S236(k), SETD2(l), Snail(m), Src(n), Src_pY416(o), TIGAR(p), 
XBP1(q), YB-1(r), and YB-1_pS102(s). 
 
Alternately, to test the differential connectivity of the scores 
within a particular subset 𝐴 of proteins, we use a similar 
statistic.  Without loss of generality, suppose that 𝐴 is the first 
𝐿 proteins.  Then, to test the differential connectivity of the 
proteins within the subset of proteins in 𝐴, we use the test 
statistic 

∆ 𝐴 =
2

𝐿 𝐿 − 1 
   𝑠𝑖,𝑗 ;1 − 𝑠𝑖 ,𝑗 ;2 .

𝐿

𝑗=𝑖+1

𝐿−1

𝑖=1

 

 
The procedure for obtaining the p-value and performing a 
permutation test based on this statistic is analogous to the 
procedure described in the previous paragraph for testing the 
differential connectivity of an individual protein. 
 
Results & Discussion: 

The connectivity scores were computed for each group of 
proteins. A histogram illustrating the distributions of the 
connectivity scores for the proteins in each network is shown 
In Figure 2. Overall, the distributions for the two networks 
appear to be very similar visually, which is to be expected 
since all of the patients were lung adenocarcinoma patients. 

However, differences were identified when the networks were 
tested formally with the statistical framework, which shows 
how essential these formal tests are when trying to detect 
important differences in association. More notably, the pairs of 
proteins corresponding to the largest connectivity scores are 
very similar for both networks, as shown in Figure 2. The 
vertices in Figure 2 represent proteins and edges are shown for 
a pair of proteins if the connectivity score for the pair exceeds a 
specified threshold; two proteins are said to be in the same 
module if there is a path connecting them. There are 23 pairs of 
proteins with connectivity scores exceeding 0.085 in the 
complete remission network and 21 pairs (9 modules) 
exceeding 0.085 in the progression network.  The largest 
module in each network includes 6 proteins (ERCC1, PARP, 
Snail, c-Met, Caspase-8, Rb); the difference is that in the 
complete remission network, every pair of proteins is 
connected while in the progression network, three of the 
connections are lost for the Rb protein. There are several 
smaller modules which have similar connections based on this 
threshold.  The connections for the pairs PKC-alpha and PKC-
alpha_pS657, Rab25 and SETD2, and ACC1 and ACC_pS79 
based on this threshold are identical for the two networks.  
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Also, the proteins HER2_pY1248 are connected in both 
networks, but HER2_pY1248 is also connected to Src_pY416 in 
the complete remission network.  
 
Although the overall distributions of connectivity scores are 
similar and many of the pairwise interactions between proteins 
with the top connectivity scores are similar, there are some 
differences between the networks which are statistically 
significant. The individual proteins with the smallest p-values 
based on the test for differential connectivity are listed in 
Table 1 (see supplementary material) along with the 
corresponding genes which encode the protein, the observed 
values of the MDA test statistic, and the estimated p-values 
based on 1000 permutations. Several of these proteins have 
been connected with lung cancer in previous studies.  
Specifically for lung adenocarcinoma, it was recently 
demonstrated in [7] that expression of the CDH2 gene might 
be increased by the inhibition of the microRNA miR-218 
through ADAM9 (a protein not included in our data set) which 
increases the protein expression of N-Cadherin and 
consequently results in metastasis of the cancer. Also, an 
inverse relationship was found between the IRS-1 gene and the 
presence of neutrophil elastase which affects growth in tumor 
cells in subjects with human lung adenocarcinoma [8].  
Furthermore, in vivo and in vitro experiments in [9] 
demonstrate functional roles for a Yap/Taz pathways in the 
progression and metastasis of lung adenocarcinoma tumors.  
Another recent study by [10] a pathway involving PTEN for 
both small cell lung cancer and lung adenocarcinoma. The 
CASP9 gene which is connected with regulation of apoptosis 
and [11] polymorphisms of this gene were found to be 
associated with the risk of lung cancer. The BCL2L1 gene 
inhibits activation of caspases preventing cell death [12].  
Additionally, recent work involving anticancer drug 
development for lung cancer based on PARP-1 inhibitors is 
discussed in [13]. 
 
It should be noted that different proteins are differentially 
expressed when the groups are analyzed marginally by 
traditional statistical tests.  For instance, the two sample t-test 
identifies ER-alpha (p-value = .02), Cyclin_B1 (p-value = .02), 
YB-1 (p-value = .02), GATA3 (p-value = .04), and XBP1 (p-
value=.04) as significantly different at level .05. Thus, 
differential network analysis identifies important differences in 
protein expression values not found by analyzing each protein 
alone. Also, there are 7 genes (EIF4EBP1, EGFR, SRC, PRKCA, 
GSK3A|GSK3B, CDKN1B, and AKT1|AKT2|AKT3) in the 
data set which encode 3 or more proteins.  The test for 

differential connectivity within each of these classes of proteins 
is performed for each gene, but only one gene exhibited 
significant differences between connectivity scores; the test 
statistic for the group of protein antibodies Akt_pT308, 
Akt_pS473, and Akt encoded by gene AKT1|AKT2|AKT3 is 
∆= 0.0298 with corresponding p-value 0.022. The role that 
AKT plays in lung adenocarcinoma is discussed in [14]. On the 
other hand, for example, the test was not rejected (p-value = 
0.114) for the protein antibodies encoded by the three protein 
antibodies (p27, p27_pT157, p27_pT198) encoded by CDKN1B. 
 
Conclusions: 
A method has been presented for testing whether proteins and 
groups of proteins interact differently with other proteins in 
two groups. The method was applied to protein expression 
data on lung adenocarcinoma. Analysis shows that the two 
networks are similar in appearance. However, the method was 
successful at identifying proteins with statistically significant 
differences in the connectivity scores for the complete 
remission and progression groups. A group of proteins 
encoded by the AKT1|AKT2|AKT3 gene was found to be 
significantly different between the two classes. These were 
known to be associated with cancer. Thus, we describe a 
method for analyzing expression levels to help identify 
processes, which differ between cancer patients with different 
progressions. This type of analysis finds application in gene 
discovery for cancer treatment. 
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Supplementary material: 
 
Table 1: Tests for differential connectivity of individual protein antibodies between the complete remission and progression 
network with p-values less than 0.050. 

 
 
 
 

Antibody ID Gene 𝒅 p-value 

ACC1 ACACA 0.0199 0.001 
ACC_pS79 ACACA|ACACB 0.0210 0.001 
Caspase-9 CASP9 0.0184 0.005 
N-Cadherin CDH2 0.0121 0.006 
Alpha-Catenin CTNNA1 0.0163 0.013 
IRS1 IRS1 0.0178 0.019 
Smad3 SMAD3 0.0200 0.027 
TAZ WWTR1 0.0171 0.031 
Bcl BCL2L1 0.0142 0.031 
PARP PARP1 0.0125 0.037 
Snail SNAI2 0.0122 0.044 
PTEN PTEN 0.0206 0.046 


