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ABSTRACT

The effects of chromosomal position and neighbor-
ing genomic elements on gene targeting in human
cells remain largely unexplored. To study these,
we used a shuttle vector system in which murine
leukemia virus (MLV)-based proviral targets present
at different chromosomal locations and containing
mutations in the neomycin phosphotransferase
(neo) gene were corrected by adeno-associated
virus (AAV)-mediated gene targeting. Sixteen identi-
cal target loci present in HT-1080 human sarcoma
cells were all successfully corrected by gene target-
ing. The gene targeting frequencies varied by as
much as 10-fold, and there was a clear bias for cor-
rection of one of the targets in clones containing
two target sites. The targeting frequency at each
site was correlated to the proximity and density of
various genomic elements, and we found a signifi-
cant association of higher targeting frequencies at
loci near a subset of dinucleotide microsatellite
repeats (r = –0.55, P< 0.05), in particular GT repeats
(r = –0.87, P< 0.0001). Additionally, there was a cor-
relation between meiotic recombination rates and
targeting frequencies at the target loci (r = 0.52,
P< 0.05). There was no correlation between sur-
rounding chromosomal transcription units and
targeting frequencies. Our results indicate that
certain chromosomal positions are preferred sites
for gene targeting in human cells.

INTRODUCTION

Homologous recombination is essential for proper chro-
mosome segregation and the preservation of genetic diver-
sity during meiosis, as well as the repair of different types
of DNA lesions during mitosis. Gene targeting, in which a
transgene recombines with a homologous chromosomal

locus, presumably utilizes the same mechanisms as
mitotic chromosomal recombination. While studies have
reported the effects of target site transcription (1) and
genomic methylation levels (2) on gene targeting
frequencies, much less is known about the influence of
chromosomal position on gene targeting. A better under-
standing of how specific genomic elements surrounding
the target site affect gene targeting will improve our
ability to precisely manipulate the human genome and
provide insight into chromosomal recombination
mechanisms.

Several studies have explored the recombinogenic
potential of specific chromosomal regions in eukaryotic
cells. In Saccharomyces cerevisiae, sequences in the
HOT1 gene present in the ribosomal RNA cluster
stimulate both interchromosomal and intrachromosomal
mitotic recombination (3) by regulating RNA polymerase
I transcription (4). In addition, the presence of a centro-
meric region from S. cerevisiae chromosome XIV in an
autonomously replicating plasmid stimulated homologous
genetic exchange between yeast genomic sequences and
those present on the plasmid (5). In mammalian cells,
the murine immunoglobulin heavy chain (IgH) m locus is
a hotspot for intrachromosomal homologous recombina-
tion (6), and deletion of a 7.1-kb segment from the VH-Cm
intron in the same locus decreased recombination 10-fold
(7). There are also variable meiotic recombination rates
at different human chromosomal loci (8–10). All these
studies suggest that chromosomal position effects influ-
ence homologous recombination between chromosomes.

Chromosomal position effects on gene targeting freq-
uencies have also been examined. In S. cerevisiae, the
same targeting frequency was observed when the target
gene was located at different chromosomal positions,
arguing against a strong position effect (11,12). In mam-
malian cells, the data are not as clear. One of the earliest
reports of gene targeting in mammalian cells investigated
the correction of a defective neomycin phosphotransferase
(neo) gene residing in the chromosome of mouse L cells by
using DNA microinjection. In one targeted cell line
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containing four copies of the defective gene integrated at
four different unknown sites, three of the four alleles
present were targeted, but only four transformants were
analyzed (13). Another study investigated the targeting of
defective thymidine kinase (tk) genes present in 10 mouse
L cell lines, all of which had the transgene based on
Southern blot analysis. Interestingly, only one of the cell
lines could be corrected by gene targeting. While this may
have been due to position effects, neither the number, nor
the chromosomal location, of the target tk genes was
determined, making it difficult to draw definitive conclu-
sions (14). When multiple targets, both endogenous and
ectopic, were present in the same human cell line, there
was a bias for preferential targeting at one of the alleles
(15), again suggesting that position effects played a role,
but this study was limited to a single cell line. Here, we
sought to more definitively address the role of posi-
tion effects on gene targeting in mammalian cells, by
comparing the targeting frequencies of multiple, identical
target loci present at different, known chromosomal
locations.

Although the specific genetic elements responsible for
chromosomal position effects are unknown, several lines
of evidence suggest that sequence repeats can influ-
ence recombination. In mammalian cells, centromeres
and telomeres consisting of tandemly repeated DNA
sequences, were shown to be highly recombinogenic (16).
Short, tandemly repeated sequences present throughout
the human genome may also enhance recombination.
The repeats d(CG�CG)n and d(GT�AC)n stimulated
intramolecular homologous recombination in SV40 viral
DNA by 10- to 15-fold and 3- to 5-fold, respectively (17),
and d(GA�TC)n enhanced homologous recombination
in SV40 minichromosomes by almost two orders of
magnitude (18). The repeat d(TG�CA)n stimulated
intramolecular homologous recombination between two
nonreplicating plasmids introduced into human cells
(19). Furthremore, a hypervariable minisatellite DNA
sequence stimulated homologous recombination by up
to 13.5-fold between two nonreplicating plasmids that
reconstituted a wild-type neo gene in mammalian cells
(20). Notably, the minisatellite was located 200–1000 bp
away from the recombination site (20). Despite
numerous studies demonstrating the recombinogenic
potential of repeated DNA sequences, evidence for their
effects on gene targeting is lacking.

In this study, we have directly addressed whether the
chromosomal position of a target site and its surrounding
genomic features influence gene targeting by using adeno-
associated virus (AAV) vectors to precisely correct
mutations in target genes present at different, known chro-
mosomal locations. AAV gene targeting vectors contain
single-stranded DNA homologous to the chromosomal
target site flanked by viral inverted terminal repeats
(21,22). Up to 1% of unselected human cells exposed to
AAV vectors undergo gene targeting under optimal con-
ditions (23), which is orders of magnitude higher than the
targeting frequencies typically obtained with conventional
methods based on transfection or electroporation (24,25).
This allowed us to accurately compare targeting
frequencies at multiple different target loci. In addition,

despite the high frequencies of AAV-mediated gene target-
ing, it shares features with conventional plasmid-based
recombination, including stimulation by double-strand
breaks (26) and preferential introduction of insertion
mutations (27), making it an appropriate model for
recombination in general. Here, we report the frequencies
of AAV-mediated gene targeting at distinct chromosomal
loci and correlate these frequencies with proximity to and
density of various genomic elements surrounding the
targets.

MATERIALS AND METHODS

Plasmids

The MLV vector plasmid pLHSN37�4O is based on
plasmid pLHSNO (28) and contains the following
sequences: pLXSHD retroviral vector backbone (29);
hygromycin phosphotransferase (hph) gene; neomycin
phosphotransferase (neo) gene with a simian virus 40
(SV40) early and bacterial Tn5 promoter (30); and p15A
plasmid replication origin (31). A 4-bp deletion was
introduced into pLHSNO at bp 37 of the neo gene by
standard techniques (32) and confirmed by DNA
sequencing. AAV2 vector plasmid pA2HSN50 contains
pLHSNO sequences including 309-bp 50 to the hph gene,
the hph gene, the SV40 early and Tn5 promoters, and the
50 portion of the neo gene (truncated at the NaeI site at bp
629 of the coding sequence), inserted into a backbone
based on pAAV-hrGFP (Avigen, Alameda, CA, USA).
Plasmid pCI-VSV-G was obtained from Garry Nolan
(Stanford University). Plasmid DNA was purified using
a Plasmid Maxi kit (Qiagen, Valencia, CA, USA).

Cells and cell culture

All cells were grown at 37�C in 5% CO2 in Dulbecco’s
modified Eagle’s medium containing 4 g glucose/l
(Invitrogen, Carlsbad, CA, USA), 10% heat-inactivated
fetal bovine serum, 100U/ml penicillin, 100 mg/ml strepto-
mycin and 1.25 mg/ml amphotericin. HT-1080 human
fibrosarcoma cells (33), Phoenix-GP cells (34) and 293T
(35) cells have been described previously.
To generate cells containing proviral target sites,

HT-1080 cells were seeded on Day 1 at 6� 105 cells/dish
in three 6-cm-diameter dishes, infected with MLV vector
LHSN37�4O at a multiplicity of infection (MOI) of 0.1
transducing units/cell (assuming one population doubling
since plating) in the presence of 4 mg/ml of Polybrene
(Sigma-Aldrich, St. Louis, MO, USA) on Day 2, and
selected with 0.2mg/ml hygromycin B (Calbiochem, San
Diego, CA, USA) beginning on Day 3. Selection was
continued until all cells in control dishes had detached
(9–12 days), and drug-resistant clones of HT-1080 cells
were isolated with cloning rings. LHSN37�4O proviruses
present in these clones were detected on Southern blots
digested with EcoRI and hybridized with an hph-specific
probe.
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Vector preparations

MLV vector LHSN37�4O was made by calcium phos-
phate transfection of Phoenix-GP cells with pCI-VSV-G
and vector plasmid pLHSN37�4O (1:1 ratio), and the
preparation was then concentrated �100-fold by
ultracentrifugation, as described previously (36). The
titer was determined on HT-1080 cells by seeding 3� 105

cells/dish in five 6-cm-diameter dishes on Day 1, infecting
the cells with various volumes (0, 0.1, 1, 10 or 50 ml) of
MLV vector LHSN37�4O in the presence of 4 mg/ml of
Polybrene on Day 2, splitting the dishes into various dilu-
tions (0.1%, 1% or 10%) on 10-cm-diameter dishes
on Day 3, and beginning selection with 0.2mg/ml
hygromycin B on Day 4. Selection was continued until
all cells in control dishes had detached (9–12 days), and
the titer was calculated as the number of hygromycin-
resistant colony forming units per ml of vector.
AAV vector AAV2-HSN50 (serotype 2) was made by

calcium phosphate transfection of 293T cells with pDG
(37) and pA2HSN50, as described previously (38). The
AAV vector titer was based on the amount of full-length
single-stranded vector genomes detected on Southern
blots quantified by PhosphorImager analysis (Molecular
Dynamics, Sunnyvale, CA, USA).

Gene targeting

To measure neo gene correction frequencies, HT-1080-
derived clones containing MLV target proviruses were
seeded on Day 1 at 5� 104 cells/well in 24-well dishes
and infected with AAV2-HSN50 on Day 2 at an MOI of
10 000 genomes/cell (assuming one population doubling
since plating). On Day 3, the cells in each well were
treated with trypsin, counted, and 0.25% and 99.75%
dilutions were plated into separate 10-cm-diameter
dishes. On Day 4, G418 (0.7mg active compound/ml)
was added to the medium of all 99.75% dishes. Cells
were cultured with media changes every 3–4 days until
all cells in control dishes had detached (10–12 days), and
dishes were then stained with Coomassie brilliant blue G.
The total number of colony forming units per original well
was determined by colony counts of the unselected 0.25%
dishes, and G418-resistant colonies were counted on the
99.75% dishes. Targeting frequencies were expressed as
the number of G418-resistant colonies/total number
of colonies obtained. Exposure to vector was not
cytotoxic, since plating efficiencies (colony counts of the
0.25% dishes/cell number counted on day of plating)
were �70% with or without AAV vector infection.
Experiments to measure neo gene correction frequencies
were performed in triplicate. Reversion frequencies for
individual clones were measured by plating �107

uninfected cells in medium containing G418 (0.7mg
active compound/ml). The neo reversion frequency for
all HT-1080-derived clones except clone 49 was <10–7

and the neo reversion frequency for clone 49 was 1 in 107.

RNA studies

HT-1080-derived clones containing LHSN37�4O
proviruses were preselected with 0.2mg/ml hygromycin

B, and total RNA was isolated using the RNeasy
Mini kit (Qiagen, Valencia, CA, USA). Northern blot
analysis was performed with neo- and glyceraldehyde
3-phosphate dehydrogenase (GAPDH)-specific probes by
using standard techniques (32). Neo transcript levels were
quantified by PhosphorImager analysis (Molecular
Dynamics, Sunnyvale, CA, USA) and corrected for differ-
ences in loading.

Trichostatin A studies and chromatin immunoprecipitation
assay

To test the effect of trichostatin A (TSA) on neo gene
correction frequencies, HT-1080-derived clones containing
MLV target proviruses were treated with or without
125 nM TSA (Sigma–Aldrich, St. Louis, MO, USA)
from 4.5 h after infection with AAV2-HSN50 until the
next day, when 0.25% and 99.75% dilutions were plated
into separate 10-cm-dishes. The targeting experiments
were otherwise performed as described above and done
in triplicate. The TSA concentration used was determined
in a kill-curve assay of TSA concentrations ranging from 0
to 1000 nM on HT-1080 cells.

The chromatin immunoprecipitation (ChIP) assay
on HT-1080-derived clones, treated with or without
125 nM TSA for 24 h, was performed using the Imprint
Chromatin Immunoprecipitation kit (Sigma–Aldrich, St.
Louis, MO, USA) according to the manufacturer’s
protocol. Briefly, histones were cross-linked to DNA
for 10min at 25�C by adding 1% formaldehyde to the
culture medium. Nuclei were sonicated on ice to shear
chromatin into 200- to 1000-bp fragments using
a Virsonic 475 (VirTris, Gardiner, NY, USA) microprobe
set at power level 3. A fraction of each DNA sample
was saved as input to calculate the total amount
before immunoprecipitation. Immunoprecipitation was
performed on the remainder of the sample by incubating
DNA with rabbit anti-acetyl-histone H3 (Lys9) polyclonal
antibody (Millipore, Temecula, CA, USA) for 90min
at 25�C. After reverse cross-linking, DNA isolated
from each input and immunoprecipitated sample was
used for analysis by quantitative PCR (qPCR). Mock
immunoprecipitations were performed with mouse IgG.
qPCR was performed using the StepOnePlus Real-Time
PCR System (Applied Biosystems, Warrington, UK).
Individiual 20-ml reactions were prepared with
SYBR Green PCR Master Mix (Applied Biosystems,
Warrington, UK), 200 nM final concentration of primers
specific for the neo gene (forward: 50-GCCCGGTTCTTT
TTGTCAAG-30; reverse: 50-CTGCCTCGTCCTGCAGT
TC-30) and 3 ml of either input or immunoprecipitated
sample as DNA template. Six 2-fold dilutions of
control genomic DNA were used to generate a stan-
dard curve, and three replicates were used for each
sample. The amount of DNA in each sample was calcu-
lated using the standard curve, and the amount of
immunoprecipitated DNA relative to input was calculated
as [(Amount of ChIP DNA)/Amount of input
DNA)]� 100.
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Shuttle vector rescue in bacteria and mapping of
integration sites

Genomic DNA was isolated from gene-targeted,
G418-resistant, HT-1080-derived clonal cell lines, and
the shuttle vector target sites along with flanking chromo-
somal DNA were rescued as bacterial plasmids as
described previously (39), except for the following modi-
fications. Genomic DNA (10 mg) containing integrated,
targeted LHSN37�4O proviruses was digested with
EcoRI and MfeI for 4 h at 37�C, circularized with T4
DNA ligase for 2 h at 25�C, extracted with phenol
and chloroform, and precipitated with ethanol. The
DNA pellets were resuspended in 10 ml of H2O and
Escherichia coli strain DH10B (40) was transformed by
electroporation with �1 mg (1 ml) of DNA. Transformed
bacteria were selected on agar containing 50 mg
kanamycin/ml. Plasmid DNA was purified using a
Plasmid Mini kit (Qiagen, Valencia, CA, USA) and
sequenced using primer 50-GTTCGCTTCTCGCTTCTG
TT-30 specific for the 30 long terminal repeat (LTR).
Unambiguous sequences were obtained for each rescued
target site from bp –150 to at least 300 bp beyond the 30

LTR chromosomal junction. The resulting junction
sequences were aligned to build 36.1 (March 2006
assembly) of the human genome using BLAT (41), and
their chromosomal positions were identified.

Calculating the proximity to and density of chromosomal
features around integration sites

The locations of RefSeq transcripts, CpG islands, simple
repeats, microsatellites (including all dinucleotide repeat
subsets), short interspersed nuclear elements (SINEs),
long interspersed nuclear elements (LINEs), DNA
transposons, LTR retrotransposons and RNA repeats
were determined by using tables available from the
University of California Santa Cruz (UCSC) database
(42). Proximity was measured as the distance from bp 37
of the neo gene in the MLV target, where a 4-bp deletion
was present in MLV-LHSN37�4O, to the center of the
nearest genomic element, with the exception of RefSeq
transcripts, where distance was measured to the transcrip-
tion start site. Density was measured as the number of
base pairs comprised by each type of genomic element
within a given interval extending in both directions from
the chromosomal position where the target integrated
(±1, 10 or 100 kb). The analysis was performed with
programs available on the Galaxy website (http://galaxy
.psu.edu) (43) and processed using Microsoft Excel. Sex-
averaged meiotic recombination rates (in centiMorgans/
Mb) from the deCODE, Marshfield, and Genethon
genetic maps were obtained for each target locus using
the UCSC Genome Browser.

Statistical analysis

Correlations were determined by calculating the Pearson
correlation coefficient, r, and targeting frequencies were
compared to each other using the one-way analysis of
variance (ANOVA) test. Two-tailed P-values <0.05 were
considered significant.

RESULTS

Targeting system

Provirus target sites were introduced into HT-1080 human
sarcoma cells by transduction with MLV vector
LHSN37�4O, which contains a nonfunctional neomycin
phosphotransferase (neo) gene with a 4-bp deletion at bp
37 of the coding sequence (Figure 1A). LHSN37�4O
expresses neo from both mammalian SV40 early and
prokaryotic Tn5 promoters, allowing selection in both
mammalian and bacterial cells with G418 and kanamycin,
respectively. The p15A plasmid origin was included to
allow replication of rescued target sites as bacterial
plasmids. LHSN37�4O also contains a hygromycin
phosphotransferase gene (hph) under the control of the
MLV LTR promoter. Cells transduced with the MLV
vector can be selected for by growth in hygromycin, and
the mutant neo genes in the integrated vector proviruses
can be corrected by gene targeting with AAV vectors and
scored by selection in G418. The AAV2-HSN50 vector
used for gene correction contains 3233 bp of sequence
homology to the target locus and a truncation in neo at
bp 629 of the coding sequence that disrupts gene function
(Figure 1A). Transduced, hygromycin-resistant HT-1080
clones were screened by Southern blot hybridization to
determine the vector provirus copy number in each.
Ten clones containing a single copy (Figure 1B) and
three containing two copies (Figure 1C) of LHSN37�4O
were used in targeting experiments.
The chromosomal positions of targets were determined

by recovering integrated vector proviruses along with
flanking human DNA as bacterial plasmids (Figure 1A).
To facilitate provirus rescue, the neo genes in target loci
were first corrected by AAV-mediated gene targeting
and isolation of G418-resistant clones (see below).
Then, genomic DNA was digested with EcoRI and
MfeI, circularized with DNA ligase, and rescued by
electroporation of E. coli and kanamycin selection. The
30 LTR chromosomal junction fragments were sequenced
and the target loci mapped to their locations in the human
genome (Tables 1 and 2). All the proviruses present in the
13 HT-1080 clones used in our study were recovered and
mapped, and their predicted hph-hybridizing restriction
fragment sizes (Tables 1 and 2) corresponded to those
observed on Southern blots (Figure 1B and C). Over
50% of the target loci are within RefSeq transcription
units, reflecting the MLV bias for integration near tran-
scription start sites and within genes (44).

Gene targeting frequencies in cell lines containing target
vector proviruses

The 10 HT-1080-derived clones containing a single target
provirus were infected with the AAV2-HSN50 targeting
vector, plated at different dilutions, then cultured in the
presence or absence of G418 to determine the percentage
of G418-resistant colony-forming units. All neo target site
mutations were correctable (Figure 2A), with a variation
of about 10-fold in targeting frequencies among clones,
ranging from 1.81� 10–4 for clone 27 to 1.55� 10–3 for
clone 21 (Table 1). The differences in targeting frequencies
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Figure 1. Shuttle vector rescue of targeted loci. (A) Maps of AAV targeting vector AAV2-HSN50 containing a neo gene truncated at bp 629 and
an MLV vector LHSN37�4O provirus containing a 4-bp deletion in neo at bp 37. The locations of the AAV inverted terminal repeats (ITRs),
simian virus 40 (SV40) and Tn5 promoters, transcriptional start sites (arrows), hph and neo genes, p15A replication origin, and retrovirus long ter-
minal repeats (LTR) are shown. The fragment used to probe Southern blots is indicated. The strategy used for recovering targeted loci is shown
below. (B) Southern blot of genomic DNA from HT-1080-derived clonal cell lines containing a single copy of the LHSN37�4O provirus, digested
with EcoRI and probed for hph sequences. The positions of size standards are shown on the left. (C) Southern blot of genomic DNA from
HT-1080-derived clonal cell lines containing two copies of the LHSN37�4O provirus, with clone 17 as a single-copy control, digested and
probed as in (B).

Table 1. Targeting frequencies and site locations in single-target clones

Clone Targeting
frequency

Chromosomal
location

Nearest
RefSeq
gene

Location of
integration
site

Distance to
transcription
start sitea

Predicted
size of
hph-hybridizing
fragmentb

14 2.19� 10�4 Chr 2: 157,621,301 GALNT5 Intergenic �201.3 kb 5.8 kb
17 3.04� 10�4 Chr 6: 45,515,506 RUNX2 Intron 5 +17.6 kb 4.3 kb
21 1.55� 10�3 Chr 12: 78,950,944 PPP1R12A Intergenic +259.5 kb 7.2 kb
24 2.69� 10�4 Chr 7: 129,782,991 CPA5 Intron 6 +11.1 kb 8.6 kb
27 1.81� 10�4 Chr 9: 16,326,741 BNC2 Intergenic �72.8 kb 4.1 kb
36 5.77� 10�4 Chr 6: 150,220,289 LRP11 Intron 6 �31.0 kb 13.1 kb
42 1.07� 10�3 Chr 2: 15,149,860 NAG Intergenic �74.6 kb 12.6 kb
45 1.06� 10�3 Chr 2: 207,966,780 CREB1 Intergenic �136.1 kb 9.6 kb
48 2.21� 10�4 Chr 14: 37,194,933 BC038110 Intron 2 +66.0 kb 4.2 kb
61 9.44� 10�4 Chr 19: 18,560,834 LOC55049 Exon 2 +0.3 kb 18.7 kb

aPositive and negative distances indicate that the integration site is downstream or upstream, respectively, relative to the nearest RefSeq transcription
start site.
bSee Figure 1B for bands of corresponding sizes on Southern blots.

3586 Nucleic Acids Research, 2010, Vol. 38, No. 11



measured at the 10 sites were statistically significant
(P< 0.0001; ANOVA). In each case, we isolated targeted
subclones and confirmed by sequencing that the neo genes
had been accurately corrected (data not shown). Although
several of the targets were within genes (Table 1), the
3 clones with the highest targeting frequencies were not
(clones 21, 42 and 45).

Three HT-1080 clones contained two target vector
proviruses, so in order to determine their individual tar-
geting frequencies the proportion of targeted proviruses
rescued from each site was multiplied by the overall,
clonal targeting frequency (Table 2). As with the cell
lines containing a single target provirus, there was up to
10-fold variation in the targeting frequencies at the

Figure 2. Gene targeting frequencies of clonal cell lines. (A) Frequencies in clones containing one LHSN37�4O target locus infected with
AAV2-HSN50 at an MOI of 10 000 vector particles/cell. (B) Frequencies in clones containing two LHSN37�4O target loci infected as in (A). (C)
Partial gene targeting frequencies for each target (a or b) present in cell lines containing two targets.

Table 2. Targeting frequencies and site locations in double-target clones

Clone Overall
targeting
frequency

Proportion
targeted at
each sitea

Partial
targeting
frequency

Chromosomal
location

Nearest
RefSeq
gene

Location of
integration site

Distance to
transcription
start siteb

Predicted size
of hph-hybridizing
fragmentc

2 1.15� 10�3 A: 13/20 7.46� 10�4 Chr 16: 19,636,191 IQCK Intron 1 �0.9 kb 4.4 kb
B: 7/20 4.01� 10�4 Chr 9: 12,804,291 LOC286343 Intron 1 �39.3 kb 7.1 kb

38 2.10� 10�3 A: 18/20 1.89� 10�3 Chr 3: 173,242,513 FNDC3B Intron 1 �1.5 kb 8.4 kb
B: 2/20 2.10� 10�4 Chr 16: 30,576,276 PRR14 Intergenic �6.5 kb 10.3 kb

49 1.32� 10�3 A: 16/21 1.00� 10�3 Chr 5: 153,581,833 GALNT10 Intron 1 �31.3 kb 5.5 kb
B: 5/21 3.14� 10�4 Chr 4: 167,577,088 SPOCK3 Intergenic +314.0 kb 7.5 kb

aRepresents the number of rescued target plasmids from site A or B over the total analyzed for each clone.
bPositive and negative distances indicate that the integration site is downstream or upstream, respectively, relative to the nearest RefSeq transcription
start site.
cSee Figure 1C for bands of corresponding sizes on Southern blot.
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distinct target loci present in a single cell. Importantly,
these findings demonstrate that the targeting frequency
variation was not due to unrelated cell-specific effects
that might affect results when comparing cell lines with
single-target sites. Despite this variation at individual
target loci, the overall targeting frequencies of all three
clones with two targets were not statistically significantly
different (P=0.07; ANOVA) and were remarkably
similar to each other (1.15� 10–3 to 2.10� 10–3) and to
the single copy clone with the highest targeting frequency
(clone 21: 1.55� 10–3), suggesting that there may be some
cellular limits on the maximal targeting frequency that can
be achieved.

Target site transcript levels and gene targeting frequencies

There is evidence that gene targeting might be most effi-
cient at highly expressed chromosomal loci (1,45). To test
whether differential transcription of target loci can

account for the observed differences in gene targeting
frequencies, we performed northern blot analysis to
measure neo transcript levels in the single-target clones
with the two lowest (clones 27 and 14) and two highest
(clones 42 and 21) targeting frequencies (Figure 3A).
Three separate neo transcripts exist in each of the four
clones: a full-length transcript of 5.2 kb starting at the 50

LTR promoter, a spliced transcript of 3.9 kb also driven
from the LTR promoter and a short transcript of 2.8 kb
driven from the SV40 promoter. In all clones studied, the
most abundant transcript was the full-length one.
Although there was some variation in transcript levels,
these did not correlate with differences in targeting
frequencies (Figure 3B). Of note, clone 14 has an addi-
tional neo-hybridizing transcript of �8 kb in length,
which is likely due to read-through transcription from a
genomic promoter located upstream of the provirus.
Three individual expressed sequence tags (ESTs) are

full-length (5.2 kb)

spliced (3.9 kb)

short (2.8 kb)

27 14 42 21

Clone number

kb

5.02

1.86

1.31 GAPDH

neo

A C

B

Figure 3. Northern blot analysis and effect of trichostatin A (TSA) on gene targeting. (A) Northern blot of total RNA extracted from the
HT-1080-derived clonal cell lines containing a single copy of the LHSN37�4O provirus having the two lowest (clones 27 and 14) and two
highest (clones 42 and 21) gene targeting frequencies. The blot was probed for neo transcripts and for GAPDH transcripts to check loading. The
positions of size standards are shown on the left, and the three expected neo transcript forms (full-length, spliced or short) and corresponding sizes
are indicated on the right. (B) Comparison of targeting frequencies (calculated relative to targeting frequency of clone 27) and neo transcript levels
(calculated relative to full-length transcript of clone 27) for the four clones. (C) Gene targeting frequencies in four clones treated with or without
125 nM TSA from 4.5 h after infection with AAV2-HSN50 at an MOI of 10 000 vector particles/cell until splitting.
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located between 5.9 and 1.2 kb upstream of the proviral
integration site.

Chromatin structure and gene targeting frequencies

To test whether chromatin structure, rather than the
sequence context of target sites, can affect gene targeting
frequencies, we performed experiments in cells treated
with TSA, a histone deacetylase inhibitor. Histone
deacetylases play an important role in establishing
chromatin structure, since they catalyze the removal of
acetyl groups from histone proteins, causing chromatin
condensation and transcriptional repression. The treat-
ment of cells with TSA during targeting provided a way
to reversibly inhibit histone deacetylaes and transiently
alter chromatin structure, allowing us to test the effect.
No statistically significant differences (P> 0.05; t-test) in
targeting frequencies were observed between cells treated
with TSA and untreated cells (Figure 3C). To determine if
TSA treatment had the expected effect on histone modifi-
cation at the target loci, we performed a ChIP analysis to
measure the change in acetyl-histone H3 Lys 9 (H3K9ac)
levels at neo target sites in the presence of TSA. We chose
H3K9ac because it is a transcriptionally permissive
histone mark, and treatment with TSA has been shown
to induce acetylation at H3K9 (46,47). However, our
analysis showed that the H3K9ac levels were not increased
at neo loci by the TSA treatment (data not shown).

Effects of surrounding genomic features on targeting
frequencies

We determined the distances of several types of geno-
mic elements to each target site, including RefSeq
transcription start sites, CpG islands, simple repeats,
microsatellites, SINEs, LINEs, DNA transposons, LTR
retrotransposons and RNA repeats (see ‘Materials and
Methods’ section) and calculated correlation coefficients

between the targeting frequencies at each of the
16 target loci and their distance from these elements
(Table 3). We also analyzed the data in relation to the
natural logarithms of the distance to each genomic
element, reasoning that the effects of any element on tar-
geting frequency may decrease exponentially with distance
(Table 3). The largest correlation coefficients were
observed with CpG islands and microsatellite repeats,
with gene targeting frequencies inversely correlating with
distance from these genetic elements. Similarly, we deter-
mined whether the density of surrounding genomic
elements influenced targeting by correlating targeting
frequencies to the proportion of sequence covered by
each type of genomic element in windows extending 1,
10 and 100 kb in either direction at each target site
(Table 3). The largest correlations were observed with
simple repeats and microsatellites. The data for CpG
islands, simple repeats and microsatellites are shown
graphically in Figure 4. Although intriguing, none of
these correlations were statistically significant (P> 0.1
for all).
Microsatellites comprise a group of simple sequence

repeats that can be broken down into further subsets
such as dinucleotide repeats. We categorized dinucleotides
into four distinct classes, each comprised of repeats that
differed only in starting nucleotide and/or direction: GT,
TG, AC and CA; GA, AG, TC and CT; AT and TA; and
GC and CG (Table 4). For example, AC is considered
equivalent to CA, and both AC and CA are considered
equivalent to GT and TG on the complementary strand.
The only class of dinucleotide repeats whose proximity
was significantly correlated to targeting frequencies was
GT, TG, AC and CA (r=–0.55, P< 0.05), meaning
that as the distance of a target site from this class of
repeats increases, its predicted targeting frequency
decreases. In addition, in terms of density, the class of

Table 3. Correlation between targeting frequencies and distance to or density of genomic elements

Genomic element Distancea Densityb

Interval size

bp Natural log bp ±1kb ±10 kb ±100 kb

Correlation
coefficient, r

Correlation
coefficient, r

Correlation
coefficient, r

Correlation
coefficient, r

Correlation
coefficient, r

RefSeq transcripts 0.01 �0.15 0.15 �0.03 0.02
CpG islandsc �0.23 �0.21 0.00 0.04 �0.17
Simple repeats �0.11 �0.13 0.05 0.39 0.32
Microsatellites (all)c �0.33 �0.37 n/ad 0.31 0.34
SINEs �0.12 �0.03 �0.04 0.25 0.07
LINEs �0.07 �0.08 0.17 �0.01 �0.05
DNA transposons 0.03 0.05 �0.17 0.10 0.17
LTR retrotransposons �0.23 �0.18 �0.18 0.29 0.26
RNA repeats 0.21 0.19 n/a n/a �0.28

aDistance was measured from bp 37 of the neo gene in the MLV target locus to the center of the nearest respective genomic element, with the
exception of RefSeq transcripts, where distance was measured to the start site of the nearest RefSeq transcription unit; correlation coefficients were
computed using either distance (in bp) or the natural logarithm of distance.
bDensity was measured as the total number of base pairs covered by the corresponding genomic element within a given interval surrounding the
target integration site.
cSee Figure 3 for representative scatter plots.
dn/a denotes the absence of specified genomic element within given interval.
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GT, TG, AC and CA dinucleotide repeats had the highest
correlation to targeting frequencies within 10 kb (r=0.43)
and 100 kb (r=0.36), although neither was significant
(Figure 4).
We also considered each type of dinucleotide repeat on

its own and investigated whether their distance to or

density surrounding target loci correlates to targeting
frequencies (Table 4). The dinucleotides used in the
analysis (GT, TG, AC, CA, GA, AG, TC, CT, AT and
TA) represented sequences of at least 15 perfect repeats.
We did not include GC and CG repeats in our analysis
because of the absence of sequences of at least 15 perfect

Figure 4. Effects of neighboring genetic elements on gene targeting. In each panel, scatter plots on the left graph the targeting frequency at each target
site and the natural logarithm of the distance from bp 37 of the neo gene in each target to the center of the indicated genetic element. Scatter plots
on the right graph the density (total number of base pairs covered) of each genomic element within 100 kb (open circle), 10 kb (filled triangle)
or 1 kb (open square) on either side of each target locus integration site. The lack of density values within ±1kb in some panels is due to the absence
of the respective genomic element in that interval. Correlation coefficients (r) and P-values (for significant r) are to the right of the scatter plots.
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dinucleotide repeats within 1Mb of MLV target vector
integration sites (Supplementary Table S1). Among indi-
vidual dinucleotide repeats, only the proximity and density
of GT repeats was found to correlate significantly to tar-
geting frequencies, as seen in Figure 4E. As the distance
between a target site and a GT repeat increases, the target-
ing frequency at that site tends to decrease (r=�0.87,
P< 0.0001). Moreover, as the density of GT dinucleotide
repeats increases within 10 kb or 100 kb on either side of a
target locus, the targeting frequency at that locus tends to
increase (r=0.75, P< 0.001 and r=0.85, P< 0.0001,
respectively). Interestingly, the dinucleotide repeats consid-
ered to be equivalent to GT repeats, namely TG, AC and
CA repeats, did not have significant correlations to target-
ing frequencies for either distance or density.

Meiotic recombination rates at target loci

To determine whether any relationship exists between
gene targeting and meiotic recombination, we correlated
the measured targeting frequencies at the loci we tested
with the sex-averaged meiotic recombination rates at the
same loci as measured by the deCODE (8), Marshfield (9)
and Genethon (10) genetic maps (Figure 5). The meiotic
recombination rates from the deCODE map were the only
ones that correlated significantly with gene targeting
frequencies (r=0.52, P< 0.05). The most likely explana-
tion for the significant correlation found between targeting
frequencies and deCODE map recombination rates is that
the deCODE map, representing 1257 total meioses,
provides recombination rates at a higher resolution than

Table 4. Correlation between targeting frequencies and distance to or density of dinucleotide repeats

Dinucleotide repeata Distanceb Densityb

Interval size

bp Natural log bp ±1kb ±10 kb ±100 kb

Correlation
coefficient, r

Correlation
coefficient, r

Correlation
coefficient, r

Correlation
coefficient, r

Correlation
coefficient, r

GT, TG, AC and CA repeatsc �0.44 �0.55d n/ae 0.43 0.36
GT �0.62f �0.87g n/a 0.75h 0.85i

TG 0.26 0.26 n/a �0.21 �0.12
AC �0.19 �0.15 n/a 0.06 �0.09
CA �0.15 �0.16 n/a n/a 0.08
GA, AG, TC and CT repeats �0.20 �0.05 n/a n/a �0.02
GA �0.11 �0.01 n/a n/a n/a
AG 0.00 �0.01 n/a n/a 0.16
TC �0.14 �0.12 n/a n/a 0.20
CT �0.17 0.00 n/a n/a �0.26
AT and TA repeatsc 0.49 0.40 n/a �0.24 �0.07
AT 0.39 0.30 n/a n/a 0.44
TA 0.36 0.41 n/a �0.24 �0.24

aMicrosatellites GT, TG, AG, CA, GT, GA, AG, TC, CT, AT and TA represent sequences of at least 15 perfect dinucleotide repeats.
bDistance and density were computed as in Table 3.
cSee Figure 3 for representative scatter plots.
dRepresents significant correlation (P< 0.05).
en/a denotes the absence of specified genomic element within given interval.
fRepresents significant correlation (P=0.01).
gRepresents significant correlation (P< 0.0001).
hRepresents significant correlation (P< 0.001).
iRepresents significant correlation (P< 0.0001).

Figure 5. Correlation between gene targeting frequencies and the sex-averaged meiotic recombination rates. The scatter plot graphs meiotic
recombination rates from the deCODE (open circle), Marshfield (filled triangle) and Genethon (open square) genetic maps at each provirus
target site in centiMorgans/Megabase. Correlation coefficients (r) and P-values (for significant r) are to the right of the corresponding legends.
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the Marshfield and Genethon maps, based on XX and YY
meioses, respectively.

DISCUSSION

Our results clearly establish a chromosomal position effect
on gene targeting in human cells. The experiments we per-
formed in clones containing a single mutant neo provirus
per cell showed statistically significant differences in
frequencies among the targeted loci (P< 0.0001), with as
much as 10-fold variability. In clones containing two neo
proviruses located at different positions, each provirus had
a distinct targeting frequency, eliminating variables such
as growth or infectivity rates that could have influen-
ced targeting when comparing different clones. By deter-
mining the positions of neighboring genetic elements, we
showed that targeting frequencies increase significantly
based on proximity to GT dinucleotide repeats.
While several studies involving S. cerevisiae have shown

that targeting frequency is not strongly influenced by the
surrounding chromosomal context of the sites tested
(11,12), this is less clear in mammalian cells. To our
knowledge, only three studies prior to our own addressed
this issue. In the first of these studies, DNA was added by
the calcium phosphate method to mouse L cells to recon-
struct a functional thymidine kinase (tk) gene from two
defective genes, resulting in one tk+ transformant per 106

cells, but only one of the 10 tk- cell lines was successfully
targeted and became tk+ (14). Our results showed suc-
cessful gene targeting at all 16 loci we tested, which we
attribute to the greater sensitivity of our experimental
design, with targeting frequencies over 10–4 for all loci.
This allowed us to detect targeting at loci that are not
preferred sites for homologous recombination. The
second study involved the correction of an expressed,
defective neo gene residing in the chromosome of mouse
L cells by using DNA microinjection (13). However, the
targeting frequencies in the cell lines tested were not
quantitatively reported, and in the cell line that contained
multiple target genes, the relative targeting frequencies
at different targets were not determined, making it difficult
to draw any conclusions about the existence of a position
effect on gene targeting. In the third study, which involved
a human cell line containing four endogenous and two
ectopic alleles, a 34-fold preference for the targeted cor-
rection of one of the ectopic alleles was observed, consis-
tent with a position effect (15). Importantly, none of
the prior studies reported the genomic positions of the
target loci, so it was not possible to study the effects of
neighboring genetic elements on targeting. Our results
expand on these studies by demonstrating a chromosomal
position effect on targeting using multiple identical target
alleles with known structure and chromosomal location,
in both single-target and double-target cell lines.
Although there is evidence that transcription enhances

extrachromosomal (48) and intrachromosomal (49)
homologous recombination in mammalian cells, and that
gene targeting might be most efficient at highly expressed
chromosomal loci (1,45), target site transcription levels
did not account for the differences in targeting frequencies
we observed. The neo targets we introduced were all

transcribed from the same promoters, regardless of their
chromosomal position. Northern blot analysis of neo tran-
script levels showed that higher targeting frequencies were
not associated with higher transcript levels. Moreover, we
found that there was no relationship between the presence
of a target locus within a gene and its targeting frequency.
In addition, neither the proximity to the nearest RefSeq
transcription start site, nor the density of RefSeq tran-
scripts within 1, 10 or 100 kb of the targets, correlated
significantly to the measured gene targeting frequencies.

We were unable to definitively address whether chan-
ges in chromatin structure affected gene targeting frequ-
encies. No significant differences in targeting frequencies
occurred after treatment with TSA, a histone deacetylase
inhibitor. However, ChIP analysis at neo target loci did
not reveal the expected increase in H3K9ac that has been
reported with TSA treatment (46,47,50). Treatment with a
higher dose of TSA was not possible because we were
already using the maximum dose that did not produce
significant cell death. It is possible that TSA does not
affect acetylation at the four target loci studied. Previous
studies have shown that TSA exhibits gene specificity and
site selectivity, such that the state of acetylation of certain
genes is not altered (50), and only a fraction of the
transcriptome is influenced by exposure to the drug (51).
Further experiments investigating the effects of other
chromatin-modifying agents on gene targeting frequencies
might distinguish between these possibilities.

Homologous recombination between chromosomes
occurs in both mitosis and meiosis. However, our under-
standing of spontaneous mitotic recombination is still
limited, in large part because mitotic recombination
events are infrequent compared to meiotic exchanges.
In yeast, for example, mitotic events are about 104 to
105 less frequent than meiotic events (52). Gene targeting
is another process that occurs through homologous
recombination, with crossovers between an introduced
piece of DNA and a chromosomal sequence. We
found a significant correlation between gene targeting
frequencies and meiotic recombination rates, suggesting
that common mechanisms are involved in both processes.

In our experiments, the only genomic element whose
proximity to or density surrounding the target site had a
significant correlation to gene targeting frequencies was
microsatellite repeats, which could be attributed to the
specific effects of GT dinucleotide repeats. Our results
are in agreement with several lines of experimental
evidence implicating GT repeats in recombination,
including a prior study showing that GT repeats stimulate
homologous recombination in SV40 viral DNA (18), and
studies showing that GT repeats introduced at certain
yeast loci increase meiotic crossovers (53,54). Moreover,
it was shown that the distribution of GT repeats, in con-
trast to GC, AT and GA repeats, on human chromosome
22 correlated with meiotic recombination frequencies (55).
Taken together with our data, this further supports the
hypothesis that common mechanisms are involved in
meiosis and mitotic gene targeting. Our analyses did
not reveal a significant correlation between GC or CG
dinucleotide repeats and gene targeting frequencies,
despite previous work showing they stimulate homologous
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recombination between two plasmids (18). In addition,
neither the proximity to, nor density of, CpG islands sur-
rounding target sites was significantly correlated to target-
ing frequency, despite the fact that CpG islands are rich in
CG dinucleotides (56,57).

At present, we cannot explain why the proximity and
density of GT repeats influence gene targeting while TG,
AC and CA repeats do not, despite the fact that they
can be considered functionally equivalent, varying
only by starting nucleotide and strand orientation.
It is possible that more data would reveal significant
relationships between targeting frequencies and other
repeats, but there could also be a specific effect of
GT repeats that we do not understand. This is supported
by the similar effect of GT repeats on meiotic recombina-
tion (55).

Dinucleotide repeats could influence gene targeting in
several ways. The E. coli RecA protein as well as its yeast
and human homologs bind dinucleotide repeats (58,59),
albeit without specificity for GT dinucleotides. This
could promote homologous pairing of targeting constructs
and target loci. Preferential unwinding or misaligned
pairing at dinucleotide repeats could expose single-
stranded regions near chromosomal targets and recruit
proteins involved in recombination or repair that also
play a role in targeting. Since AAV-mediated gene target-
ing occurs preferentially in S-phase (60), it is also possi-
ble that hairpin formation at dinucleotide repeats
in single-stranded regions present at replication forks
recruits proteins involved in targeting. These possibilities,
as well as the unexplained specificity of GT dinucleotide
effects, will require further experiments and a larger data
set to resolve.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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