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Abstract

Unraveling the evolutionary forces responsible for variations of neutral substitution patterns among taxa or along genomes
is a major issue for detecting selection within sequences. Mammalian genomes show large-scale regional variations of GC-
content (the isochores), but the substitution processes at the origin of this structure are poorly understood. We analyzed the
pattern of neutral substitutions in 1 Gb of primate non-coding regions. We show that the GC-content toward which
sequences are evolving is strongly negatively correlated to the distance to telomeres and positively correlated to the rate of
crossovers (R2 = 47%). This demonstrates that recombination has a major impact on substitution patterns in human, driving
the evolution of GC-content. The evolution of GC-content correlates much more strongly with male than with female
crossover rate, which rules out selectionist models for the evolution of isochores. This effect of recombination is most
probably a consequence of the neutral process of biased gene conversion (BGC) occurring within recombination hotspots.
We show that the predictions of this model fit very well with the observed substitution patterns in the human genome. This
model notably explains the positive correlation between substitution rate and recombination rate. Theoretical calculations
indicate that variations in population size or density in recombination hotspots can have a very strong impact on the
evolution of base composition. Furthermore, recombination hotspots can create strong substitution hotspots. This
molecular drive affects both coding and non-coding regions. We therefore conclude that along with mutation, selection and
drift, BGC is one of the major factors driving genome evolution. Our results also shed light on variations in the rate of
crossover relative to non-crossover events, along chromosomes and according to sex, and also on the conservation of
hotspot density between human and chimp.
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Introduction

Genomic landscapes are not uniform across vertebrate chro-

mosomes. Notably, the genomes of amniotes (mammals, birds and

reptiles) show a very strong heterogeneity of base composition

along chromosomes (the so-called isochores) (for review, [1]).

These Mb-scale variations in GC-content result from variations of

substitution patterns that have affected both coding and non-

coding regions. These genomic landscapes are correlated with

many other important features (gene density, intron size,

distribution of transposable elements, replication timing). Thus,

isochores clearly reflect some fundamental aspects of genome

organization. Although isochores have been discovered more than

30 years ago [2], the reason for their origin is still highly debated:

are they the result of selection [3–8], or do they simply reflect

variations in neutral substitution patterns [9–15]?

Unraveling the origin of isochores (neutral evolution or

selection) is essential to understand the functional significance (if

any) of this peculiar genomic organization. Moreover, a better

knowledge of genome-wide variations in neutral evolutionary

processes is also important for practical reasons. Indeed,

comparative sequence analysis is commonly used to identify genes

or regulatory elements within genomes. The basic principle of this

approach is that functional elements are subject to the action of

natural selection and therefore, their pattern of sequence variation

(within populations or between different species) differs from what

would be expected under the null hypothesis of neutral evolution.

Hence, to be able to detect functional elements within genomes it

is crucial to understand the parameters that affect the neutral

processes of sequence evolution.

Recently, different lines of evidence have suggested that isochores

might be a consequence of the process of recombination (for review,

[16]). Notably, analyses of the pattern of substitution in primate non-

coding sequences have shown that recombination affects the relative

rate of ATRGC and GCRAT substitutions [15,17,18]. We and

others have proposed that this effect might result from the neutral

process of biased gene conversion (BGC) [11,14,19,20]. According to

this model, gene conversion (i.e. the copy/paste during meiotic

recombination of one allele onto the other one at heterozygous loci) is

biased in favor of GC-alleles, which leads to an increase of probability

of fixation of GC-alleles compared to AT-alleles. Thus, BGC should

lead to an enrichment in GC-content in genomic regions of high

recombination compared to regions of low recombination. Under-

standing the impact of BGC on genome evolution is of fundamental

importance. Indeed, the effect of BGC is very similar to that of

directional selection [21], and hence BGC can confound the tests that

have been developed to detect selection in genomic sequences [22].
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Although many lines of evidence support the BGC hypothesis

[16], there remain several important theoretical problems with this

model, pointed out by Spencer and colleagues [23]. First, it is now

clearly established that in humans, recombination occurs predom-

inantly in hotspots (typically 2 kb long) that cover about 3% of the

genome [24]. If recombination affects only very short regions, how

can it drive the evolution of GC-content in Mb-long genomic

fragments? Second, the analysis of human SNPs has shown that

there is a fixation bias in favor of GC-alleles (in agreement with the

BGC model), but that this bias is relatively weak [23].

Furthermore, the location of recombination hotspots is not

conserved between human and chimpanzee, which indicates that

hotspots have a short lifespan [25,26]. Given these spatial and

temporal fluctuations in recombination rate, is it possible that the

BGC process affects the evolution of base composition?

Some other authors have proposed that it is the base

composition of sequences (and not recombination) that is the

major determinant of substitution patterns [13]. Indeed, the rate of

cytosine mutation depends directly on the DNA melting (and

hence on the GC-content of sequences). Therefore, the GC-

content is expected to affect the relative rate of ATRGC and

GCRAT substitutions. Given that GC-content and recombina-

tion rate are positively correlated, this effect could contribute to

the correlations between recombination rate and substitution

patterns that were previously reported [15,17,18].

To address these issues we performed two complementary

analyses. First, we took advantage of newly available data (fine

scale crossover map in humans and complete genome sequences of

human, chimpanzee and macaque) to re-assess the genome-wide

relationship between patterns of substitution and recombination,

controlling for the impact of GC-content. For this purpose, we

developed a new method to compute substitution rates for

individual nucleotides, taking into account the hypermutability

of CpG dinucleotides and the non-stationarity of base composi-

tion. This method is based on a maximum-likelihood (ML)

approach, and hence is more reliable than the parsimony

approach used previously. Second, we modeled the process of

BGC, taking into account recombination hotspots, to theoretically

assess the potential impact of this molecular drive on the evolution

of genome landscapes.

Our analyses confirm that recombination is the major

determinant of the evolution of GC-content and allows us to

definitively reject selectionist models of isochore evolution.

Moreover, these analyses shed light on the evolution of

recombination rate since the divergence between human and

chimpanzee, on the distribution of non-crossover recombination

events and on the differences in patterns of recombination

between males and females. Finally, theoretical calculations

demonstrate that despite the short lifespan of recombination

hotspots, BGC can have a strong impact on genome evolution.

Results

The present base composition of a genomic fragment reflects

the average pattern of substitutions to which it has been exposed

during evolutionary times. Thus, to better understand the

evolutionary forces that have been responsible for the strong

regional variations in base composition along mammalian

genomes (the isochores), we studied the pattern of substitution in

the human lineage, by comparison with chimpanzee and using

macaque as an outgroup to orientate changes. Patterns of

substitutions were computed in non-overlapping windows of

1 Mb, sliding along human chromosomes.

We analyzed 1 Gb of non-coding sequences (introns or

intergenic regions). Functional non-coding sequences constitute

only a very small fraction of mammalian genomes [27,28]. Hence,

non-coding sequences can be assumed to evolve essentially neutral,

not constrained by natural selection. The evolution of sexual

chromosomes differs from that of autosomes, because of

differences in recombination rate, effective population sizes and

mutation rates [29]. We therefore analyzed the X chromosome

separately from the rest of the genome (we could not analyze the Y

chromosome because it has not been sequenced in macaque).

A New Method To Infer Substitution Rates Accounting
for CpG Hypermutability and Non-Stationarity

In previous works, we had used parsimony to infer substitutions

[15,18]. While this concept is very simple and powerful for closely

related sequences, it fails as divergence among sequences increases

[30,31]. Notably, because of CpG mutation hotspots, parsimony

may fail at reconstructing sequences of the human/chimp last

common ancestor [16]. Hence, we had to exclude from our

analyses many sites for which the ancestral state was ambiguous

[15,18]. One can avoid such problems using the maximum

likelihood approach, which was pioneered by Felsenstein [32]. In

this framework one searches the parameters of the substitution rate

matrix that maximizes the likelihood of sequence data given a

stochastic model of nucleotide substitutions. However the various

ML methods to phylogeny reconstruction that have been proposed

previously, make at least one of the following assumptions: (i) the

substitution model is time-reversible and the same in all branches

of a given tree (only the branch length might vary from one branch

to another, not all substitution processes are considered indepen-

dently), (ii) the genomes under considerations are in the stationary

state with respect to this model, and (iii) neighbor dependent

nucleotide substitutions can be neglected. These assumption are

thought to be necessary to efficiently compute the likelihood for a

given substitution model and tree topology [32]. However all these

simplifying assumptions are not necessarily granted: notably, we

know that the base composition is by far not constant and

stationary for mammalian species [15,16,33–38]. Moreover, the

neighbor dependent and irreversible CpG methylation deamina-

tion process (CpGRCpA/TpG) is the predominant nucleotide

substitution process in vertebrates [35,39,40]. We introduce here a

Author Summary

Mammalian genomes show a very strong heterogeneity of
base composition along chromosomes (the so-called
isochores). The functional significance of these peculiar
genomic landscapes is highly debated: do isochores confer
some selective advantage, or are they simply the by-
product of neutral evolutionary processes? To resolve this
issue, we analyzed the pattern of substitution in the
human genome by comparison with chimpanzee and
macaque. We show that the evolution of base composition
(GC-content) is essentially determined by the rate of
recombination. This effect appears to be much stronger in
male than in female germline, which rules out selective
explanations for the evolution of isochores. We show that
this impact of recombination is most probably a conse-
quence of the process of biased gene conversion (BGC).
This neutral process mimics the action of selection and can
induce strong substitution hotspots within recombination
hotspots, sometimes leading to the fixation of deleterious
mutations. BGC appears to be one of the major factors
driving genome evolution. It is therefore essential to take
this process into account if we want to be able to interpret
genome sequences.

Recombination and the Evolution of Isochores
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new ML method, that takes into account non-stationary and non-

reversible processes (as already proposed [41,42]) and furthermore

includes neighbor dependent substitutions processes, like the CpG

methylation deamination process. This approach is described in

detail in the methods section.

We measured 7 substitution rates (pooling together comple-

mentary rates): the 4 transversion rates (ARC+TRG; ART+-
TRA; CRA+GRT; CRG+GRC), the 2 transition rates at non-

CpG sites (ARG+TRC; GRA+CRT), and the transition rate at

CpG sites (GRA+CRT). We will hereafter use the notation

X : X?Y : Y to indicate complementary substitutions (e.g.

A:TRG:C = ARG+TRC). When convenient, we will use the

notation W (weak) for A or T and S (strong) for C or G. Thus, the

notation WRS indicates all substitutions (transitions or transver-

sions) from A or T to G or C.

Note that the total substitution rate (K) in a given genomic

regions depends on its base composition and on the base-specific

substitution rates. In the model considered here (with 7 base-

specific substitution rates) K is given by the following equation:

K~FGC rGC?ATzrCG?ATzrCG?GCð Þz

FAT rAT?GCzrTA?GCzrTA?ATð ÞzFCpGrCpG?CpA=TpG

ð1Þ

where FGC, FAT and FCpG denote the frequencies of the different

categories of sites and the parameters r
aa?bb

denote the base-

specific substitution rates.

We measured base-specific substitution rates independently in

the human and chimpanzee lineages. From these substitution

rates, we inferred for each lineage the stationary GC-content of

sequences (hereafter noted GC*), using a method that accounts for

CpG hypermutability [43]. GC* corresponds to the GC-content

that sequences would reach at equilibrium if patterns of

substitution remained constant over time. GC* therefore provides

information about the recent trend of evolution of GC-content. In

fact, GC* can be considered as a summary statistics of the average

substitution matrix during the last 6 Myrs. It should be noticed

that GC* is a measure of substitution patterns that is independent

of the total substitution rate; it simply reflects the relative

contribution of WRS and SRW substitutions to the total number

of substitutions.

Impact of GC-Content and Crossover Rate on
Substitution Patterns

We first investigated the relationship between GC*, recombi-

nation rate and the regional base composition (GC-content). As an

estimator of recombination rate, we took the rate of crossover from

the HAPMAP genetic map [44] and from the deCODE genetic

map [45]. The HAPMAP genetic map is based on patterns of

allelic associations, and hence reflects the sex-averaged crossover

rate that occurred in human populations (i.e. the historical

crossover rate). The deCODE genetic map is based on pedigree

studies and provides both sex-averaged and sex-specific crossover

rates.

In agreement with our previous results [15], we found at the

1 Mb scale a strong correlation between GC* and the sex-

averaged rate of crossover on autosomes, both with the HAPMAP

data (Pearson correlation R2 = 0.36, Figure 1b) and with the

deCODE data (R2 = 0.31). GC* is also strongly correlated with the

local GC-content (R2 = 0.25, Figure 1a), but this correlation is

weaker than with the crossover rate. We observed that the pattern

of substitution tends to decrease the GC-content of our genome:

GC* is lower than the present GC, particularly in GC-rich regions

(Figure 1a). However note that this process is extremely slow: since

the divergence between human and chimpanzee (about 6 Myrs

ago), regions with more the 50% GC lost about 0.2% GC. If these

substitution patterns would not change in time, we can extrapolate

that it would take at least 500 Myrs for such a region to reach a

GC-content of 40%. Thus, the human genome appears to be

evolving toward a more homogenous and less GC-rich base

composition, in agreement with previous findings [15,16,33–38].

It should be noted that the correlation between GC* and the

current GC is far from perfect (75% of the variance in GC* is not

predicted by the current GC-content). In other words, the GC-

content toward which sequences are evolving is largely indepen-

dent from the current GC-content. Thus, the forces that have

driven the evolution of isochores in mammalian genomes have

changed both in intensity (these forces are not strong enough to

maintain GC-rich isochores) and in localization along chromo-

somes.

GC* correlates strongly both with crossover rate and GC-

content. We have previously proposed that recombination was the

major determinant of GC* [15]. However, other authors also

suggested that the GC-content was a strong direct determinant of

GC*, because the rate of cytosine mutation depends directly on

the DNA melting (and hence on the GC-content of sequences)

[13]. Given that GC-content and crossover rate are also positively

correlated (R2 = 0.15, Figure 1c), this raises the question of which

variables (GC, recombination or both) are truly involved in

determining GC*, and which happen to covary simply because

they are influenced by another, causal variable. It has been

proposed that a higher GC-content might promote recombination

[46–48]. Indeed, in human, recombination hotspots occur

preferentially in locally GC-rich regions [23]. Thus, if GC-content

determines both the recombination rate and GC*, this could

explain the correlation between the rate of crossover and GC*.

However, in agreement with our previous analyses [15], we found

that the rate of crossover correlates much more strongly with the

stationary GC-content (GC*) than with the present GC-content

(GC) (compare Figure 1b and 1c): the crossover rate explains 36%

of the variance in GC*, compared to only 15% of the variance in

GC. The same pattern is observed on the X chromosome

(Table 1). If the correlation between GC* and crossover rate was

due to the impact of base composition on recombination, then we

would have expected a much stronger correlation of the rate of

crossover with the present GC-content than with the stationary

GC-content (i.e. the future GC-content of sequences). Our

observations therefore definitively demonstrate that at the genomic

scale considered here (1 Mb), recombination drives the evolution

of GC-content.

This does not exclude however that the GC-content might also

affect GC*. Indeed, multivariate regression indicate that both GC-

content and crossover rate are significant predictors of GC*

(p,10210). Thus, the correlation between GC* and GC is not

simply an indirect consequence of the correlation between GC and

crossover rate. Taken together, GC and crossover rate explain

44% of the variance of GC*.

We investigated the correlation between crossover rate and GC*

separately in introns and intergenic regions. We found similar

correlations for all kinds of non-coding sequences (Table 1), which

indicates that recombination affects the evolution of base

composition in all genomic compartments, transcribed or not.

The Impact of Recombination on Substitution Patterns Is
Underestimated

HAPMAP and deCODE sex-averaged crossover rates are not

perfectly correlated (R2 = 0.53 at the 1 Mb scale), which indicates

that these data are noisy. It is presently not known to which extent

Recombination and the Evolution of Isochores
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this noise is due to the imprecision of the methods used to estimate

crossover rates or to real variations in crossover rates during the

evolution of human populations (given that recombination rates

evolve rapidly, crossover rates estimated from pedigree-based

genetic maps may differ from historical crossover rates). But in any

case, this indicates that HAPMAP and deCODE crossover rates

are not perfect predictors of the average recombination rate in the

human lineage during the last 6 Myrs. Thus, even if recombina-

tion was the unique determinant of GC*, we would not expect a

perfect correlation between GC* (which is inferred from the

pattern of substitutions in the human lineage during the last

6 Myrs) and the HAPMAP or deCODE crossover rates. Taken

together, HAPMAP and deCODE sex-averaged crossover rates

explain 39% of the variance in GC* (i.e. significantly more than

each variable taken separately, p,10210). However, this is

certainly still an underestimate of the true correlation between

GC* and recombination rate.

Patterns of Substitution Vary with the Distance to
Telomeres

To try to better characterize the impact of recombination on

sequence evolution, we searched for additional predictors of

recombination rate. It is known that in humans, the rate of

recombination increases near telomeres [45,49]. Indeed, there is a

negative correlation between HAPMAP crossover rates and the

distance to telomere (in log scale, hereafter noted LDT) (R2 = 0.27,

p,10210). We observed a strong negative correlation between GC*

and LDT (R2 = 0.35, p,10210) (Figure 2a). As shown above for

crossover rates, LDT correlates much more strongly with GC* than

with the current GC-content (R2 = 0.19, Figure 2b). Again, this

demonstrates that the correlation between LDT and GC* is not an

indirect consequence of the correlation between LDT and GC.

To try to disentangle the contribution of the different variables

(crossover rate, GC-content and LDT) to the variation of GC*, we

performed a multivariate regression analysis. By using a stepwise

procedure, we found that the best two predictors of GC* are the

HAPMAP crossover rates and LDT (Table 2, Supplementary Text

S1). Taken together, HAPMAP crossover rate and LDT explain

47% of the variance in GC* at the 1 Mb scale. The GC-content

significantly improves the model, but the gain in accuracy of

prediction is relatively modest (R2 = 0.51, Table 2). The addition

of other variables (deCODE sex-averaged, male or female

recombination rates) does not further improve the model.

Impact of GC-Content and Recombination Rate on Base-
Specific Substitution Rates in Autosomes

To get a clearer picture of the dependencies of the stationary

GC-content on the recombination rate and GC-content, we

analyzed the base-specific substitution rates (which are the

Figure 1. Correlations between the stationary GC-content (GC*), the current GC content and the crossover rate in human
autosomes. Each dot corresponds to a 1 Mb-long genomic region. (A) GC* vs. current GC-content. The dashed line indicates the slope 1. (B) GC* vs.
crossover rate (HAPMAP). Green dots correspond to the predictions of the BGC model (model M1, N = 10,000) (C) Current GC-content vs. crossover
rate. Regression lines and Pearson’s correlation R2 are indicated.
doi:10.1371/journal.pgen.1000071.g001

Table 1. Correlation between the crossover rate and the
current GC-content or the stationary GC-content (GC*), and
correlations between human and chimp GC*.

Sequence
type Tiling Human crossover rate vs.

GC*
human vs.

(Mb)
Current
GC

GC*
human GC* chimp

GC*
chimp

R2 R2 R2 R2

Non-coding 10 0.30 0.61 0.56 0.81

(autosomes) 5 0.21 0.55 0.50 0.78

2 0.18 0.47 0.47 0.76

1 0.15 0.36 0.36 0.70

0.5 0.12 0.27 0.26 0.60

0.2 0.09 0.15 0.15 0.43

0.1 0.04 0.06 0.06 0.27

Intergenic 1 0.13 0.30 0.29 0.59

Introns 1 0.16 0.28 0.29 0.53

Non-coding (X) 1 0.01 (a) 0.17 (b) 0.07 (c) 0.66

Crossover rate: HAPMAP. Pearson’s correlations (R2) are given for different
window sizes, and different genomic regions (all non-coding sequences or
introns and intergenic regions), for autosomes (A) and for the X chromosome.
All correlations have a p-value ,10210, except (a) non-significant, (b) p-
value = 3 1025 and (c) p-value = 7 1023.
doi:10.1371/journal.pgen.1000071.t001
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underlying determinants of GC*) according to crossover rate,

LDT and the current GC-content. Partial correlation analyses

indicate that all base-specific substitution rates are affected

negatively by the current GC-content and positively by recombi-

nation rate (i.e. positively by crossover rate and negatively by

LDT), but the strength of correlations with each variable varies

greatly among base-specific substitution rates (Table 2). Note that

the effect of LDT on base-specific substitution rates is always

parallel to that of crossover rate, which supports our assumption

that LDT and crossover rate are two complementary predictors of

the recombination rate. Interestingly, SRW and WRW substi-

tution rates show a very weak dependency on recombination rate,

but a strong dependency on GC-content (compare in Table 2 the

R2 of the model including only recombination predictors – i.e.

LDT and crossover rate - to the R2 of the full model). Conversely,

WRS substitution rates show a much stronger dependency on

recombination rate than on GC-content. This dependency of

WRS substitution frequencies on the recombination rates is in the

end responsible for the correlation of GC* on the recombination

rate. SRS substitution rates appear to be affected by both

variables. The fact that base-specific substitution rates are

differently affected by GC-content and by recombination rate is

clearly seen in pairwise correlation analyses (Table 3; compare

Figures 3 and 4).

It should be noticed that the total substitution rate (K) is

positively correlated to GC-content (Figure 3a). This might seem a

priori unexpected given that base-specific substitution rates show

either a negative correlation (Figure 3b,c) or no correlation with

Figure 2. Correlations between the stationary GC-content (GC*), the current GC content and the distance to telomeres in human
autosomes. Each dot corresponds to a 1 Mb-long genomic region. (A) GC* vs. LDT (Log distance to telomere in bp). (B) Current GC-content vs. LDT.
Regression lines and Pearson’s correlation R2 are indicated.
doi:10.1371/journal.pgen.1000071.g002

Table 2. Partial correlation analysis of the three predictors of stationary GC-content (GC*) and base-specific substitution rates in
the human lineage: current GC-content (GC), crossover rate (CO) and the distance to telomeres (LDT).

Variable X Partial correlation R2 R2

X,GC|(CO,LDT) X,CO|(GC,LDT) X,LDT|(GC,CO) X, Full

R p R p R p (CO,LDT) model

Stationary GC-content (GC*) 0.30 ,10210 0.43 ,10210 20.30 ,10210 0.47 0.51

Substitution rates:

WRS A:TRG:C 20.29 ,10210 0.39 ,10210 20.35 ,10210 0.28 0.35

A:TRC:G 20.20 ,10210 0.32 ,10210 20.33 ,10210 0.25 0.29

SRW C:GRT:A (CpG) 20.64 ,10210 0.04 NS 20.10 5 10210 0.05 0.44

C:GRT:A (non-CpG) 20.41 ,10210 0.10 3 1025 20.15 ,10210 0.00 0.18

C:GRA:T 20.52 ,10210 0.04 NS 20.15 ,10210 0.01 0.29

WRW A:TRT:A 20.40 ,10210 0.13 2 1028 20.18 ,10210 0.01 0.17

SRS C:GRG:C 20.24 ,10210 0.20 ,10210 20.26 ,10210 0.11 0.17

The R2 estimates of the multivariate regression analysis are indicated for the model including only the 2 predictors of recombination rates (i.e. CO and LDT) and for the
full model (including the 3 predictors). Data: autosomes, 1 Mb windows. Crossover rates from HAPMAP. NS: non-significant.
doi:10.1371/journal.pgen.1000071.t002

Recombination and the Evolution of Isochores
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GC-content (Figure 3d). However, K depends not only on base-

specific substitution rates but also on the base composition (see

equation (1)). Thus, given that, SRW substitution rates are on

average higher than their respective WRS back substitutions

(Table 3), K tends to increase with the GC-content (FGC in

equation (1)). In other words, the positive correlation between the

total substitution rate and GC-content does not reflect a higher

exposure of GC-rich regions to mutagenic factors, but simply a

higher proportion of GC bases that are more prone to

substitutions than AT bases.

Conservation of Recombination Rates between Human
and Chimpanzee

Given the strong correlation between GC* and recombination

rate, GC* can be used as an indicator to investigate the evolution

of patterns of recombination. Notably, it is presently not clear

what is the time scale and genomic scale of evolution of

recombination rate. It has been recently shown that recombina-

tion hotspots evolve very rapidly. Indeed, the locations of

recombination hotspots in human and chimpanzee are totally

uncorrelated, despite considerable sequence identity [25,26], and

it has been demonstrated that hotspot activity may vary strongly

among individuals in human populations [50]. Given our previous

results, these rapid changes in fine scale recombination maps are

expected to lead to variations in substitution patterns during time.

In apparent contradiction with that prediction, at the genomic

scale considered here (1 Mb), we found a strong conservation of

substitution patterns between human and chimpanzee lineages:

the correlation between GC* measured in human and chimpanzee

orthologous regions is R2 = 0.70 (p,10210). Notably, GC*

measured in the chimpanzee lineage is more strongly correlated

to the rate of crossover measured in human populations

(R2 = 0.36, i.e. as strong as the correlation observed with human

GC*), than to the current GC-content in chimpanzee (R2 = 0.24).

The only possible interpretation for this correlation is that at the

Mb scale, rates of recombination are highly conserved between

human and chimpanzee. This conclusion is in agreement with the

hypothesis proposed by Myers et al. (2005) [24] that, at the Mb

scale, the regional hotspot density and activity remains fairly

constant over relatively long evolutionary time, despite fine-scale

changes in hotspot location.

This conclusion (rapid local fluctuation of hotspot location, but

conservation of regional hotspot density) may explain the first

paradox raised by Spencer and colleagues [23]: although at a

given time, hotspots occupy only 3% of the genome, on the long

term, a large fraction of the genome may be affected by hotspot

activity.

The conservation of recombination rate at the Mb scale

probably reflects some constraints on the distribution of crossover

events. Indeed it is known that in mammals (as in many other

taxa), there is a requirement of one crossover per chromosome

arm to ensure a proper segregation of chromosomes during

meiosis (for review, see [51]). This constraint leads to a higher

crossover rate in smaller chromosome arms [15,51–53].

The resolution of the HAPMAP genetic map allowed us to

investigate the correlation between GC* and recombination at

finer scale. The strength of correlations decreases with smaller

window size (Table 1), and becomes very weak below 200 kb,

possibly because at this scale, other factors contribute to variations

in substitution patterns. Interestingly, the correlation between GC*

measured in human and chimpanzee orthologous regions remains

high (R2.40%), up to 200 kb (Table 1) (NB: this is an

underestimate because the accuracy of the measure of GC*

decreases with smaller window size [54]). Moreover, GC*

measured in the chimpanzee lineage shows the exactly same

correlation to the rate crossover measured in human populations

as GC* measured in the human lineage (Table 1). This suggests

that the regional hotspot density remains conserved between

human and chimp at least up to the 200 kb scale.

Strong Correlation between Substitution Patterns and
Male-Specific Crossover Rates

The rate of meiotic recombination differs between males and

females: the rate of crossover in autosomes is on average 65%

higher in females than in males, and the genetic maps are poorly

correlated between the two sexes (crossover rates in females are

higher around the centromeres, whereas those in males tend to be

higher towards the telomeres) [45]. In a previous work, we had

Table 3. Summary of stationary GC-content (GC*) and base-specific substitution rates in the human lineage and their pairwise
correlations with the current GC-content (GC), crossover rate (CO) and the distance to telomeres (LDT).

Variables Average Pairwise correlations

Current GC CO LDT

Sign R2 p Sign R2 p Sign R2 p

Stationary GC-content (GC*) 0.37 + 0.25 ,10210 + 0.36 ,10210 2 0.35 ,10210

Substitution rates:

WRS A:TRG:C 0.0031 0.000 NS + 0.20 ,10210 2 0.22 ,10210

A:TRC:G 0.0009 + 0.004 0.002 + 0.17 ,10210 2 0.21 ,10210

SRW C:GRT:A (CpG) 0.0540 2 0.42 ,10210 2 0.04 ,10210 + 0.04 ,10210

C:GRT:A (non-CpG) 0.0039 2 0.13 ,10210 0.000 NS 0.000 NS

C:GRA:T 0.0013 2 0.26 ,10210 2 0.01 6 1029 + 0.005 3 1024

WRW A:TRT:A 0.0007 2 0.10 ,10210 + 0.004 0.003 2 0.01 2 1025

SRS C:GRG:C 0.0013 2 0.005 8 1024 + 0.06 ,10210 2 0.10 ,10210

Data: autosomes, 1 Mb windows. Crossover rates from HAPMAP. NS: non-significant. R2: Pearson’s correlation R2. The sign of the correlation is indicated (when
significantly different from zero).
doi:10.1371/journal.pgen.1000071.t003
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found that GC* correlated more strongly with female than with

male recombination rate [15]. However, this result was based on

the analysis of 33 loci only, and the difference became non-

significant after excluding only one data point [15]. Moreover, the

analysis of substitution patterns in Alu repeats lead to the opposite

conclusion [17]. To resolve that issue, we analyzed in our whole-

genome data set, the correlation between GC* and sex-specific

crossover rates provided by the deCODE genetic map. We found

that on autosomes, GC* is much more strongly correlated to male

crossover rate (R2 = 0.27) than to female crossover rate (R2 = 0.15).

On the X chromosome, that recombines only in females (we

excluded pseudo-autosomal regions from our analyses), we found a

correlation between GC* and crossover rate that is weaker than

that observed in autosomes (deCODE: R2 = 0.22, HAPMAP:

R2 = 0.17). Thus, we confirm the observation of Websters and

colleagues [17], that male crossover rate is a much stronger

predictor of GC* than female crossover rate.

BGC Model: Confronting Predictions with Observations
We have previously reported different observations that

support, qualitatively, the BGC model for the evolution of

isochores [16]. However, it is important to quantify more precisely

the prediction of the BGC model: given that recombination occurs

essentially in hotspots that cover only 3% of the genome, that the

BGC effect in hotspots is weak, and that hotspots have a short

lifespan, is it possible that BGC drive the long term evolution of

the base composition of Mb-long sequences? To address that issue,

we performed theoretical calculations to quantify the potential

impact of BGC on genome evolution.

We considered a model of genome evolution, where sequences

are only subject to mutations and to BGC (i.e. no selection).

Advancing a model by Lipatov and colleagues [55], we assume

here a model in which BGC only occurs in hotspots, with all other

DNA undergoing neutral evolution. Let the fraction of the

genomic region that is involved in a hotspot be f. We assume that

the mutation process is the same both in and out of hotspots and

that the mutations rate from WRS is mwRs and the rate from

SRW is msRw. Then the rate of substitution from WRS in a given

genomic region is:

rw?s~ 1{fð Þ2Nmw?sP 0ð Þzf 2Nmw?sP sð Þ ð2Þ

Figure 3. Correlations between substitution rates and the current GC content in human autosomes. Each dot corresponds to a 1 Mb-
long genomic region. Substitution rates: number of substitutions per site in the human lineage since the divergence from chimpanzee. (A) Total
substitution rate. (B–D) Base-specific substitution rates: (B) CpG G:CRA:T transition rate. (C) non-CpG SRW and WRW substitution rates. (D) WRS
and SRS substitution rates. Regression lines and Pearson’s correlation R2 are indicated.
doi:10.1371/journal.pgen.1000071.g003
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and the rate from SRW is

rs?w~ 1{fð Þ2Nms?wP 0ð Þzf 2Nms?wP {sð Þ ð3Þ

where N is the effective population size and P(s) is the probability

that a mutation subject to BGC of strength s will be fixed. BGC

behaves just like selection of a semi-dominant mutation [21] so:

P sð Þ~ 1{e{2s

1{e{4Ns
ð4Þ

P(0) is the probability that a mutation, which is not subject to

BGC, is fixed under random drift: i.e. P(0) = 1/2N.
The rate of recombination varies along chromosomes, as a

consequence of variations in density and intensity of recombina-

tion hotspots [24]. Thus, the impact of BGC in a given genomic

fragment depends on the local density and intensity of recombi-

nation hotspots. We considered genomic fragments of 1 Mb. We

assume that at this genomic scale, and for the period of time

considered here (i.e. corresponding to the human/chimpanzee

divergence), the hotspot density and average intensity remain

constant during time. However, we do not assume that hotspots

remain at the same position within the fragment. To investigate

independently the impact of hotspot density and intensity on

genome evolution we considered two models: in the first one (M1),

we consider that the rate of recombination in a given genomic

fragment varies only through the density in recombination

hotspots, which are assumed to have all the same intensity; in

the second one (M2), we keep the density of hotspots constant over

across the chromosome but vary the intensity of hotspots in the

genomic fragments. The distribution of densities (for M1) and

intensities (for M2) are chosen to mimic the actually observed

genome wide distributions of recombination rates in the human

genome.

The BGC coefficient (s) depends on the intensity of the hotspot

(i) (i.e. its rate of recombination), the length of the heteroduplex (h)

and the bias in the repair of W:S mismatches (b). It is known that i

varies among hotspots [56]. There is presently no evidence for

variations of b and h along chromosomes. Hence we will simply

assume here that variations in s reflect variations in i, so:

Figure 4. Correlations between substitution rates and crossover rate in human autosomes. Each dot corresponds to a 1 Mb-long
genomic region. Substitution rates: number of substitutions per site in the human lineage since the divergence from chimpanzee. (A) Total
substitution rate. (B–D) Base-specific substitution rates: (B) CpG G:CRA:T transition rate. (C) non-CpG SRW and WRW substitution rates. (D) WRS
and SRS substitution rates. Regression lines and Pearson’s correlation R2 are indicated.
doi:10.1371/journal.pgen.1000071.g004
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s~k|i ð5Þ

where i is the rate of recombination and k a constant factor.

We used equations (2) and (3) to compute SRW and WRS

substitution rates predicted by the BGC model, independently for

transversions, non-CpG transitions and CpG transitions. SRS and

WRW substitution rates are not affected by BGC, and hence were

assumed to be identical to their mutation rates and constant across

the genome.

For our calculations, we chose parameters as realistic as

possible. We considered a sequence with a base composition

typical of the human genome (i.e. GC-content = 40.6%, CpG

density = 1%) (NB: we do not assume that the base composition of

the sequence is at equilibrium). We calculated substitution rates

predicted by the model (at CpG and non-CpG sites) for a period of

time corresponding to the human/chimpanzee divergence. To

estimate mutation rates, we took from our above analyses the

average substitution rates measured in fragments of low recom-

bination of human autosomes (,0.44 cM/Mb, i.e. corresponding

to the first 10% of the dataset). Recombination rates in 1 Mb-long

fragments of human autosomes were taken from HAPMAP data,

and range from 0.02 cM/Mb to 4.71 cM/Mb (1.33 cM/Mb on

average). Recombination hotspots are typically 2 kb long, and

cover 3% of our genome [24]. Thus, the average intensity of

recombination hotspots (i) is 44.4 cM/Mb. In model M1, we

consider that f varies from 0.05% to 10.7% (with i = 44 cM/Mb),

whereas in model M2, i varies from 0.66 cM/Mb to 157 cM/Mb

(with f = 3%). We considered an effective population size N = 104.

We presently have no direct measure of the BGC parameter

within recombination hotspots, but the order of magnitude of this

parameter can be estimated from the analyses of Spencer and

colleagues [23]. These authors computed the average BGC

parameter (4Ns) in large genomic regions by fitting a population

genetics model to the frequency distribution of SNPs in human

populations [23]. They divided their genome-wide data set into

quintiles of recombination rate and found that the average BGC

parameter increases 2.6 fold from 4Ns = 0.5 in genomic regions of

low recombination (i.e. the first 20%, average crossover

rate = 0.42 cM/Mb) to 4Ns = 1.3 in regions of high recombination

(i.e. the top 20%, average crossover rate = 2.54 cM/Mb) [23].

Thus, in these highly recombining regions, the average value of k is

kref = 7.25 1027 (see equation (5)). We computed GC* according to

the substitution rates predicted by models M1 and M2 for several

values of k (from k = kref to k = 10 kref). The values of k for which the

correlation between GC* and crossover rate was the closest to the

one observed in the data were k = 4kref and k = 5kref (i.e. on average,

within recombination hotspots, 4Ns = 5.2 to 6.5). The hypothesis

that k might be 4 to 5 times higher in recombination hotspots than

in the set of highly recombining regions analyzed by Spencer and

colleagues is perfectly plausible, given that the average crossover

rate within recombination hotspots is 17 times higher (44.4 cM/

Mb). The correlation between GC* predicted by model M1 (with

k = 4kref = 2.9 1026) and the rate of crossover in the human genome

is presented in Figure 1b (green dots). The slope of the correlation

is very close to that observed in real data (blue dots). Note that for

the range of recombination rate observed in the human genome

(0.02 cM/Mb to 4.71 cM/Mb), models M1 and M2 give very

similar predictions (Figure 5a). Thus, with realistic parameters, the

BGC model perfectly predicts the correlation between GC* and

crossover rate. Notably, it correctly predicts the erosion of GC-rich

isochores: even in regions of high recombination, BGC is not

strong enough to maintain a GC-content as high as in present GC-

rich isochores. Of course, the correlation is much more noisy in

real data than predicted by our model, because 1) our calculations

do not include any stochastic effect and 2) in real data, the pattern

of mutation is not constant across the genome.

Interestingly, the model predicts that the impact of recombina-

tion on SRW and WRS substitution rates in genomic fragments

is not symmetric. When BGC is not effective (i.e. Ns%1),

substitution rates converge towards mutation rates. But as the

strength of BGC increases then P(s) converges to 1 and P(2s) to 0.

Thus, we obtain:

W?S : rlim
w?s&mw?s 1zf 2Nð Þ ð6Þ

S?W : rlim
s?w~ms?w 1{fð Þ ð7Þ

Hence, whereas BGC can strongly increase rwRs (by a factor f2N),

the decrease in rsRw is limited by f. Again, this prediction of the

model fits perfectly the observations: whereas WRS substitution

rates are positively correlated to crossover rates (Figure 4d), SRW

substitution rates show no or weak negative correlations (Figure 4b,

4c). The slopes of the correlations fit very well with the predictions

of the BGC model (Figure 5b,c,d). Thus, the BGC model predicts

the observed positive correlation between the total substitution

rate and recombination (Figure 4a). Note that the BGC model

predicts no correlation between recombination rate and WRW or

SRS substitution rates. In agreement with this prediction, the rate

of A:TRT:A substitutions is not correlated to crossover rate

(R2 = 0.003, Figure 4c). However, the rate of C:GRG:C

substitutions is weakly positively correlated to crossover rate

(R2 = 0.06, Figure 4d), and the correlation remains significant after

controlling for the effect of variations in GC-content (Table 2).

BGC Model: Substitution Hotspots in Recombination
Hotspots

SRW and WRS substitution rates within recombination

hotspots are given by the following equations (see above equations

2–4 for the notations):

rw?s~2Nmw?sP sð Þ ð8Þ

rs?w~2Nms?wP {sð Þ ð9Þ

Given the BGC parameters inferred previously for an average

recombination hotspot (4Ns = 5.2), SRW substitution rates are

predicted to be 35 times smaller than their corresponding

mutation rates, whereas the WRS substitution rates are predicted

to be 5 times higher than their mutation rates. Thus the SRW

substitution rates at CpG and non-CpG sites are respectively 11

times and 121 times smaller than WRS substitution rates. Hence,

the equilibrium GC is almost 100% within hotspots.

Note however that, for the divergence time considered here, the

total substitution rate predicted within recombination hotspot is

only two times higher than in the rest of the genome (1.1% vs.

0.5%) (this is because the 5-fold increase in rwRs is compensated in

part by the absence of SRW substitutions). Thus, for an average

recombination hotspot (i.e. 4Ns = 5.2), the impact of BGC on the

local substitution rate is relatively modest. Moreover, given that

recombination hotspots move rapidly, most of them should not

create substitution hotspots.

However, the most highly active recombination hotspots are

predicted to result in substitution hotspots. For example, in the

human genome, the intensity of the most extreme hotspot is about
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450 cM/Mb [56]. The rate of substitution in that hotspot is

predicted to be about 11.1%, i.e. about 20 times higher than in the

rest of the genome. Thus, the BGC model predicts the existence of

substitution hotspots, characterized by a very strong GC-bias.

Again, this prediction fits perfectly with the observations: the

analysis of substitution hotspots in the human genome revealed

that the pattern of substitution in these hotspots is strongly biased

towards GC, and that the density in such substitution hotspots is

positively correlated to the crossover rate [57].

BGC Model: The Impact of Recombination Rate and
Effective Population Size

Our model predicts that the BGC process is presently too weak

to maintain GC-rich isochores in the human genome: GC* in Mb-

long regions is predicted to vary in the genome from 34% (in

regions of lowest crossover rate) to 42% in regions of highest

crossover rate (Figure 1b). However, it is known that recombina-

tion rates and effective population sizes vary widely among taxa.

To quantify the potential impact of BGC in other species, we

computed GC* (in 1 Mb fragments) for higher effective population

sizes (up to 50,000) and for higher recombination rates (up to

40 cM/Mb), all other parameters being kept unchanged. As

shown in Figure 5a and Table 4, the BGC model predicts the

formation of very GC-rich isochores in species with higher

effective population sizes or recombination rates.

It should be noted that this range of parameters is realistic. For

example, in chicken, the crossover rate ranges from 2.5 cM/Mb in

macrochromosomes to 21.1 cM/Mb in microchromosomes [58].

If we consider the other parameters (mutation rates, BGC

coefficient, population size) as being the same as in human, this

would correspond to a predicted GC* of about 39% in

macrochromosomes and 57% (model M2) to 64% (model M1)

in microchromosomes. Thus the BGC model predicts a strong

isochore structure in chicken.

Figure 5. Predictions of the BGC model and comparison with observed data in human autosomes. (A) Predicted GC* vs. crossover rate
for different parameters of the BGC model (M1 or M2 (see text)) and different effective population sizes (N). (B–D) Correlations between base-specific
substitution rates and crossover rates in human autosomes (1 Mb windows). Blue and red dots: observed data. Black dots: predictions of the BGC
model (Model M1, N = 10,000).
doi:10.1371/journal.pgen.1000071.g005
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BGC Model: Speed of Evolution of GC-Content
Another important parameter to consider is the speed at which

the GC-content of a genome can evolve. As an estimator of that

speed we can compute the half time of the process (t1/2) i.e. the

time necessary to divide by two the difference between the present

GC-content and the equilibrium GC-content.

If FGC is the frequency of GC nucleotides in the sequence then

the change in the frequency of FGC is:

dFGC

dt
~{FGCrs?wz 1{FGCð Þrw?s ð10Þ

The equilibrium value of x can therefore be found by solving the

equation
dFGC

dt
~0

In a simple model of sequence evolution, with constant and

uniform substitution patterns along each genomic fragment, t1/2

can easily be computed:

t1=2~
ln 2ð Þ

rs?wzrw?s

ð11Þ

The BGC model predicts that substitution patterns should differ in

recombination hotspots compared to the rest of the region.

However, if we assume that recombination hotspots move very

rapidly relative to t1/2 and randomly in a given genomic fragment

(their density remaining constant), then the long-term patterns of

substitution can be considered as uniform and constant. Hence,

given equations (2) and (3) we obtain:

t1=2~
ln 2ð Þ

u 1zf 2N 1{e{2s

1{e{4Ns {1
� �� �

zv 1zf 2N 1{e2s

1{e4Ns {1
� �� � ð12Þ

Table 4 gives the predicted values of t1/2 for different

recombination rates and effective population sizes. In absence of

BGC (i.e. no recombination) t1/2 is about 470 Myrs. In other

words, under a standard neutral model, the evolution of GC-

content is an extremely slow process. But when BGC is effective,

the evolution of GC-content can be much faster (e.g. 62 Myrs in a

genomic region of high recombination rate (30 cM/Mb) in a

species with large population size (N = 50,000)). To estimate t1/2

more precisely, it would be necessary to take into account the

dynamics of movement of recombination hotspots. Presently, little

is known about this dynamics, except that the lifespan of

recombination hotspots is much shorter than 6 Myrs (the location

of hotspots is not conserved between human and chimpanzee).

The assumption that hotspots move very rapidly relative to t1/2 is

therefore correct.

Hence, contrarily to the standard neutral mutational model, the

BGC model predicts that the evolution of GC-rich isochores can

be very rapid in species with large population size and high

recombination rate. Thus, the BGC model provides a realistic

explanation for the rapid origin of GC-rich isochores in the last

common ancestor of amniotes, 310 to 350 Myrs ago [59,60].

Discussion

We analyzed the pattern of substitutions that have occurred in

the human lineage, since the divergence with chimpanzee.

Multivariate regression analyses show that two parameters (the

crossover rate and the distance to telomeres, LDT) have a major

impact on genome evolution, by affecting the relative proportion

of WRS and SRW substitutions. The GC-content of sequences

also affects their pattern of substitution (notably at CpG sites).

However, the impact of GC-content on the evolution of base

composition is relatively weak compared to the two other

parameters.

Crossover rate and LDT are two predictors of recombination

rate. Taken together, these two variables explain 47% of the

variance in GC* at the 1 Mb scale. Thus, our results indicate that

recombination is the major determinant of the evolution of GC-

content in primates. It should be stressed that the correlation

between GC* and the recombination rate is certainly underesti-

mated, because crossover rate and LDT are not expected to be

perfect predictors of the average recombination rate in the human

lineage during the last 6 Myrs. Note that contrarily to estimates of

recombination rates, the measure of GC-content is virtually free of

noise. Moreover, given the evolutionary distance considered here,

the temporal variations in GC-content are negligible (human and

Table 4. Predictions of the BGC model and comparisons with observed values.

N Whole genome Low recombination High recombination

Rec. rate f i GC* t1/2 Rec rate GC* t1/2 Rec. rate GC* t1/2

(cM/Mb) (Myrs) (cM/Mb) (Myrs) (cM/Mb) (Myrs)

Model M1 10000 1.3 3% 44.4 0.37 458 0.3 0.35 469 2.9 0.40 441

M2 10000 1.3 3% 44.4 0.37 457 0.3 0.35 472 2.8 0.39 429

M1 10000 13.5 30% 44.4 0.55 362 2.9 0.40 441 29.1 0.71 276

M2 10000 13.4 3% 444.3 0.51 312 2.9 0.40 428 29.5 0.62 204

M1 20000 13.4 30% 44.4 0.62 261 3.0 0.44 392 29.3 0.78 156

M2 20000 13.2 3% 444.3 0.58 239 2.8 0.43 388 29.8 0.71 128

M1 50000 13.2 30% 44.4 0.73 152 2.8 0.52 306 29.8 0.88 66

M2 50000 13.2 3% 444.3 0.69 145 2.7 0.51 304 29.1 0.81 62

Observations 1.3 3% 44.4 0.37 470 0.3 0.34 498 2.9 0.40 423

The stationary GC-content (GC*) and the half-time of the evolution of GC-content (t1/2) predicted by the BGC model are given for different values of the parameters:
model M1 or M2 (see text). N: effective population size. Rec. rate: genome average recombination rate. f: fraction of the genome involved in recombination hotspots. i:
average intensity of recombination hotspots (cM/Mb). GC* and t1/2 are also given for genomic regions of low and high recombination (corresponding respectively to the
top 10% of lowest or highest recombination rate in the data set). t1/2 is computed assuming that human and chimp diverged 6 Myrs ago.
doi:10.1371/journal.pgen.1000071.t004
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chimpanzee orthologous sequences are 98% identical). Thus,

whereas the impact of recombination on substitution patterns is

underestimated, the impact of GC-content is not. This reinforces

our conclusion that the impact of recombination on sequence

evolution is much stronger than the impact of GC-content.

Our results demonstrate that recombination has been driving

the evolution of GC-content in the human lineage, at least during

the last 6 million years. In chicken chromosomes there is also a

strong correlation between crossover rate and GC-content [58].

Thus, it appears that the same process, associated to recombina-

tion, is responsible for the evolution of GC-rich isochores in the

genomes of mammals and birds. Three different hypotheses can be

proposed to explain this effect of recombination: selection,

mutation or BGC. We will hereafter discuss in detail each of

these models.

The Biased Gene Conversion Model
Allelic gene conversion, i.e. the copy/paste of one allele onto the

other one at heterozygous loci, occurs during meiotic recombina-

tion [61]. Different authors have proposed that this process could

be biased toward GC, so that an AT/GC heterozygote would

produce more GC than AT gametes [11,14,19,20], leading to a

higher probability of fixation of GC over AT alleles. This bias in

the process of gene conversion should therefore lead to an increase

of GC-content in highly recombining regions. It should be noted

that there is experimental evidence for a GC-biased Base-Excision

Repair process in mammals [20,62]. Thus, this provides a

plausible mechanistic basis to the BGC model.

The BGC process should result in a fixation bias in favor of GC

alleles, especially within recombination hotspots. Analyses of

polymorphism at silent sites (synonymous codon positions or

non-coding sequences) are consistent with these predictions: GC-

alleles (i.e. alleles resulting from a WRS mutation) segregate at a

higher frequency than AT-alleles in human populations

[4,23,34,63] and that this bias is strongest at the center of

recombination hotspots [23,64].

We show here that the observed relationship between GC* and

recombination rate fit very well with the predictions of the BGC

model, using realistic parameters (Figure 1b). Interestingly, our

modeling shows that recombination should have a strong impact

on the rate of WRS substitution, but only a weak effect on SRW

substitutions. Again, this prediction of the BGC model fits

precisely with the observations (Table 2, Figure 5). Interestingly,

this model also predicts the observed positive correlation between

the total substitution rate and recombination (Figure 4a).

As mentioned in the introduction, Spencer and colleagues [23]

pointed out several issues with the BGC model. Notably they

argue that in humans, the population-scaled BGC coefficient is too

weak for BGC to have a strong effect on base composition

evolution. Hence they conclude that BGC is not sufficient to

account for the origin of GC-rich isochores. We agree on the first

point: our calculations show that, given the density in recombi-

nation hotspots in the human genome and the estimated effective

population size in our species, BGC is not efficient enough to

maintain the base composition of GC-rich isochores. And in fact

this prediction fits perfectly with the observations: the analysis of

substitution patterns indicate that there is an erosion of the

isochore structure of our genome (Figure 1a) [15,16,33–38].

However, the fact that BGC is presently weak in the human

species does not exclude that BGC might have been more active in

the past and might still be efficient in other species. Indeed, our

calculations show that in species with an effective population size

as large as humans but with a rate of recombination as high as

chicken, BGC can lead to a strong isochore structure. Interest-

ingly, it has been noticed that, contrarily to primates where GC-

rich isochores are being eroded, the genomic heterogeneity in GC

content along the chicken lineage is increasing [65].

Mutagenic Effect of Recombination?
An alternative hypothesis to explain the observed variations in

GC* is that recombination could affect the pattern of mutation.

There is evidence, based on direct experiments in yeast, that

recombination can be mutagenic [66], and it has been speculated

that this might also be the case in mammals [67–71]. Thus if

recombination promotes WRS mutations, this could explain the

correlation between GC* and recombination.

There are two problems with this model. First, there is a priori no

reason why recombination should affect more strongly WRS

mutation rates than other mutations. Second, this mutational

model does not fit with the frequency spectrum of polymorphism

at silent sites. In fact, under the hypothesis that recombination

promotes WRS mutations, in a recent recombination hotspot, one

would expect an excess of recent GC-alleles. Thus, on average,

GC-alleles should segregate at a lower frequency than AT-alleles.

In more ancient recombination hotspots the frequency spectra is

expected to be the same for GC and AT alleles. Thus, the fact that

GC-alleles segregate at higher frequency than AT-alleles and that

this bias is stronger within recombination hotspots [23,64] is

opposite to the pattern expected if recombination promoted WRS

mutations.

It has been recently shown that the apparent difference in

frequency spectrum between GC and AT alleles was partly due to

an artifact of parsimony, resulting form the fact that SRW

substitution rates are generally higher than WRS substitution

rates [72]. Such an artifact however cannot account for the

observation that the excess of GC-alleles at high frequency

increases within recombination hotspots (in fact, since recombi-

nation promotes WRS substitutions, this parsimony artifact

should induce the opposite pattern, i.e. an excess of AT-alleles

segregating at high frequency within recombination hotspots).

Thus, the higher frequency of GC-alleles within recombination

hotspots is a clear demonstration that recombination induces a

fixation bias, favoring GC-alleles. Hence, this rules out the

hypothesis that the correlation between GC* and recombination is

a mere consequence of mutagenic effects of recombination.

This does not demonstrate however that the impact of

recombination on sequence evolution is exclusively due to the

BGC process. Indeed, as shown previously, the BGC model

predicts that recombination should have a weak negative effect on

SRW substitution rates and no effect on SRS and WRW

substitution rates. In contradiction with those predictions, partial

correlation analyses indicate that, after controlling for GC-content,

all base-specific substitution rates tend to be positively to

recombination rate (Table 2). This positive effect of recombination

on SRW, SRS and WRW substitution rates is weak but

significant (the strongest effect is observed for SRS substitution,

R2 = 0.06, Figure 4d). One possible explanation is that, besides its

effect on fixation probability via the BGC process, recombination

might also be mutagenic [67].

However, given the weakness of these correlations, we cannot

exclude that it results from indirect relationships between

recombination rate and other parameters. Notably, it has been

shown that the divergence time between human and chimpanzee

orthologous loci is not constant along chromosomes, because of

variations in coalescence times [73–75]. Recombination decreases

the genetic linkage between sites under selective pressure and

flanking neutral sites. Hence recombination is expected to increase

coalescence time at neutral sites [76,77]. Thus, this process could
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contribute to these positive correlations between substitution rates

and recombination rate. In other words, the weak positive

correlation between substitution rates and recombination rate

cannot be considered as an evidence for a mutagenic effect of

recombination.

Strong Evidence against Selectionist Models of Isochore
Evolution

Several authors have proposed that GC-rich isochores might

result from selection [3,5–8]. It should be noted that the evolution

of isochores affects all kinds of sequences: exons, introns, intergenic

regions, pseudogenes, transposable elements [1]. Thus, if selection

is at work, this is not on the information content of genomic

sequences, but simply on their GC-content. Any selective model

should be able to account for the fixation bias observed on SNPs.

In other words, these selective models must assume that there is a

significant fitness difference between two individuals differing only

by a few point mutations in Mb-long isochores. Even the

proponents of selective models admit that the change in GC-

content resulting from a point mutation is certainly to weak to be

detected by selection [8]. Bernardi (2007) recently proposed a

‘neoselectionist theory’ to explain the evolution of isochores [8]

but, without any mathematical formulation, this model remains

speculative.

A strong argument against these selective models is that they do

not predict the observed strong relationship between GC* and

recombination. In fact, selective models might predict a weak

indirect relationship between GC* and crossover rate. Indeed,

selection is expected to be less efficient in regions of the genome

where the rate of crossover is low, because of the so-called Hill-

Robertson interference (reviewed in [78]). Thus, if there is a

selective pressure in favor of a high GC-content, then this Hill-

Robertson interference would predict a positive correlation

between GC* and the rate of cross-over. The impact of Hill-

Robertson interference on selection efficiency is however very

weak and affects almost exclusively region where the recombina-

tion rate is null [79–82]. Hence, it seems very unlikely that this

Hill-Robertson interference could explain the strong linear

correlation observed between GC* and crossover rate (Figure 1b).

Moreover the Hill-Robertson interference depends on the total

rate of crossover in populations across generations, occurring both

in females and in males. Thus, a priori, the correlation between

GC* and crossover rate should be the same in males and females.

In fact, given that the female effective population size tend to be

larger than male effective population size [83] one should expect,

if anything, a stronger correlation of GC* with female than male

crossover rate. The fact that GC* correlates much more strongly

with male than with females crossover rate therefore definitively

rules out these selective models.

Impact of GC-Content on Substitution Patterns:
Mutagenic Effect of DNA-Melting?

Fryxell and Zuckerkandl (2000) [13] have recently proposed

that isochores might result from a positive feedback loop of

sequence composition on substitution patterns: the rate of CRT

mutations (notably at CpG sites) depends on DNA melting which

in turn depends on GC-content. Thus the rate of SRW mutation

is expected to be higher in AT-rich than in GC-rich regions, which

should tend to increase the contrast in GC-content between GC-

rich and GC-poor isochores [13]. If this process was the main

determinant of the evolution of isochores, then we would expect a

strong correlation between GC* and GC. Thus, our observation

that GC* is much more strongly correlated to recombination rate

than to GC, rules out the model of Fryxell and Zuckerkandl as the

main explanation for the evolution of base composition.

However, our analyses indicate that, after controlling for

recombination rate, the GC-content does have a significant

impact on substitution rate. Notably, SRW and SRS substitution

rates are negatively correlated to GC-content (Table 2). This

observation is consistent with the hypothesis that the rate of

cytosine mutation depends on DNA melting [13]. The CpG

methylation deamination process shows the strongest dependency

on the GC-content. Its overall frequency varies by a factor of two

from about 0.07 substitutions per site in GC-poor regions to about

0.035 in GC-rich regions (R2 = 0.42, Figure 3b). Although the

effect is weaker, WRS and WRW substitution rates are also

negatively correlated to GC-content (after controlling for recom-

bination rate, Table 2). This suggests that DNA melting might

affect all mutation rates. Thus, the pattern of substitution at a

given locus is affected not only by its recombination rate, but also

by its GC-content.

The Impact of Recombination on Substitution Patterns:
Crossover and Non-Crossover Events

One of the reasons why HAPMAP and deCODE genetic maps

do not provide perfect estimators of recombination rate is that

crossovers constitute only a fraction of all recombination events.

Indeed, meiotic recombination is initiated by double-stranded

breaks, the repair of which leads to the formation of a Holliday

junction. This junction is then resolved, either with the exchange

of flanking markers (crossover) or without exchange (non-

crossover). Both cases involve gene conversion (i.e. non-reciprocal

exchange of DNA material between the two chromosomes). Thus,

the total rate of recombination (r) is given by:

r~coznco ð13Þ

where co is the rate of crossover and nco the rate of non-crossover.

If we call g the ratio of non-crossover to crossover, this gives

r~co| 1zgð Þ ð14Þ

It has been shown that g varies along human chromosomes, with

some recombination hotspots showing more crossovers than non-

crossover and vice versa [84]. The BGC process depends on the

total recombination rate (crossover+non-crossover). Thus, GC* is

not expected to be perfectly correlated to the rate of crossover.

The analysis of polymorphism in Drosophila melanogaster sub-

telomeric regions indicates that these regions are subject to a high

rate of recombination despite a low rate of crossover [85].

Interestingly, our partial correlation analyses show that GC* is

negatively correlated to LDT, after controlling for other factors

(crossover rate, GC) (Table 2). In other words, near human

telomeres, GC* is higher than predicted by crossover rate. This

suggests that in mammals, as in drosophila, g might increase as the

distance to telomere decreases. However, more direct estimates of

the total recombination rate will be necessary to validate this

hypothesis.

Male Driven BGC?
We found that GC* is much more strongly correlated with male

than with female crossover rates. This confirms previous results

based on the analysis of substitution patterns in Alu repeats [17]

and in substitution hotspots [57]. A first possible explanation for

this observation is that BGC might be stronger in males than in

females (male-driven BGC). Given that LDT is much more
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strongly correlated to male than to female crossover rates

(respectively R2 = 0.38 and R2 = 0.04, at the 1 Mb, in human

autosomes), this could explain why LDT is a good predictor of

GC*. The strength of BGC depends on three parameters: the

length of heteroduplex, the bias in the repair of W:S mismatches

and the total recombination rate (crossovers+non-crossovers). For

the first two parameters, we presently have no information about

possible sex-specific differences. The rate of crossover (in

autosomes) is on average 65% higher in females than in males

[45]. Thus, BGC is a priori expected to be weaker in males than in

females. However, the average of the ratio of non-crossover to

crossover (g) might be different in the two sexes. Thus, it possible

that the total recombination rate (and hence BGC) is higher in

males than in females.

An alternative explanation is that the strength of BGC is the

same in both sexes but that in females the rate of crossover is only

weakly correlated to the total recombination rate. Indeed, the ratio

of non-crossover to crossover (g) varies along chromosomes, and

hence the rate of crossover is not a perfect estimator of the total

recombination rate. Thus, the lower correlation observed with

female crossover rates might simply be a consequence of stronger

variations of g along chromosomes during female meiosis.

It should be noted that the effective population size of the X

chromosome is only L of that of autosomes. Moreover, the level of

heterozygosity on the X chromosome is 39% lower than in autosomes

(owing to lower mutation rate and reduced effective population size)

[86]. Thus, all else being equal, one should expect a weaker impact of

BGC on the X chromosome compared to autosomes. This could

contribute to the fact that the correlation between GC* and crossover

rate is lower on the X than on autosomes.

Conclusion
Both empirical data and theoretical calculations support the

hypothesis that BGC has a strong impact on the evolution of GC-

content in amniotes. In fact the BGC model explains most of the

properties of isochores and their timing of evolution. Furthermore

our results allowed us to reject the alternative models for the

evolution of isochores (mutation or selection). Thus, we conclude

BGC is the process at the origin of evolution of isochores.

It should be noted that the process that created isochores

affected not only silent sites but also coding regions. Indeed, the

amino-acid composition of proteins is correlated to the GC-

content of the genomic region where the gene is located [87]. In

fact, the impact of BGC on substitution patterns can be very

strong, even in regions that are under selective pressure (coding

sites or regulatory elements). In some cases, BGC overcomes

purifying selection and leads to the fixation of deleterious

ATRGC mutations [22]. We argue that along with mutation,

selection and drift, BGC might be one of the major factors driving

genome evolution and that it is essential to take this process into

account if we want to be able to interpret sequences.

Finally we note that GC* provides information about the long-

term total recombination rate (crossovers+non-crossovers). Nota-

bly, our results indicate that at the 1 Mb scale, recombination

rates are conserved between human and chimpanzee. Thus, the

analysis of recent substitution patterns can provide an insight into

the evolution of recombination and the distribution of crossover

and non-crossover events along chromosomes.

Material and Methods

Genomic Data
We analyzed genome-wide multiple sequence alignments

(multiz alignments) for the three species Homo sapiens (assembly

hg17), Pan troglodytes (panTro1), and Macaca mulatta (rheMac1),

which have been downloaded from the UCSC Genome Browser

website. A total of about 2350 Mb of human sequence segments

are aligned to chimp and macaque segments. To ensure a high

quality of the multiple alignment we include in our analysis only

those sequence segments that are located on human autosomes or

X chromosome, are at least 1500 bp long, and have less than 10%

positions involving a gap in one of the three species. Further, we

remove from the aligned sequences those segments that overlap

with coding segments (exons) according to the annotation of

human genome taken from the Ensembl project [88]. This way we

are left with alignments of non-coding sequences from human,

chimp, and macaque covering about 1 Gb of the human genome.

For our analysis we partition each human chromosome in non-

overlapping windows of constant length. We used the following

window lengths: 100 kb, 200 kb, 500 kb, 1 Mb, 2 Mb, 5 Mb, and

10 Mb. For each of those tilings and in each of its windows we

collected all triple alignment segments falling into a window and

used them to estimate the substitution frequencies as described

below. Depending on the window length we measure substitution

frequencies in 320 (for the 10 Mb) to 30,400 (for the 100 kb)

windows along the human genome. For some analysis we further

restricted the alignments to intergenic or intronic sequences. The

additional masking of simple sequence repeats (that make up only

a small fraction of the genomic DNA) does not change the

estimates of substitution frequencies or the stationary GC content

(not shown).

Data about crossover rates in chromosomal regions has been

obtained from the HAPMAP project [44] and from the deCODE

genetic map [45]. The crossover rates for the sequence windows

were computed as a weighted average of crossover rates in

chromosomal regions that overlap with the corresponding

window.

Model of Nucleotide Substitution
The nucleotide distribution of most contemporary genomes is

still evolving. Whereas the present time GC-content can easily be

measured from the genomic sequence, a more careful analysis is

necessary to estimate the future stationary GC-content. Our

approach to this problem is to measure the nucleotide substitution

frequencies from multiple alignments and to extrapolate from

them the stationary GC-content. However, the measurement

process must not assume neither the stationarity of the nucleotide

distribution nor the time reversibility of the nucleotide substitution

process. These two assumptions are often made during a

phylogenetic analysis and therefore we introduce a new method-

ology which does not make these assumptions and which gives us

more power to interpret our results.

We distinguish two classes of nucleotide substitution processes.

First, there are the 12 distinct substitution processes of indepen-

dently evolving nucleotides. The rates of all these processes, aRb,

will be denoted raRb, where Greek letters represent nucleotides A,

C, G, or T. These rates measure the number of substitutions per

base pair and per time in a sufficiently small time interval such that

multiple substitutions at the same position can be disregarded. For

convenience we write those rates into a 464 matrix with off-

diagonal matrix elements Q
1ð Þ

ba ~ra?b:

Q 1ð Þ~

: rC?A rG?A rT?A

rA?C
: rG?C rT?C

rA?G rC?G
: rC?G

rA?T rC?T rG?T
:

0
BBB@

1
CCCA ð15Þ
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The diagonal elements are constrained by the condition that every

column adds up to zero, i.e. Q 1ð Þ
aa ~{

X
b=a

Q
1ð Þ

ba . In this article we

consider the general reverse complement symmetric substitution

model, which accounts for the fact that a nucleotide substitution

on one strand of the DNA is accompanied by a nucleotide

substitution on the reverse strand to ensure the correct Watson-

Crick base pairing before and after the mutation process. This

is incorporated into our model by having only 6 free para-

meters rATRTA: = rART = rTRA, rGGRGC: = rCRG = rGRC, rATRCG: =

rARC = rTRG, rCGRAT: = rCRA = rGRT, rATRGC: = rARG = rTRC,

rGCRAT: = rGRA = rCRT) assuming the equality of complementary

nucleotide substitutions. In the above notation the time evolution

for the probability, Pb(t), to find a nucleotide b at time t is given by

the Master equation

L
Lt

Pb tð Þ~
X

a

Q
1ð Þ

ba Pa tð Þ ð16Þ

The second class of substitution processes we want to consider are

those that depend on identity of the neighboring nucleotide. One

such process is the CpG methylation deamination process that

triggers the substitution of cytosine in CpG resulting in TpG or

CpA. It is of particular importance to include this process in

models for nucleotide substitutions in vertebrates, since this

process is in fact the predominant substitution process for them

[35]. To include this process we have to consider the dynamics of

three nucleotides, which is governed by a 64x64 rate matrix

Q 3ð Þ~Q 1ð Þ
6I6IzI6Q 1ð Þ

6Iz

I6I6Q 1ð ÞzI6Q
2ð Þ

CpGzQ
2ð Þ

CpG6I
ð17Þ

where I is the 464 identity matrix. The first three terms in the

above expression represent the neighbor independent nucleotide

substitutions on the three sites (modeled using the matrix Q(1)). The

last two terms in the above expression represent additional

neighbor dependent contributions to the dynamics. For the CpG

process, the 16x16 matrix Q
2ð Þ

CpG is given by

Q
2ð Þ

CpG

� �
a0b0ab

~

rCpG?CpA=TpG if a0b0abð Þ~ CACGð Þ

or a0b0abð Þ~ TGCGð Þ

{2rCpG?CpA=TpG if a0b0abð Þ~ CGCGð Þ

0 otherwise

8>>>>><
>>>>>:

ð18Þ

It encodes the modeling of the transition from CpG to CpA or

TpG with rate rCpGRCpA/TpG. Please note that in principle it is

possible to include more than just this one neighbor dependent

process. Rows and columns of Q(3) are now labeled by triplets of

nucleotides b1b2b3 and a1a2a3. The explicit form of the matrix

Q(3) is given in the Supplementary Text S2. As above, the time

evolution for the probability, Pb1
b2b3

tð Þ, to find three consecutive

nucleotides b1b2b3 is given by a Master equation

L
Lt

Pb1b2b3
tð Þ~

X
a1a2a3

Q
3ð Þ

b1b2b3 a1a2a3
Pa1a2a3

tð Þ ð19Þ

This differential equation for the vector of probabilities ~PP tð Þ can

be solved by matrix exponentiation

~PP tð Þ~P 3ð Þ ~PP 0ð Þ ð20Þ

where ~PP 0ð Þ is the initial condition and the 64664 matrix

P 3ð Þ~exp Q 3ð ÞT
� �

ð21Þ

encodes the probabilities of (potentially multiple) substitutions

from a triplet a1a2a3 to b1b2b3 in a finite time interval T. This

probability is given by the matrix element

P b1b2b3 a1a2a3jð Þ~P
3ð Þ

b1b2b3a1a2a3
ð22Þ

Without loss of generality, we will choose T = 1 in the following.

With this choice the rates raaa?bbb and rCpGRCpA/TpG are equal to the

nucleotide substitution frequencies. The above expression will be

used below to compute the likelihood of nucleotide substitutions

along the branches in a given phylogeny. Once the nucleotide

frequencies are known it is easy to compute the stationary single-

and di-nucleotide frequencies considering the TR‘ limit of the

above solution by raising P(3) to a high power.

Maximum Likelihood Framework
Let us consider a N species, which are annotated to the leaf

nodes j = 1,…,N of given phylogeny (see Supplementary Figure S1

for an example). In addition to the leaf nodes there are M internal

nodes at the various branch points j = N+1,…,N+M in the

phylogeny. The number of internal nodes M is always smaller

than the number of leaves; it is maximal if the phylogeny is

bifurcating in which case we have M = N22. Let us further root

the phylogeny at the root node j = 0. All branches in the phylogeny

can now be denoted by ordered pairs (i, j) with i?j and where we

assume that the node i is always nearer to the root than the node j.

For the species on the leaf nodes i = 1,…,N we have nucleotide

sequences ~aai~ ai
1,:::,ai

S

� �
of length S. These sequences are

assumed to be correctly aligned, i.e. homologous sites ai
k have

the same positional index k = 1,…,S. If gaps are present in the

alignment we exclude those sites from further analysis.

The likelihood to observe the current day sequences on the leaf

nodes under a given phylogeny is

L~
X

~aa0,~aaNz1,���,~aaNzM

p 0ð Þ ~aa0
� �Y

i,jð Þ
Pr i,jð Þ ~aaj ~aai

��� �
ð23Þ

where p 0ð Þ ~aa0
� �

denotes the probability to have ~aa0 as the ancestral

sequence, which need not to be the stationary distribution of any of

the used nucleotide substitution models, and Pr i,jð Þ ~aaj ~aai
��� �

are the

transition probabilities of sequences along the edge (i, j)

(parameterized by a sets of substitution rates r(i,j)). The summations

in this expression have to be taken over all 4S configurations of

sequences at the root node j = 0 and internal nodes

j = N+1,…,N+M. Note that the substitution models along each

branch are assumed to be time homogeneous, i.e. their substitution

rates do not change along a single branch. However, these

substitution rates might change from one branch to another and we

do not put any constrains on the rates along time consecutive

branches, e.g. (i, j) and (j, k), or on the rates along branches

originating from a single node, e.g.(i, j) and (i, k). As found in the

main text, substitution frequencies depend on the GC content.

However it is not necessary to include this effect explicitly into our

model, since the GC content only evolves very slowly and this effect

can very well be disregarded on the time scales of our study.
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Maximizing the Likelihood Function – Estimation of
Substitution Frequencies

The likelihood function introduced above can be used to

estimate substitution frequencies from multiple alignments of

nucleotide sequences from contemporary species. For a given

alignment, the likelihood function can be maximized by varying all

parameters r(i,j) attached to each branch and the ancestral

nucleotide distribution. This yields maximum likelihood estimators

of the substitution frequencies.

The Neighbor Independent Case. The likelihood function

introduced above simplifies drastically if nucleotides evolve

independent from each other. The likelihood factorizes and can

be written as

L~
YS
k~1

X
a0

k
,aNz1

k
,���,aNzM

k

p 0ð Þ a0
k

� �Y
i,jð Þ

Pr i,jð Þ a
j
k ai

k

��� �
ð24Þ

where p(0)(a) is now the nucleotide distribution at the root node

and the substitution probabilities Pr i,jð Þ aj
k ai

k

��� �
can be calculated

using formulas in the previous section. An equivalent expression

for the likelihood was already given by [32].

Please note that the computation of the likelihood by ‘pruning’

[32] is possible and allows the effective summation over all

configurations of internal nodes. However the ‘pulley principle’

[32] cannot be applied since we consider also irreversible

substitution models along the edges of the phylogeny which do

not need to obey the detailed balance condition. In general, the

likelihood has to be maximized over the (N+M)66 free substitution

frequencies (for the models along the N+M branches in the

phylogeny) and the ancestral nucleotide frequencies P(0)(a) (3

additional free parameters). The maximization can easily be

achieved using Powell’s algorithm [89], which outperforms other

algorithm that make explicit reference also to partial derivatives of

the likelihood function.

If the root node j = 0 is connected only to two other nodes, say j1
and j2, not all of these (N+M)66+3 parameters can be fixed by

maximizing the likelihood. In this case, the substitution frequencies

r 0,j1ð Þ and r 0,j2ð Þ as well as the ancestral nucleotide frequencies

p(0)(a) have additional degrees of freedom, reflecting the fact that

the position of the root node cannot be fixed along the two edges

(0, j1) and (0, j2) [90]. It can be shown that substitution frequencies

along all the other edges, which are not connected to the root, are

invariant under this ambiguity and identifiable. If, however, the

root is connected to more than two nodes all of the (N+M)66+3

frequencies can be fixed.

Using our approach we are also able to reconstruct the

nucleotide composition p(n)(a) at internal nodes n, which can be

written as:

p nð Þ anð Þ~
X
a0,...

p 0ð Þ a0
� �Y

i,jð Þ
Pr i,jð Þ aj ai

��� �
ð25Þ

where the product includes only those branches (i, j) that constitute

the path connecting the root node 0 with the internal node n in the

phylogenetic tree. Likewise, the sum has to be taken over all states

of the internal nodes along this path. Note that the possible

ambiguities in positioning of the root node do not have an effect

on the nucleotide distributions at internal nodes (excluding the

root), because ambiguities in the substitution frequencies,

r 0,j1ð Þ and r 0,j2ð Þ, and the ancestral nucleotide frequencies, p(0)(a),

cancel computing the nucleotide distribution at internal nodes

(excluding the root).

The Neighbor Dependent Case – Monte-Carlo Maximum-

Likelihood Method. Unfortunately, the likelihood in equation

(23) does not factorize in the presence of neighbor dependent

substitution processes like the CpG methylation deamination

process. To still be able to maximize the likelihood we

introduce a Monte-Carlo Maximum-Likelihood (MCML)

approach, which combines elements of the two methods in a

very efficient way. In an iterative fashion we will first (M-step)

estimate substitution frequencies for a given ancestral sequence

at the internal nodes (using a maximum likelihood approach)

and then (E-step) get a new estimate for the sequence at

internal nodes for given substitution frequencies (using a Monte

Carlo approach).

The iteration is initialized setting the sequences at the internal

nodes to be the consensus of all its descendant sequences. If

nucleotides at one position are not equal in all descendant

sequences one of them is chosen at random. Initializing with a

random sequence prolongs but not prevents the convergence of

the algorithm to the maximum.

In the M-step substitution frequencies (including the ones of

neighbor dependent processes) are estimated from comparisons

of ancestral and daughter sequences as described in [35,54].

This is done using a maximum likelihood approach, which

accounts for multiple and back substitutions at the same site,

and estimates very accurately the substitution frequencies. The

estimation of substitution frequencies is done independently

along all edges (i, j) in the phylogeny yielding sets of frequencies

r(i,j).

In the E-step we update the ancestral sequences at the internal

nodes. To do this we make use of a Monte Carlo procedure.

Sequentially, we consider the sequences ~aai at each internal node

i = N+1,…,N+M (starting from nodes nearest to the leaves and

ascending upwards towards the root).

For each position k = 1,…,S we propose to update and exchange

the nucleotide ai
k by another nucleotide âai

k. The newly proposed

nucleotide is accepted with a certain probability, which is

computed using local likelihoods (at position k on node i):

Li
k ai

k{1ai
kai

kz1

� �
~Pr a,ið Þ ai

k{1ai
kai

kz1 aa
k{1aa

kaa
kz1

��� �
Y
i,jð Þ

Pr i,jð Þ aj
k{1aj

kaj
kz1 ai

k{1ai
kai

kz1

��� � ð26Þ

where a is the unique ancestral node to the node i and the product

includes only those branches (i, j) which originate from node i and

connect to its descendant nodes j. The transition probabilities are

defined in equation (21) with substitution frequencies taken from

the estimates in M-step. The update ai
k?âai

k is always accepted if

the likelihood increases, i.e. if the likelihood ratio

l~Li
k ai

k{1âai
kai

kz1

� ��
Li

k ai
k{1ai

kai
kz1

� �
ð27Þ

is larger than one. If this ratio is smaller than one the update is

only accepted with probability l. If there is an alignment gap in

any of the sequences at position k, this position is excluded from

our analysis. If there is an alignment gap at one of the neighboring

positions, k21 and k+1, the nucleotide on position k is assumed to

evolve only according to those processes that do not include this

neighboring site. In principle, this procedure could give rise to

misleading estimates when the number of gapped positions in our
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alignment is high. However, this is not the case in our analysis of

closely related genome sequences.

For the root node i = 0 we have to modify this update procedure

and consider the following local likelihood

L0
k a0

k{1a0
ka0

kz1

� �
~p 0ð Þ a0

k{1a0
ka0

kz1

� �
Y
0,jð Þ

Pr i,jð Þ a
j
k{1a

j
ka

j
kz1 a0

k{1a0
ka0

kz1

��� � ð28Þ

where p(0)(a1a2a3) is the trinucleotide distribution of the ancestral

sequence ~aa0, which is assumed to be homogeneous along the

sequence and can be measured from the sequence~aa0 right before

starting with E-step. In the above expression we only take the left

and right neighbors of the position k into account. This

approximation to the full likelihood function is very well justified

for the CpG methylation deamination process (see in [54] for

details and the Supplementary Text S3 for numerical confirma-

tion).

This iteration of the E and M step has to be performed several

times until convergence of the substitution frequencies and the tri-

nucleotide distribution at the root node is established. In our

application this was generally accomplished after about 40

iterations.

As mentioned above for the neighbor independent case, the

substitution frequencies of edges connected to the root and the

trinucleotide distribution of the ancestral sequence ~aa0 cannot be

reconstructed if the root is connected to only two other nodes. This

fact however does not influence the convergence of the algorithm.

Only the estimates of the substitution frequencies along the two

branches connected to the root are generally not correct.

Note that Hwang and Green proposed a method, based on a

Bayesian approach, to compute substitution rates, taking into

account non-stationary, non-reversible and neighbor dependent

substitutions processes [91]. Although the method is different, the

principle of their approach is very similar to ours and the results

are expected to be the same. The main difference is that Hwang

and Green consider all neighbor dependent processes (WXYR?Z?)

and try to estimate the rates for all of them, while we only include

the CpG process. Therefore our model has much less parameters

and needs much less data (and computation time) to get estimates

of these parameters. Note that we showed previously that the

inclusion of more neighbor dependent processes is likely not to be

significant enhancement of the model [54]. We also reassessed this

issue in the current setting without finding significant changes in

the estimates of the stationary GC content.

The estimates of substitution frequencies from finite amounts of

sequence data are always subject to statistical noise. In general, the

uncertainty Dr in the substitution frequencies is proportional to

1
� ffiffiffiffi

L
p

, where L denotes the sequence length. This prevents us

from estimating substitution frequencies from too little sequence

data and we therefore do not consider tilings of the human

genome smaller than 100 kb.

We performed extensive simulation experiments to test the

MCML algorithm, under many different evolutionary scenarios

(including the one corresponding to our alignment data set). These

simulations showed that, the estimates obtained by our method are

very accurate apart for the two branches connected to the root

node, for which ambiguities in the positioning of root node prevent

reliable estimates of substitution frequencies (for details see

Supplementary Materials: Text S3, Figure S1, Figure S2, Table

S1, and Table S2).
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Figure S1 A test phylogeny with 5 leaves which has been used

for the first test of the MCML algorithm.

Found at: doi:10.1371/journal.pgen.1000071.s001 (0.05 MB PDF)

Figure S2 A test phylogeny with 3 leaves (reflecting the situation

of human, chimp, and macaque alignments), used for the second

test of the MCML algorithm.

Found at: doi:10.1371/journal.pgen.1000071.s002 (0.04 MB PDF)

Table S1 Nucleotide and substitution frequencies for synthetic

sequence data on the phylogeny in Figure S1.

Found at: doi:10.1371/journal.pgen.1000071.s003 (0.13 MB PDF)

Table S2 Nucleotide and substitution frequencies for synthetic

sequence data on the phylogeny in Figure S2.

Found at: doi:10.1371/journal.pgen.1000071.s004 (0.12 MB PDF)

Text S1 Correlations between the stationary GC-content and

the current GC-content, the crossover rate and distance to

telomeres.

Found at: doi:10.1371/journal.pgen.1000071.s005 (0.05 MB PDF)

Text S2 Explicit definition of the matrix Q(3) defined in the

Materials and Methods section.

Found at: doi:10.1371/journal.pgen.1000071.s006 (0.18 MB PDF)

Text S3 Tests of the MCML algorithm using synthetic sequence

data.

Found at: doi:10.1371/journal.pgen.1000071.s007 (0.10 MB PDF)

Acknowledgments

We thank Webb Miller for providing alignments of primate genomes,

Marie Sémon and Sylvain Mousset for their help in statistical analyses and

in the modeling of the BGC process. Many of the ideas presented here

stemmed from discussions with Nicolas Galtier. We thank Adam Eyre-

Walker, Dominique Mouchiroud, Dmitri Petrov and three anonymous

referees for helpful comments.

Author Contributions

Conceived and designed the experiments: LD PA. Performed the

experiments: LD PA. Analyzed the data: LD PA. Contributed reagents/

materials/analysis tools: LD PA. Wrote the paper: LD PA.

References

1. Eyre-walker A, Hurst LD (2001) The evolution of isochores. Nat Rev Genet 2:

549–555.

2. Filipski J, Thiery JP, Bernardi G (1973) An analysis of the bovine genome by

Cs2SO4-Ag density gradient centrifugation. J Mol Biol 80: 177–197.

3. Bernardi G (1993) The vertebrate genome: isochores and evolution. Mol Biol

Evol 10: 186–204.

4. Eyre-walker A (1999) Evidence of selection on silent site base composition in

mammals: potential implications for the evolution of isochores and junk DNA.

Genetics 152: 675–683.

5. Lercher MJ, Urrutia AO, Pavlicek A, Hurst LD (2003) A unification of

mosaic structures in the human genome. Hum Mol Genet 12: 2411–

2415.

6. Vinogradov AE (2003) Isochores and tissue-specificity. Nucleic Acids Res 31:

5212–5220.

7. Vinogradov AE (2005) Noncoding DNA, isochores and gene expression:

nucleosome formation potential. Nucleic Acids Res 33: 559–563.

8. Bernardi G (2007) The neoselectionist theory of genome evolution. Proc Natl

Acad Sci U S A 104: 8385–8390.

Recombination and the Evolution of Isochores

PLoS Genetics | www.plosgenetics.org 17 May 2008 | Volume 4 | Issue 5 | e1000071



9. Wolfe KH, Sharp PM, Li WH (1989) Mutation rates differ among regions of the
mammalian genome. Nature 337: 283–285.

10. Filipski J (1990) Evolution of DNA Sequence Contributions of Mutational Bias

and Selection to the Origin of Chromosomal Compartments. In Advances in
Mutagenesis Research 2: 1–54.

11. Eyre-walker A (1993) Recombination and Mammalian Genome Evolution.
Proc R Soc Lond B - BiolSci 252: 237–243.

12. Francino MP, Ochman H (1999) Isochores result from mutation not selection.
Nature 400: 30–31.

13. Fryxell KJ, Zuckerkandl E (2000) Cytosine deamination plays a primary role in

the evolution of mammalian isochores. Mol Biol Evol 17: 1371–1183.

14. Galtier N, Piganeau G, Mouchiroud D, Duret L (2001) GC-content evolution in

mammalian genomes: the biased gene conversion hypothesis. Genetics 159:
907–911.

15. Meunier J, Duret L (2004) Recombination drives the evolution of GC-content in

the human genome. Mol Biol Evol 21: 984–990.

16. Duret L (2006) The GC Content of Primates and Rodents Genomes Is Not at

Equilibrium: A Reply to Antezana. J Mol Evol 62: 803–806.

17. Webster MT, Smith NG, Hultin-Rosenberg L, Arndt PF, Ellegren H (2005)

Male-driven biased gene conversion governs the evolution of base composition

in human alu repeats. Mol Biol Evol 22: 1468–1474.

18. Khelifi A, Meunier J, Duret L, Mouchiroud D (2006) GC Content Evolution of

the Human and Mouse Genomes: Insights from the Study of Processed
Pseudogenes in Regions of Different Recombination Rates. J Mol Evol 62:

745–752.

19. Lamb BC (1985) The effects of mispair and nonpair correction in hybrid DNA
on base ratios (G+C content) and total amounts of DNA. Mol Biol Evol 2:

175–188.

20. Brown TC, Jiricny J (1989) Repair of base-base mismatches in simian and

human cells. Genome 31: 578–583.

21. Nagylaki T (1983) Evolution of a finite population under gene conversion. Proc
Natl Acad Sci U S A 80: 6278–6681.

22. Galtier N, Duret L (2007) Adaptation or biased gene conversion? Extending the
null hypothesis of molecular evolution. Trends Genet 23: 273–277.

23. Spencer CC, Deloukas P, Hunt S, Mullikin J, Myers S, et al. (2006) The

influence of recombination on human genetic diversity. PLoS Genet 2: e148.

24. Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map

of recombination rates and hotspots across the human genome. Science 310:
321–324.

25. Ptak SE, Hinds DA, Koehler K, Nickel B, Patil N, et al. (2005) Fine-scale
recombination patterns differ between chimpanzees and humans. Nat Genet 37:

429–434.

26. Winckler W, Myers SR, Richter DJ, Onofrio RC, McDonald GJ, et al. (2005)
Comparison of fine-scale recombination rates in humans and chimpanzees.

Science 308: 107–111.

27. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. (2002)

Initial sequencing and comparative analysis of the mouse genome. Nature 420:

520–562.

28. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al.

(2007) Identification and analysis of functional elements in 1% of the human
genome by the ENCODE pilot project. Nature 447: 799–816.

29. Ellegren H, Smith NG, Webster MT (2003) Mutation rate variation in the

mammalian genome. Curr Opin Genet Dev 13: 562–568.

30. Collins TM, Wimberger PH, Naylor GJP (1994) Compositional Bias, Character-

State Bias, and Character-State Reconstruction Using Parsimony. Systematic
Biology 43: 482–496.

31. Eyre-walker A (1998) Problems with parsimony in sequences of biased base

composition. J Mol Evol 47: 686–690.

32. Felsenstein J (1981) Evolutionary Trees from DNA-Sequences - a Maximum-

Likelihood Approach. Journal of Molecular Evolution 17: 368–376.

33. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) Initial

sequencing and analysis of the human genome. Nature 409: 860–921.

34. Duret L, Semon M, Piganeau G, Mouchiroud D, Galtier N (2002) Vanishing
GC-rich isochores in mammalian genomes. Genetics 162: 1837–1847.

35. Arndt PF, Petrov DA, Hwa T (2003) Distinct changes of genomic biases in
nucleotide substitution at the time of Mammalian radiation. Mol Biol Evol 20:

1887–1896.

36. Webster MT, Smith NG, Ellegren H (2003) Compositional evolution of

noncoding DNA in the human and chimpanzee genomes. Mol Biol Evol 20:

278–286.

37. Belle E, Duret L, Galtier N, Eyre-walker A (2004) The Decline of Isochores in

Mammals: An Assessment of the GC Content Variation Along the Mammalian
Phylogeny. J Mol Evol 58: 653–660.

38. Arndt PF, Hwa T, Petrov DA (2005) Substantial regional variation in

substitution rates in the human genome: importance of GC content, gene
density, and telomere-specific effects. J Mol Evol 60: 748–763.

39. Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of
base substitution hotspots in Escherichia coli. Nature 274: 775–780.

40. Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA.

Nucleic Acids Res 8: 1499–1504.

41. Galtier N, Gouy M (1998) Inferring pattern and process: Maximum-likelihood

implementation of a nonhomogeneous model of DNA sequence evolution for
phylogenetic analysis. Molecular Biology and Evolution 15: 871–879.

42. Boussau B, Gouy M (2006) Efficient likelihood computations with nonreversible

models of evolution. Systematic Biology 55: 756–768.

43. Arndt PF, Burge CB, Hwa T (2003) DNA sequence evolution with neighbor-

dependent mutation. J Comput Biol 10: 313–322.

44. The International HapMap Consortium (2005) A haplotype map of the human

genome. Nature 437: 1299–1320.

45. Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, et al. (2002)

A high-resolution recombination map of the human genome. Nat Genet 31:

241–247.

46. Gerton JL, Derisi J, Shroff R, Lichten M, Brown PO, et al. (2000) Global

mapping of meiotic recombination hotspots and coldspots in the yeast

Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97: 11383–11390.

47. Blat Y, Protacio RU, Hunter N, Kleckner N (2002) Physical and functional

interactions among basic chromosome organizational features govern early steps

of meiotic chiasma formation. Cell 111: 791–802.

48. Petes TD, Merker JD (2002) Context dependence of meiotic recombination

hotspots in yeast: the relationship between recombination activity of a reporter

construct and base composition. Genetics 162: 2049–2052.

49. Rudd MK, Friedman C, Parghi SS, Linardopoulou EV, Hsu L, et al. (2007)

Elevated rates of sister chromatid exchange at chromosome ends. PLoS Genet 3:

e32.

50. Jeffreys AJ, Neumann R (2005) Factors influencing recombination frequency

and distribution in a human meiotic crossover hotspot. Hum Mol Genet 14:

2277–2287.

51. Coop G, Przeworski M (2007) An evolutionary view of human recombination.

Nat Rev Genet 8: 23–34.

52. Kaback DB (1996) Chromosome-size dependent control of meiotic recombina-

tion in humans. Nat Genet 13: 20–21.

53. Pardo-manuel De Villena F, Sapienza C (2001) Recombination is proportional

to the number of chromosome arms in mammals. Mamm Genome 12: 318–322.

54. Arndt PF, Hwa T (2005) Identification and measurement of neighbor-dependent

nucleotide substitution processes. Bioinformatics 21: 2322–2328.

55. Lipatov M, Arndt PF, Hwa T, Petrov DA (2006) A novel method distinguishes

between mutation rates and fixation biases in patterns of single-nucleotide

substitution. J Mol Evol 62: 168–175.

56. Myers S, Spencer CC, Auton A, Bottolo L, Freeman C, et al. (2006) The

distribution and causes of meiotic recombination in the human genome.

Biochem Soc Trans 34: 526–530.

57. Dreszer TR, Wall GD, Haussler D, Pollard KS (2007) Biased clustered

substitutions in the human genome: The footprints of male-driven biased gene

conversion. Genome Res 17: 1420–1430.

58. International Chicken Genome Sequencing Consortium (2004) Sequence and

comparative analysis of the chicken genome provide unique perspectives on

vertebrate evolution. Nature 432: 695–716.

59. Hughes S, Zelus D, Mouchiroud D (1999) Warm-blooded isochore structure in

Nile crocodile and turtle. Mol Biol Evol 16: 1521–1157.

60. Kuraku S, Ishijima J, Nishida-Umehara C, Agata K, Kuratani S, et al. (2006)

cDNA-based gene mapping and GC3 profiling in the soft-shelled turtle suggest a

chromosomal size-dependent GC bias shared by sauropsids. Chromosome Res

14: 187–202.

61. Marais G (2003) Biased gene conversion: implications for genome and sex

evolution. Trends Genet 19: 330–338.

62. Bill CA, Duran WA, Miselis NR, Nickoloff JA (1998) Efficient repair of all types

of single-base mismatches in recombination intermediates in Chinese hamster

ovary cells. Competition between long-patch and G-T glycosylase-mediated

repair of G-T mismatches. Genetics 149: 1935–1943.

63. Lercher MJ, Smith NG, Eyre-Walker A, Hurst LD (2002) The evolution of

isochores: evidence from SNP frequency distributions. Genetics 162: 1805–1810.

64. Spencer CC (2006) Human polymorphism around recombination hotspots.

Biochem Soc Trans 34: 535–536.

65. Webster MT, Axelsson E, Ellegren H (2006) Strong regional biases in nucleotide

substitution in the chicken genome. Mol Biol Evol 23: 1203–1216.

66. Strathern JN, Shafer BK, Mcgill CB (1995) DNA synthesis errors associated with

double-strand-break repair. Genetics 140: 965–972.

67. Lercher MJ, Hurst LD (2002) Human SNP variability and mutation rate are

higher in regions of high recombination. Trends Genet 18: 337–340.

68. Hellmann I, Ebersberger I, Ptak SE, Paabo S, Przeworski M (2003) A neutral

explanation for the correlation of diversity with recombination rates in humans.

Am J Hum Genet 72: 1527–1535.

69. Filatov DA, Gerrard DT (2003) High mutation rates in human and ape

pseudoautosomal genes. Gene 317: 67–77.

70. Filatov DA (2004) A gradient of silent substitution rate in the human

pseudoautosomal region. Mol Biol Evol 21: 410–417.

71. Bussell JJ, Pearson NM, Kanda R, Filatov DA, Lahn BT (2006) Human

polymorphism and human-chimpanzee divergence in pseudoautosomal region

correlate with local recombination rate. Gene 368: 94–100.

72. Hernandez RD, Williamson SH, Zhu L, Bustamante CD (2007) Context-

Dependent Mutation Rates May Cause Spurious Signatures of a Fixation Bias

Favoring Higher GC-Content in Humans. Mol Biol Evol.

73. Chen FC, Li WH (2001) Genomic divergences between humans and other

hominoids and the effective population size of the common ancestor of humans

and chimpanzees. Am J Hum Genet 68: 444–456.

Recombination and the Evolution of Isochores

PLoS Genetics | www.plosgenetics.org 18 May 2008 | Volume 4 | Issue 5 | e1000071



74. Patterson N, Richter DJ, Gnerre S, Lander ES, Reich D (2006) Genetic

evidence for complex speciation of humans and chimpanzees. Nature 441:
1103–1108.

75. Barton NH (2006) Evolutionary biology: how did the human species form? Curr

Biol 16: R647–650.
76. Begun DJ, Aquadro CF (1992) Levels of naturally occuring DNA polymorphism

correlate with recombination rates in Drosophila melanogaster. Nature 356:
519–520.

77. Charlesworth B (1992) Evolutionary biology. New genes sweep clean. Nature

356: 475–476.
78. Gordo I, Charlesworth B (2001) Genetic linkage and molecular evolution. Curr

Biol 11: R684–686.
79. Kliman RM, Hey J (1993) Reduced natural selection associated with low

recombination in Drosophila melanogaster. Mol Biol Evol 10: 1239–1258.
80. Marais G, Mouchiroud D, Duret L (2001) Does recombination improve

selection on codon usage? Lessons from nematode and fly complete genomes.

Proc Natl Acad Sci U S A 98: 5688–5692.
81. Marais G, Piganeau G (2002) Hill-Robertson interference is a minor

determinant of variations in codon bias across Drosophila melanogaster and
Caenorhabditis elegans genomes. Mol Biol Evol 19: 1399–1406.

82. Haddrill PR, Halligan DL, Tomaras D, Charlesworth B (2007) Reduced efficacy

of selection in regions of the Drosophila genome that lack crossing over. Genome
Biol 8: R18.

83. Wilder JA, Mobasher Z, Hammer MF (2004) Genetic evidence for unequal
effective population sizes of human females and males. Mol Biol Evol 21:

2047–2057.

84. Holloway K, Lawson VE, Jeffreys AJ (2006) Allelic recombination and de novo

deletions in sperm in the human beta-globin gene region. Hum Mol Genet 15:

1099–1111.

85. Langley CH, Lazzaro BP, Phillips W, Heikkinen E, Braverman JM (2000)

Linkage disequilibria and the site frequency spectra in the su(s) and su(w(a))

regions of the Drosophila melanogaster X chromosome. Genetics 156: 1837–

1852.

86. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, et al. (2001)

A map of human genome sequence variation containing 1.42 million single

nucleotide polymorphisms. Nature 409: 928–933.

87. D’onofrio G, Mouchiroud D, Aissani B, Gautier C, Bernardi G (1991)

Correlation between the compositional properties of human genes, codon

usage, and amino-acid composition of proteins. J Mol Evol 32: 504–510.

88. Birney E, Andrews D, Caccamo M, Chen Y, Clarke L, et al. (2006) Ensembl

2006. Nucleic Acids Res 34: D556–561.

89. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical

Recipes in C, The art of scientific computing: Cambridge University Press.

90. Chang JT (1996) Inconsistency of evolutionary tree topology reconstruction

methods when substitution rates vary across characters. Math Biosci 134:

189–215.

91. Hwang DG, Green P (2004) Bayesian Markov chain Monte Carlo sequence

analysis reveals varying neutral substitution patterns in mammalian evolution.

Proceedings of the National Academy of Sciences of the United States of

America 101: 13994–14001.

Recombination and the Evolution of Isochores

PLoS Genetics | www.plosgenetics.org 19 May 2008 | Volume 4 | Issue 5 | e1000071


