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Abstract

B-1 cells play a critical role in early protection during influenza infections by producing natu-
ral IgM antibodies. However, the underlying mechanisms involved in regulating this process
are largely unknown. Here we found that during influenza infection pleural cavity B-1a cells
rapidly infiltrated lungs, where they underwent plasmacytic differentiation with enhanced
IgM production. This process was promoted by IL-17A signaling via induction of Blimp-1
expression and NF-kB activation in B-1a cells. Deficiency of IL-17A led to severely impaired
B-1a-derived antibody production in the respiratory tract, resulting in a deficiency in viral
clearance. Transfer of B-1a-derived natural antibodies rescued //77a” mice from otherwise
lethal infections. Together, we identify a critical function of IL-17A in promoting the plasma-
cytic differentiation of B-1a cells. Our findings provide new insights into the mechanisms
underlying the regulation of pulmonary B-1a cell response against influenza infection.

Author Summary

Influenza infection is highly localized in respiratory tract where immune response is triggered
to provide protection from primary infection. Although natural IgM antibodies produced by
B-1a cells have long been recognized as first-line protection against influenza, it remains
unclear whether B-1a cell response occurs in the lung and what molecular mechanisms regu-
late this process. We show that airway exposure to influenza causes migration of B-1a cells to
lungs for further differentiation into plasma cells with enhanced production of protective
IgM antibodies. IL-17A critically regulates this process by driving differentiation of B-1a cells
to high-rate IgM producing plasma cells in situ. Thus, IL-17A is a key factor in the local
inflammatory milieu that modulates early humoral immunity afforded by B-1a cells.

Introduction

Highly localized infection in respiratory tract is a defining feature of influenza infection. An
appropriate induction of both innate and adaptive immune responses at this site is necessary
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for virus elimination and host recovery. B cell response is triggered primarily in respiratory
tract, which is essential for antiviral immune response against influenza infections by opsoniza-
tion of pathogens, activation of complement receptor-mediated phagocytosis and promotion
of other immune defenses [1-4]. Influenza virus-binding antibodies are provided by two
sources, B-1 cells and conventional B-2 cells. Due to the low frequency of antigen-specific B-2
cells at the onset of infection and a general requirement for simultaneous T cell help, early
induction of natural antibody response by B-1 cells is critical. B-1 cell-associated antigen recep-
tors are biased with respect to BCR repertoire and preferentially recognize conserved epitopes
present on common pathogens [3,5]. In addition, B-1 cells are known to secrete most natural
antibodies spontaneously at very low level and do so in the apparent absence of antigen chal-
lenge [5,6]. Thus, this class of lymphocytes provides efficient immune surveillance by produc-
ing natural neutralizing IgM antibodies before isotype class-switched, high affinity-maturated
IgG can be produced by B-2 cells [7-11]. B-1 cells are enriched in the pleural and peritoneal
cavities where pulmonary or intestinal infections usually occur [5], which consist of two func-
tionally specialized subpopulations, CD5* B-1a and CD5™ B-1b cells [12-14]. B-1a cells pro-
duce most of the natural antibodies and can also participate in innate responses upon antigen
stimulation [15-18]. Previous studies have shown the localized accumulation of B-1a cells in
mediastinal lymph nodes (MedLN) during influenza infection [3]. However, it remains to be
investigated whether B-1a cell response occurs in the lung and if so, what molecular mecha-
nisms regulate this process during infection.

IL-17A has been identified as a pro-inflammatory cytokine and participates in chronic
inflammation and autoimmune diseases via its effects on a broad range of target immune cells
[19-22]. Either deficiency or blockade of IL-17A signaling diminishes antibody responses [23-
26]. Early studies have shown that IL-17A-mediated signaling is critical for early control of pul-
monary bacterial infections [27]. We previously reported that IL-17A deficient (1117a”") mice
exhibited impaired viral clearance and more severe immunopathological changes after H5N1
influenza virus infection when compared with wild type (WT) controls [28]. However, it has
remained unclear whether IL-17A deficiency affects B-1 cell response during influenza
infection.

Here, we show for the first time that airway exposure to influenza causes migration of pleu-
ral B-1a cells to lungs for further differentiation into plasma cells with enhanced production of
protective IgM antibodies, a process critically regulated by IL-17A-mediated NF-kB activation
and Blimp-1 induction. Our findings provide new insights into natural antibody response by
B-1a cells and its regulatory mechanisms.

Results

IL-17A deficiency severely impairs natural antibody production following
influenza infection

In HIN1 influenza virus-infected mice, significantly up-regulated IL-17A expression was
detected in lung tissue as early as 2 days post-infection (dpi) (SIA Fig). Among immune cell
subsets present in the lung tissue, IL-17A-producing y3T cells were detected by flow cytometric
analysis in naive mice (S1B and S1C Fig), and the size of this IL-17A" y8T population signifi-
cantly increased at 2 dpi and peaked by 5dpi (S1D and S1E Fig). In contrast, very few IL-17A™
CDA4" T cells were detected in naive lungs, and the size of this cell population did not increase
until 5dpi (S1C and S1E Fig). Therefore, IL-17A™ y8T cells represent the major source of IL-
17A produced at early stage of pulmonary influenza infection.

To assess a protective function of IL-17A against influenza infection in vivo, we found that
HINI1 virus-infected I117a”"~ mice exhibited significantly reduced survival rate compared with
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WT controls (Fig 1A). In addition to the reduction in body weight, a much higher viral burden
was detected in HINI-infected I117a”" mice (Fig 1B and 1C), suggesting a deficiency in viral
clearance in 117a™ mice. Further histological analysis revealed substantially increased severity
of lung damage in I117a”" mice, characterized by pronounced inflammatory destruction and
leukocyte infiltration (Fig 1D and 1E). In WT mice, intra-nasal administration of HINT1 virus
induced a rapid anti-virus IgM response in bronchoalveolar lavage fluid (BLF) whereas local
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Fig 1. IL-17A deficiency severely impairs early antibody production during influenza infection. (A) The survival rates of HI1N1 influenza virus-infected
WT and //77a” mice were monitored for 14 successive days (n = 23). The survival curve was determined using Kaplan-Meier analysis. (B) Body weight
changes of mice in (A) were monitored for 14 successive days (n = 23). (C) The copy number of influenza virus NP gene in the lung tissues at 5dpi was
measured by quantitative real-time PCR (n = 6). (D) Representative H&E histology of lung tissues from WT and //77a”- mice were evaluated at 5 dpi following
challenge with H1N1 influenza virus. Sections are representative of five mice in each group. Images are at magnification x 200. (E) Combined histological
scores of lung sections of infected mice in (D) were determined in a blinded manner according to the relative degree of inflammation and tissue damage. (F)
Absolute concentrations of IgM, IgA, and IgG in the bronchoalveolar lavage fluid (BLF) of H1N1 influenza-infected WT mice at different time points were
quantified with ELISA assay. Antibody levels at different time points were compared with the control at 0 dpi (n = 12). (G) Total IgM, virus-specific IgM and
PC-specific IgM levels in BLF of WT and //77a” mice were determined during the course of H1N1 influenza virus infection by ELISA assay (n = 6). Data are
represented as mean + SEM. *, p < 0.05, ** p <0.01, *** p<0.001.

doi:10.1371/journal.ppat.1005367.9001
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IgG levels did not increase significantly until 7 dpi (Fig 1F). In contrast with WT mice, this
early IgM response was severely impaired in Il17a”" mice (Fig 1G). Notably, we also detected
markedly reduced phosphorylcholine (PC)-specific IgM production in BLF of HIN1-infected
1l17a™" mice (Fig 1G). Since previous studies found that PC-specific natural antibodies were
exclusively produced by B-1a cells in naive mice [29-31], these data indicate that IL-17A defi-
ciency might lead to impaired B-1a cell response during influenza infection.

-/-

B-1a cell-derived antibodies protect //717a™ mice against influenza virus

To determine whether B-1a cells infiltrate in the lung tissue in response to influenza infection,
we examined the kinetic changes of pulmonary B-1a cells in HIN1 virus-infected WT mice by
flow cytometry (Fig 2A). As early as 2 dpi, a marked increase of CD19*IgM"CD43"CD5" B-1a
cells was found in the lung tissue and peaked at 5 dpi (Fig 2A and 2B). Accumulation of infil-
trated B-1a cells was also observed in the lung tissue of 111 7a™" mice (S2A and S2B Fig). Their
presence in lung tissue was further confirmed with histological examination (Fig 2C).

To determine the cellular source of infection-induced IgM, we enumerated the frequencies
of IgM-producing cells in lung tissue by ELISPOT analysis. Remarkably, we detected a signifi-
cant amount of infiltrated virus-specific IgM-producing B-1a cells, which was 15-fold more
than virus-specific IgM-producing B-2 cells in the lung tissues by ELISPOT analysis (Fig 2D
and 2E). These results suggest that [gM-producing B-1a cells in lung tissue serve as the pre-
dominant source of influenza virus-binding IgM at early stages of infection.

After establishing a key role of B-1a cells in early virus-specific antibody production in lung
tissue and observing significantly impaired B-1a cell response in Il17a”~ mice, we next deter-
mined whether timely induced natural antibodies by B-1a cells are critical for the survival of
1117a”" mice. Previous studies showed that B-2 and B-1b cells, but not B-1a can be efficiently
generated when bone marrow is transplanted to adult mice [18,32]. In this study, we con-
structed irradiation chimeras with B-1a cell depletion, which was achieved by reconstituting
the full body-irradiated mice with bone marrow cells only, whereas transfer of bone marrow
cells together with pleural cavity B-1 cells allowed full regeneration of B-2, B-1a and B-1b cell
populations in irradiated mice (Fig 2F and S3A and S3B Fig). Upon reconstitution, serum levels
of virus-specific and PC-specific IgM were very low in mice receiving bone marrow cells alone
(S3C Fig). Transferring serum from the chimera mice with fully reconstituted B-1a cells into
HIN1 virus-infected I117a”~ mice was performed at 1 dpi. These I117a”~ mice exhibited much
higher survival rates when compared to I117a”~ mice that received serum from the chimera
mice without B-1a cells or Il17a”" mice with no serum transfer (Fig 2G). These data demon-
strate that impaired B-1a cell responses largely account for the reduced survival of HIN1-in-
fected I117a”" mice.

To rule out the possibility that I117a”"~ mice have intrinsic defect in natural antibody pro-
duction from B-1a cells, we next examined the mice at naive state. Detailed analysis of un-chal-
lenged WT and I117a”" mice found no significant differences in total numbers of B-1 cell
subsets in either plural or peritoneal cavities (S4A and S4B Fig). Moreover, similar levels of
total IgM, virus-specific and PC-specific IgM were detected in BLF and serum of naive mice
(54C and $4D Fig). Therefore, these results collectively suggest that IL-17A is essential for early
induction of natural antibody from B-1a cells during HIN1 infection, but not for their normal
development or function at the naive state.

IL-17A promotes plasmacytic differentiation of pulmonary B-1a cells

Next, we performed cytospin preparations on sorting-purified B-1a cells from lung tissue or
pleural cavity. B-1a cells in lung tissue were found to be morphologically distinguishable from
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Fig 2. B-1a cell-derived natural antibodies are required for early protection of 1117a”- mice from death. (A) Representative flow cytometric profiles
(n=5) show CD19*IgM*CD43*CD5"* B-1a cells in lung tissue of H1N1-infected WT mice from 0 to 7 dpi. Frequencies of B-1a cells are indicated. (B) Absolute
numbers of B-1a cells represented in (A) are shown. Data are mean values * SEM. *** p < 0.001 for each group compared to 0 dpi group (n = 5). (C)
Examination of the lung tissues of WT mice at 2 dpi by immunofluorescence microscopy. Sections were stained for CD19 (cyan), CD43 (red), CD5 (green)
and DAPI (blue). Images are at original magnification x400 (left panel), with a 5x enlargement of the image at right. CD19"CD43*CD5* B-1a cells are
indicated with arrows. Scale bar, 40 um. (D) B-1a and B-2 cells from the lung of infected WT mice (n = 6) at 4 dpi were sorting purified. Single-cell
suspensions were cultured for 16 hours to assess spontaneous IgM secretion. Data are representative of two independent experiments. (E) Shown are the
numbers of virus-specific IgM-producing or total IgM-producing B-1a or B-2 cells per 1x10* cells or per lung as detected by ELISPOT in (D) (n = 3). (F)
Schematic description of B-1a depletion in mouse models. Female WT mice between 6 to 8-week of age were used to generate B-1a cell-eliminated mice.
Mice were full-body irradiated with 956 cGy of Caesium. To construct mice without B-1a cells, 3x10% WT mice-derived bone marrow (BM) cells were injected
i.v. via the tail vein into mice 8 hours post irradiation. Control mice were generated by transferring both 3x10° BM cells and 5x10° pleural cavity cells from WT
mice. The elimination of B-1a cells was analyzed 2 months after cell transfer. (G) WT and //17a” mice were infected with HIN1 influenza virus. Infected
1117a” mice were i.v. injected 0.5 ml serum from naive WT mice, irradiated WT mice reconstituted with BM and cavity cells, or irradiated WT mice
reconstituted with only BM cells at 1, 3, 5 dpi. Mice were monitored for their survival rate for 14 successive days. Survival curve was determined using
Kaplan-Meier analysis. (n = 7—17). Data are represented as mean + SEM. *, p <0.05, **, p <0.01, *** p <0.001.

doi:10.1371/journal.ppat.1005367.9002
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B-1a cells in the pleural cavity and had a more differentiated plasma cell appearance (Fig 3A),
indicating that B-1a cells underwent plasmacytic differentiation after migration into lung tis-
sue. Although B-1a cells from lung tissue of infected I117a”" mice revealed an apparent plasma-
cytic morphology, they were morphologically distinguished with B-1a cells from lung of
infected WT mice by exhibiting reduced cytoplasm-to-nucleus ratio (Fig 3A). Since CD138
expression has been associated with plasmacytic differentiation of B-1a cells [33], we examined
the levels of CD138 expression on B-1a cells by flow cytometry. As shown in Fig 3B, 3C and
3D138 expression was similar on pleural B-1a cells between WT and Il17a™" mice from naive
and infected mice, but markedly upregulated on B-1a cells in lung tissues from infected mice.
Further analysis reveals a much higher level of CD138 on B-1a cells from lung of WT mice
than that of I117a”" mice.

To examine whether IL-17A affects B-1a differentiation and antibody production in vivo,
we evaluated the antibody producing capacity of B-1a cells from lung tissue and pleural cavities
of naive or virus-infected WT and I117a”~ mice. Spontaneous but negligible IgM production
was detected in pleural B-1a cells (Fig 3C), resulting in large numbers of pinhead-size ELI-
SPOTs, without significant antibody secretion detected in the supernatant (Fig 3D and 3E).
Also, no differences in frequencies of IgM producing cells or IgM made per cell were observed
between WT and Il17a” mice either before or after infection (Fig 3D and 3F). However,
markedly increased IgM was detected in culture supernatant of sorting-purified B-1a cells from
lung tissues (Fig 3D-3F). In accordance with this result, much larger and heavier antibody-
forming spots were observed by ELISPOT analysis (Fig 3C). The increased amounts of IgM
secreted per B-1a cell from lung tissue was detected based upon the concentrations of IgM in
culture supernatants and correlated spot frequencies detected by ELISPOT (Fig 3F). Thus,
these data suggest that pulmonary B-1a cells become high-rate immunoglobulin-producing
plasma cells after migration into lungs of infected mice.

We then compared the antibody production by B-1a cells from WT and Il17a” mice. B-1a
cells from lung tissue of I117a”~ mice showed significantly decreased frequencies of IgM-produc-
ing cells and reduced levels of antibodies in culture supernatants (Fig 3C-3E). When IgM levels
were correlated with spot frequencies detected by ELISPOT, the amount of IgM secreted per B-1a
cell from I117a™ mice was only 2/3 of that from W' controls (Fig 3F). Together, these data sug-
gest that IL-17A deficiency impairs B-1a plasmacytic differentiation during influenza infections.

IL-17A promotes B-1a cell differentiation and antibody production via
activation of NF-kB and up-regulation of Blimp-1

Flow cytometric analysis revealed that IL-17 receptors A (IL-17RA) and C (IL-17RC) were
expressed at high levels on B-1a cells from pleural cavities of WT mice (Fig 4A and 4B). To
examine whether IL-17A directly affects B-1a cells, we found that B-1a cells markedly increased
their antibody production when treated with IL-17A in culture (Fig 4C). ELISPOT analysis
confirmed the increased numbers of antibody-producing B-1a cells after IL-17A treatment (Fig
4D and 4E). We also detected up-regulated levels of aid, irf-4 and xbp-1 transcripts in B-1a
cells upon IL-17A treatment (Fig 4F and S1 Table). Moreover, up-regulation of Blimp-1, IRF4,
and XBP-1 at both mRNA and protein levels was detected in IL-17A-treated B-1a cells (Fig 4F
and 4G and S5 Fig). Notably, IL-17A enhanced the processing of NF-xB1 precursor p-105 and
increased the nuclear translocation of p-65 in B-1a cells (Fig 4H). Together, these data demon-
strate a direct function for IL-17A in promoting B-1a cell differentiation and antibody
production.

As the existence of multiple binding sites for NF-kB was predicted in the promoter of prdm-
1 gene that encodes the transcriptional factor Blimp-1 (Fig 5A and S1 Table), we performed
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Fig 3. IL-17A deficiency impairs plasmacytic differentiation of B-1a cells during influenza infection. (A) Morphology of B-1a cells from the pleural
cavity of naive mice, or pleural cavity and lung tissues of H1N1-infected WT and //77a” mice at 5 dpi was examined by cytospin preparation and Wright's
staining. (B) Mean fluorescent intensity (MFI) of CD138 expression on B-1a cells from pleural cavity of naive mice, or pleural cavity and lung tissues of
H1N1-infected WT and //77a”~ mice were examined with flow cytometry. (n = 3). (C) B-1a cells from pleural cavity and lung tissue of H1N1-infected WT and
1117a” mice (n = 6) at 0 or 5 dpi were sorting purified and pooled together. Production of total IgM, virus-specific |gM and PC-specific IgM was detected with
ELISPOT. Representative ELISPOT profiles of B-1a cells isolated from indicated organs of naive or H1N1-infected mice are shown. Data are representative
of two independent experiments. (D) ELISPOT analysis of total and virus-specific IgM producing B-1a cells as in (C). (E) ELISA analysis of total and virus-
specific IgM in supernatants of cultured cells as in (C). (F) IgM secretion per B-1a cell was quantified based upon IgM detected in culture supernatants in (E)
and correlated spot frequencies detected by ELISPOT in (D). Data are represented as mean + SEM. n=3. *, p <0.05, **,p < 0.01.

doi:10.1371/journal.ppat.1005367.9003
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Fig 4. IL-17A signaling promotes differentiation and antibody production of B-1a cells. (A) Flow cytometric analysis of IL-17 receptor A (IL-17RA) and
IL-17 receptor C (IL-17RC) expression on pleural B-1a (red line), B-1b (red dashed line) and B-2 (blue line) cells stained with IL-17RA and IL-17RC Abs or
isotype control Abs (shaded line). Data are representative of five independent experiments. (B) MFI of IL-17RA and IL-17RC expression on pleural B-1a, B-
1b and B-2 cells was determined by flow cytometry. (n = 3) (C) B-1a cells were sorting-purified from pleural cavity of WT mice, and cultured with or without
rmlIL-17A (20 ng/ ml) for 5 days. Production of total IgM, PC-specific IgM and virus-specific IgM in supernatants of cultured B-1a cells was examined with
ELISA assay. Data are representative of five independent experiments (NT, no-treatment). (D) B-1a cells in (C) were subjected to ELISPOT analysis after 5
days of culture. Production of total IgM, PC-specific IgM and virus-specific IgM by B-1a cells was examined by ELISPOT assay. Data are representative of
three independent experiments. (E) ELISPOT analysis of total IgM, PC-specific IgM and virus-specific IgM producing B-1a cells as in (D). (F) Sorting purified
B-1a cells from pleural cavity of WT mice were cultured with or without rmIL-17A (20 ng/ ml) for 24 hours. Gene expression in B-1a cells was examined with
real-time PCR assay. (G) Western blot analysis of Blimp-1 expression in sorting purified cavity B-1a cells treated with rmIL-17A (20 ng/ ml) for different time

intervals. (H) Western blot analysis of NF-kB activation in sorting purified cavity B-1a cells treated with rmIL-17A (20 ng/ ml) for different time intervals. Data
are represented as mean + SEM. *, p < 0.05, **, p <0.01, ***, p <0.001.

doi:10.1371/journal.ppat.1005367.9004

the chromatin immunoprecipitation (CHIP) assay to determine whether IL-17A signaling
could elicit this response. Indeed, NF-xB bound to multiple sites in the prdm-1 gene promoter
following IL-17A treatment. Moreover, amplification with primers for predicted sites 4, 8, 9,
10, 12 in the prdm-1 promoter showed increased levels of products (Fig 5B). Furthermore, we
observed increased nuclear translocation of NF-kB/p65 upon IL-17A treatment by confocal
microscopy (Fig 5C).
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Fig 5. IL-17A signaling upregulates prdm-1 transcription via activating NK-kB binging on the
promoter of prdm-1 gene. (A) Putative binding sites of NF-kB on the promoter of prdm-1 gene. (B) NF-kB
binding on the promoter of prdm-1 gene upon stimulation of rmIL-17A (20 ng/ ml) at indicated time points.
Data are representative of four independent experiments. (C) Immunofluorescence microscopy shows trans-
nucleus location of NF-kB as revealed by fluorescent staining of p65 in sorting purified B-1a cells treated with
rmlIL-17A (20 ng/ ml) at different time points.

doi:10.1371/journal.ppat.1005367.9005

Discussion

The ability of B-1 cells to produce natural IgM antibodies is an important part of the innate
immune system. Many studies have characterized B-1 cells as first-line effectors of host
defenses prior to the development of adaptive humoral and cellular immune responses
[2,3,10,34]. Current investigations have mainly focused on the development and homeostasis
of B-1 cells [13,14], but much remains to be determined about the regulatory mechanisms
underlying B-1 response against infections. In this study, we have found that the B-1a subset
preferentially and rapidly immigrates into the lungs of HIN1-infected mice. Recent studies
have shown that IL-17A plays a crucial role in promoting germinal center formation and anti-
body production by B-2 cells [23,24,35], but a function of IL-17A in regulating B-1 cell
responses has not been established. Here, we demonstrate that B-1a cells express functional
surface receptors for IL-17A while IL-17A promotes B-1a cell differentiation via NF-xB activa-
tion and Blimp-1 induction. Moreover, IL-17A drives the differentiation of pulmonary B-1a
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cells into high-rate IgM producing plasma cells in HIN1-infected mice. Of particular impor-
tance, B-1a cell-derived natural antibodies can rescue Il17a”~ mice from otherwise lethal infec-
tions, indicating a critical role of IL-17A in regulating B-1a response against HIN1 infections.

Tissue specific micro-environmental factors may favor the plasmacytic differentiation of B-
1a cells and need to be identified. Possibly relevant, B cell-activating factor (BAFF), a TNF fam-
ily cytokine produced by macrophages and dendritic cells, regulates the survival of peritoneal
B-1 cells [36]. Organs such as lung and gut were previously thought to be non-immune but
now appear to actively shape immune functions of a broad range of immune cells [37,38].
There is emerging evidence indicating lung as a potential site for lymphocyte education during
the onset of diseases [37,38]. In the current study, up-regulated IL-17A expression was detected
in lung tissues of influenza-infected mice as early as 2 dpi. Our detailed analysis has demon-
strated a critical role of IL-17A in supporting plasmacytic differentiation of B-1a cells both in
vivo and in vitro.

Early studies found that B-1 cells constitutively secrete small amounts of IgM and may be
maintained in a “semi-activated” or “pre-plasma” cell state [39]. IgM antibody-production of
B-1a cells is closely related with their egression from peritoneal and pleural cavities to other
lymphoid organs [16,40], where they can differentiate into plasma cells [41-43]. A similar tran-
sition may occur following influenza infection. Existing evidence indicates that B-1a cells can
actively accumulate in the lung-draining lymph nodes following influenza infection [3]. Here
we have further demonstrated the functional significance of local differentiation of B-1a cells
in the lung tissue and its regulating signal. We show that lung-infiltrated B-1a cells were more
plasma cell-like with respect to morphology and transcription profiles as compared to ones
present in the pleural cavity. Moreover, the plasmacytic differentiation of B-1a cells contributes
to increased natural antibody level that is critical for animal survival.

Our current understanding of transcriptional regulation for plasmacytic differentiation
comes mainly from the investigation of B-2 cells. Previous studies have identified a network of
transcriptional factors that regulate plasmacytic differentiation. One principle molecule closely
associated with this process of B-2 cells is Blimp-1, the master regulator of plasmacytic differ-
entiation [44,45]. Blimp-1 orchestrates a gene expression program that drives B cells to become
plasma cells through the repression of genes involved in the B-2 cell proliferation, antigen pre-
sentation, germinal center reactions, and B-T cell-cell interaction [45]. Ectopic expression of
Blimp-1 is sufficient to drive B-2 cells to differentiate into antibody-secreting cells [46,47].
Although several studies demonstrated that B-1 cells constitutively express low but detectable
levels of Blimp-1 in steady state [48], and antibody production of B-1a cells requires Blimp-1
[48,49], the regulatory mechanisms underlying plasmacytic differentiation of B-1a cells, partic-
ularly the involvement of Blimp-1 during this process, remain to be elucidated. We have
observed that up-regulated Blimp-1 expression at both mRNA and protein levels is closely
associated with IL-17A-induced differentiation of B-1a cells both in vivo and in vitro. Thus, it
is possible that plasmacytic differentiation of B-1a cells requires similar regulatory mechanisms
involving Blimp-1 as compared with B-2 cells. Nuclear factor-kB (NF-«xB) was first described
as a transcription factor in B cells that binds to the enhancer element controlling immunoglob-
ulin kappa light chain expression [50]. Highly activated and constitutive levels of NF-xB were
reported in B cells [51] whereas its decreased expression led to cell death or growth arrest [51-
53]. Considering that the steady state tonic signaling in B-1 cells in the absence of specific stim-
ulation represents a major difference from B-2 cells [54-57], it is reasonable to speculate that
the threshold levels of NF-kB activation in B-1 cells maintain the natural antibody production.
In support of this hypothesis, we detected increased nuclear translocation of NF-kB p65 in B-
1a cells upon IL-17A stimulation by Western blot analysis. Moreover, multiple binding sites of
NF-kB on the promoter of prdm-1 gene were confirmed by CHIP analysis, consistent with
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recent findings that NF-«xB binding to the promoter of Prdm-1 directly induces Blimp-1 tran-
scription and expression during plasmacytic differentiation of B cells [58,59]. Together, our
results reveal a novel function of IL-17A in activating the NF-xB-Blimp1 axis for B-1a cell
differentiation.

The adaptive immunity requires the cognate interaction between T and B cells and clonal
expansions to generate antigen specific response and memory. Despite their relatively low fre-
quency in the secondary lymphoid tissues, the properties of B-1 cells that secrete antibodies
with repertoire that is enriched for highly poly-specific to microbial antigens provide a unique
advantage for their pivotal role in first-line protection [8,9,49]. One striking benefit of innate
B-1a response is its rapid and effective response to control the initial infection [2,3,34,60]. The
proximity of pleural cavity to the lung provides pleural B-1a cells the advantage to respond
quickly to pulmonary infections. Based on the in vivo and in vitro analyses, we have shown that
influenza infection triggers a series of rapid events in the lung where B-1a cells become IgM
secreting plasma cells under the influence of IL-17A. Of particular importance, the IL-17A-
mediated Bl-a response is closely correlated with animal survival from HINI infection, which
may suggest a potential therapeutic target for the treatment of influenza infections.

Materials and Methods
Mice and viral challenge

Female I117a”" mice on C57BL/6 background and C57BL/6 WT control mice between 6-8
weeks of age were used. II1 7a”"~ mice were obtained from Dr. Yoichiro Iwakura [61] at the
Institute of Medical Science, The University of Tokyo, Japan. And C57BL/6 mice were pur-
chased from the Jackson Laboratory (Bar Harbor, ME, USA). All the mice were housed in spe-
cific pathogen-free laboratory animal unit of the University of Hong Kong, and were given free
access to food and water.

For HIN1 influenza virus challenge experiments, mice were housed in biosafety level-2 indi-
vidual ventilation cages (IVCs) and given free access to food and water. Experiments were fol-
lowed with the standard operating procedures in a biosafety level-2 laboratory and were
approved by the Institutional Animal Ethics Committee, The University of Hong Kong. The
50% lethal dose (LDs;) of A/PR/8/34 was determined in C57BL/6 mice after serial dilution of
the viral stock from embryonated hens’ eggs, and LD, does of A/PR/8/34 were adopted in
viral challenge experiments. After anesthetized with isoflurane, mice were intranasally (i.n.)
challenged with 30pl virus diluted in PBS. Weight loss, signs of illness and survival were moni-
tored for 14 successive days. Mice were sacrificed at the indicated time points for examination.

Ethics statement

All animal experiments were approved by the Committee on the Use of Live Animals in Teach-
ing and Research (CULATR) at the University of Hong Kong (CULATR project number:
2735-12 and 3681-15), following the Code of Practice for Care and Use of Animals for Experi-
mental Purposes established by the Animal Welfare Advisory Group, Agriculture, Fisheries
and Conservation Department, and approved by the Government of the Hong Kong Special
Administrative Region.

Virus preparation

Influenza type A virus, HIN1 strain A/Puerto Rico/8/1934, was propagated in the allantoic
cavity of 10-day-old embryonated hens’ eggs at 37°C with 65% humidity for 48 hours as previ-
ously described [28,62]. Allantoic fluid was collected and stored in aliquots. To prepare
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inactivated virus, the allantoic fluid was concentrated and purified in a 10-50% sucrose gradi-
ent by centrifugation at 25000, 4°C for 2 hours. 0.25% formalin (v/v) was used to inactivate
the purified virus at 4°C for 7 days. Further purification was performed with Amicon Ultra
Membrane (4208) (Millipore, Billerica, MA, USA), with a molecular weight cutoff at 30 kDa.
The products were re-suspended in phosphate-buffered saline (PBS). Inactivation of the virus
was confirmed by the absence of cytopathic effects and detectable hemagglutination (HA) in
the supernatant of two consecutive 50% tissue culture infectious dose (T'CIDs) assays by the
method of Reed and Muench [62,63].

Elimination of B-1a cells

Female C57BL/6 mice between 6-8 weeks of age were used to generate B-1a eliminated mice.
Briefly, mice were full-body irradiated with 956 cGy of Caesium. To construct mice without B-
1a cells, eight hours after irradiation, 3x10° bone marrow cells from C57BL/6 mice were
injected intravenously (i.v.) via the tail vein into irradiated mice. Control mice were generated
by transferring both 3x10° bone marrow cells and 5x10° peritoneal cavity cells from C57BL/6.
Mice with B-1a cell depletion was analyzed 2 months after cell transfer.

Serum transfer experiment

Infected I117a”~ mice were i.v. injected 0.5ml of serum from naive WT mice, irradiated WT
mice reconstituted with BM and cavity cells, or irradiated WT mice reconstituted with only
BM cells at 1, 3, 5 dpi, respectively. Mice were monitored for the survival rate for 14 successive
days.

Flow cytometry

Cells were incubated at 4°C with Fc-blocking reagent (Biolegend) before the addition of the
appropriate fluorochrome-labeled mAbs. For multicolor flow cytometric analysis, cell samples
were stained with the following monoclonal antibodies specific for following phenotypic mark-
ers: anti-B220-FITC (clone RA3-6B2), anti-B220-PE (clone RA3-6B2), anti-CD5-PE7 (clone
53-7.3), anti-CD43-PE (S11), anti-Gr1-FITC (clone RB6-8C5), anti-CD19-PerCp-Cy5.5
(6D5), anti-IgM-APC (clone RMM-1), anti-CD11b-PE (clone M1/70), anti-IL-17RA-PE and
the isotype-matched control antibody from Biolegend (San Diego, CA, USA) or BD Biosci-
ences Pharmingen (San Diego, CA, USA); anti-IL-17RC-APC and the isotype-matched control
antibody from R&D (USA). Fluorescent stained cells were then analyzed with FACS Aria I
flow cytometer (BD Biosciences) and analyzed with Flow]Jo software (Tristar).

Lung fixation and histological assessment

Mice were sacrificed at the indicated time points post-infection, and tissues were inflated with
10% neutral buffered formalin for at least 24 hours before processing and embedding. Lung tis-
sue was sectioned at 6-pm thickness and stained with hematoxylin and eosin for histopatholog-
ical evaluation. Slides were examined in a blinded manner and scored with a semi-quantitative
system as previously described [28] according to the relative degree of inflammation and tissue
damage [64-66]. The cumulative scores of inflammatory infiltration, degeneration and necro-
sis provided the total score per animal. Lung infiltration of inflammatory cells was scored as
follows: 0, no inflammation; 1, mild peribronchial and peribronchiolar infiltrates, extending
throughout <10% of the lung; 2, moderate inflammation covering 10-50% of the lung; 3,
severe inflammation involving over one-half of the lung. Degeneration was scored as follows:
0, no degeneration; 1, little vacuolar degeneration of bronchi and bronchiole epithelium cells,
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normal pulmonary alveoli; 2, mild necrosis of bronchi and bronchiolar epithelium, mild alveoli
damage; 3, severe degeneration. Necrosis was scored as follows: 0, no necrosis; 1, mild necrosis
with scant exudate; 2, marked necrosis with abundant exudate; 3, severe interstitial edema
around blood vessels, apparent injured parenchyma and degenerated alveolar epithelial cells
with greater infiltration of inflammatory cells.

For immuno-fluorescent examination, tissues were embedded in OCT, and snap-frozen in
liquid nitrogen. Cryo-sections (6 um) were stained with monoclonal antibodies specific for
phenotypic markers and examined with confocal microscope Carl Zeiss LSM 710. Slides were
examined in a blinded manner.

Bronchoalveolar lavage fluid (BLF) collection

BLF was prepared by instilling 0.5 ml of sterile-filtered PBS through the trachea into the lung

airways and aspirated with a syringe. Lavage fluid was centrifuged at 1,500 rpm for 5 minutes

and collected supernatant was stored at -80°C for further examination. Total protein levels in

BLF were determined by Bradford protein assay (BIO-RAD, Hercules CA). Antibody concen-
trations in BLF were examined with ELISA assay.

RNA extraction and quantitative PCR analysis

Lung tissues or PBS washed cells were homogenized in Trizol (Invitrogen, Life technologies),
following procedures as previous described [28]. Briefly, total RNA samples were prepared
with an RNeasy Kit (Qiagen, Hilden, Germany) and reverse transcribed with SuperScript III
First-Strand Synthesis SuperMix (Invitrogen, Carlsbad, CA, USA). Real-time PCR was per-
formed using Platinum SYBR Green gPCR SuperMix-UDG with ROX (Invitrogen) according
to the manufacturer’s instructions with an Applied Biosystems Prism 7900HT real-time PCR
system (Foster City, CA, USA). Real-time PCR reactions were set up under the following con-
ditions: 95°C for 2 min, 40 cycles of 95°C for 15 s and 60°C for 30 s. The threshold cycle (CT)
of gene products was determined and set to the log-linear range of the amplification curve and
kept constant. Relative expression of genes was calculated as 2**" with normalization to the
corresponding internal genes. To determine the copy numbers of the HIN1 NP viral RNA in
infected lungs, Total 2ug RNA was reverse transcribed, and 4ul of reverse transcribed products
was subjected to real-time PCR analysis. The serial diluted pHW2000 plasmid constrcted with
viral NP gene (Genebank: KT314335.1) of the HIN1 influenza A virus (A/Puerto Rico/8/1934)
was used as quantitative standard.

Cells

Single cell suspensions of mouse splenocytes, lymph node or lung were obtained from fresh tis-
sue samples. Mouse B-1a or B-2 cells were sorting-purified with a BD FACSArial cell sorter.
Total lung cells were isolated as described [67]. Briefly, mice were sacrificed and perfused with
PBS via injection into the right ventricle, which flushed blood vessels in the lungs. Lung tissue
was harvested for digestion with type II collagenase and DNase I (Merck, Whitehouse Station,
NJ, USA) for 1 hour at 37°C. After red blood cell lysis with ACK buffer, the cell number was
enumerated. Frequencies of various immune cell populations were examined by immuno-
staining and flow cytometric analysis.

ELISA assay

Samples including BLF, serum or supernatants from cell culture were collected for measuring
the production of IgM using a colorimetric sandwich ELISA. Standard capture antibody,
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phosphorylcholine (PC)-BSA (Biosearch Technologies) or purified influenza virus, biotiny-
lated detection antibody and horseradish peroxidase (HRP)-conjugated streptavidin were used.
The reactions were developed after the reaction of 3,3',5,5'-Tetramethylbenzidine (TMB)
ELISA substrate solution (Fisher Scientific) and read in a Microplate Absorbance Reader
(TECAN, Austria) at OD450nm absorption. Total IgM was quantitatively determined with
serial diluted IgM standard (Biolegend). Arbitrary units of A/Puerto Rico/8/1934-specific or
PC-specific IgM titers, defined as U/ml, were determined by comparision to hyper-immune
sera from WT mice. Binding of that serum at 1x10* dilution was set as 1U.

ELISPOT assay

Coating was performed in a 96-well filtration plate (cat. No. MAHAS4510) with 100ul of 5ug/
ml goat anti-mouse IgM, purified inactivated HIN1 influenza virus A/PR/8/34, or PC-BSA in
coating buffer (or PBS), and incubated at 4°C overnight. Plates were washed and then blocked
with RPMI 1640 with 10% fetal bovine serum (R10) at room temperature for 1 hour. Purified
cells (0.2-0.02x10°) were seeded into wells and incubated overnight at 37°C. Plates were
washed thoroughly before the addition of goat anti-mouse IgM-AP (1:1000) diluted in 1%
BSA-PBS overnight at 4°C. After washing, plates were developed by adding BCIP/NBT solution
(Sigma-Aldrich). Spot formation was monitored visually and stopped immediately by gently
washing the plate.

Cytospin preparation and Wright’s staining

Single cell suspensions were washed and diluted in 100 pl of RPMI-1640 medium with 10%
tetal bovine serum (FCS). Cytospin preparation was performed at 500 rpm for 2 minutes in a
Shandon CytoSpin III Cytocentrifuge (Thermo Scientific, USA). The slides were fixed in cold
acetone at room temperature for 5 to 10 minutes before Wright’s staining. To perform the
Wright’s staining of cytospin-prepared cells, sufficient quantity of Wright Stain Solution (Elec-
tron Microscopy Sciences, USA) was placed upon the smear for 3 minutes at room tempera-
ture. After washing the stained smear, the film was allowed to dry in the air and mounted with
mounting medium.

Chromatin immunoprecipitation (CHIP) assay

B-1a cells purified from C57BL/6 mice were stimulated with 20ng/ ml of IL-17A. At 1, 2,4, 6,8
and 24 hours post-stimulation, B-1a cells were collected for CHIP assay based on the manufac-
turer’s instruction (CHIP assay kit, Beyotime, China). Briefly, Cells were cross-linked with 1%
formaldehyde, and lysed with SDS lysis buffer. Equal amount of proteins were immunoprecipi-
tated with anti-p65 or anti-normal mouse IgG overnight. The immuno-complex was captured
by protein A/G agarose beads for 2 hours, washed and eluted with elution buffer. After reverse
cross-linking of protein/DNA complexes in 0.2M NaCl at 65°C for 5 hours, DNA was purified
according to the manufacturer’s instruction (DNA Purification Kit, Beyotime, China). Real-
time PCR was conducted to detect the putative NF-xB binding sequences in the promoter of
prdm-1 gene.

Statistical analysis

Data in this study were indicated as mean with standard error. Statistical comparisons were cal-
culated by the Student’s t-test. To construct the survival curve of HIN1 influenza virus-infected
mice, the Kaplan-Meier analysis method was adopted in the analysis. A value of P<0.05 was
considered statistically significant for all the data.
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Accession numbers

The UniProt (http://www.uniprot.org/) accession numbers for genes and proteins discussed in
this paper are: mouse Blimp-1, Q60636; mouse AID, QQWVEQ; mouse IRF4, Q64287; mouse
XBP-1, 035426; mouse IL-17A, Q62386; mouse HPRT, P00493.

Supporting Information

S1 Fig. IL-17A is induced in lung tissue during HIN1 influenza infection. (A) Levels of IL-
17A transcripts in lung tissue of HIN1 influenza-infected WT mice were detected by quantita-
tive real-time PCR and are expressed relative to naive levels, with the values at various time
points compared with naive controls (n = 4-7). (B) Kinetic changes of immune cell populations
in the lung tissue of HIN1 influenza-infected WT mice (n = 3). (C) Representative flow cyto-
metric profiles of IL-17A production by immune cell populations in lung tissue of WT mice at
0 and 2 dpi. (D) Representative flow cytometric profiles of the intracellular staining of IL-17A
in y8T cells from lung tissue of HINT1 influenza-infected WT mice. (E) Cell number of IL-17A
producing y3T cells and IL-17A producing CD4" T cells were analyzed (n = 3). Data are repre-
sented as mean = SEM. ¥, p < 0.05, **, p < 0.01, ***, p < 0.001.

(TIF)

$2 Fig. HIN1 influenza infection induces B-1a cell infiltration in the lung tissue of I117a™"
mice. (A) Representative flow cytometric profiles show CD19" IgM*CD43"CD5" B-1a cells in
lung tissues of H1N1-infected I117a”"~ mice from 0 to 7 dpi. Frequencies of CD19*IgM" B cells
or CD19"IgM*CD43*CD5" B-1a cells are indicated (n = 3). (B) Absolute numbers of B-1a cells
represented in (A) are shown. Data are mean values + SEM. *p < 0.05, **p < 0.01, ***p < 0.01.
(TTF)

S$3 Fig. Efficacy and specificity of B-1a cell and B-1a cell-derived natural antibody depletion
in the pleural and peritoneal cavities of C57BL/6 mice. (A) Female C57BL/6 mice of 6 to
8-week old were used to generate B-1a eliminated mice. Briefly, mice were full-body irradiated
with 956 cGy of Caesium Chloride. To construct mice with no B-1a cells, 3x10° bone marrow
(BM) cells from WT mice were injected intravenously via the tail vein into irradiated mice 8
hours post irradiation. Control mice were also generated by transferring both 3x10° BM cells
and 5x10° pleural cavity cells from WT mice. Mice were analyzed 2 months after cell transfer.
Representative flow cytometric profiles showing the frequencies of B220*CD11b* B-1 popula-
tion and B220"CD11b"CD5*" B-1a/b cell subsets recovered from pleural and peritoneal cavi-
ties of radiated mice transferred with BM or BM cells plus cavity cells (BM + Cavity) 2 months
after cell transfer. (B) The frequency and total number of B-1a cells in pleural and peritoneal
cavities as in (A) were analyzed (n = 3). (C) Efficacy and specificity of natural antibody deple-
tion. ELISA assay was performed with serum samples from mice as in (A). Serum from naive
WT mice without radiation was also examined. Total IgM, virus-specific IgM and PC-specific
IgM were detected with ELISA assay (n = 7-10). Data are represented as mean + SEM. *, p <
0.05, **, p < 0.01, ***, p < 0.001. ns, not significant.

(TTF)

S4 Fig. IL-17A deficiency does not affect B-1a cell homeostasis in naive mice. (A) Represen-
tative flow cytometric profiles of B220*CD11b* B-1 cells and B220*CD11b"CD5"~ B-1a/b sub-
sets in pleural and peritoneal cavities of naive WT and Il17a”~ mice. (B) Frequency and total
number of B-1 cell populations in pleural and peritoneal cavities as in (A) were analyzed. No
differences in frequency and total number of cavity B-1 cell populations were detected between
WT and I117a”" mice (n = 5). (C) Concentrations of total IgM per milligrams of total protein,
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virus-specific IgM and PC-specific IgM in BLF of naive WT and Il17a”~ mice were examined
by ELISA assay (n = 6). (D) Total IgM, virus-specific IgM and PC- specific IgM in the serum of
naive WT and I/17a”"~ mice were examined by ELISA assay (n = 17). Data are represented as
mean = SEM.

(TIF)

S§5 Fig. IL-17A signaling upregulates IRF4 and XBP-1 expression in B-1a cells. Western blot
analysis of IRF-4 and XBP-1 expression in sorting-purified cavity B-1a cells treated with rmIL-
17A (20 ng/ ml) for different time intervals.

(TTF)

S1 Table. Putative binding sites of NF-kB on the promoter of prdm-1 and list of primer
pairs used for chromatin immuneprecipitation (ChIP) assay and RT-PCR in this study.
(DOCX)
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