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To adapt to a low-oxygen environment, Tibetan pigs have developed a series of unique

characteristics and can transport oxygen more effectively; however, the regulation of the

associated processes in high-altitude animals remains elusive. We performedmRNA-seq

and miRNA-seq, and we constructed coexpression regulatory networks of the lung

tissues of Tibetan and Landrace pigs.HBB, AGT,COL1A2, and EPHX1were identified as

major regulators of hypoxia-induced genes that regulate blood pressure and circulation,

and they were enriched in pathways related to signal transduction and angiogenesis,

such as HIF-1, PI3K-Akt, mTOR, and AMPK. HBB may promote the combination of

hemoglobin and oxygen as well as angiogenesis for high-altitude adaptation in Tibetan

pigs. The expression of MMP2 showed a similar tendency of alveolar septum thickness

among the four groups. These results indicated thatMMP2 activity may lead to widening

of the alveolar wall and septum, alveolar structure damage, and collapse of alveolar space

with remarkable fibrosis. These findings provide a perspective on hypoxia-adaptive genes

in the lungs in addition to insights into potential candidate genes in Tibetan pigs for further

research in the field of high-altitude adaptation.

Keywords: hypoxia, Tibetan pigs, PI3K-Akt pathway, MiRNA-mRNA network, lung tissue

INTRODUCTION

Tibetans are a unique and geographically isolated pig breed that inhabits the Qinghai-Tibet Plateau,
which has an extreme environment with high altitudes (Wang et al., 2018; Ma et al., 2019). This
unique ecological condition is characterized by low air pressure, reduced oxygen content, and high
ultraviolet radiation, imposing extreme physiological challenges on domestic animals, and failure
to adapt will lead to altitude illness or even death (Cao et al., 2017; Lancuo et al., 2019; Qi et al.,
2019). Native high-altitude species have been selected through evolutionary processes to evolve
adaptive mechanisms to cope with this harsh environment (Liu et al., 2019). Special lung properties
of the Tibetan pig, yak, and Tibetan sheep living in the plateau, such as larger lungs, thicker
alveolar septa, and more developed capillaries, have been previously reported by Qi and Yang
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(Yang et al., 2014; Qi et al., 2019). Tibetan pigs exhibit
heritable adaptations to high-altitude environments as a result
of natural selection. Exposure to hypoxia changes the gene
profiles in various cell types and is associated with adaptation
to high altitudes (Zhang T. et al., 2019). mRNAs and
miRNAs are involved in many biological processes in animals,
and not surprisingly, transcriptional analyses have revealed
the differential expression of hypoxia regulators that enable
adaptation to a hypoxic environment (Ni and Leng, 2016). The
hypoxia-inducible factor-1 (HIF-1), vascular endothelial growth
factor (VEGF), and mitogen-activated protein kinase (MAPK)
signaling pathways are typical hypoxia-associated pathways (Lee
et al., 2016; Zhang et al., 2018; Nicolas et al., 2019), and some
mRNAs (PHD2, VHL, and FIH-1) and miRNAs (miR-363, miR-
421, and miR-204) have been implicated in the regulation of the
HIF-1 signaling pathway (Semenza, 2007; Ge et al., 2016; Wang
et al., 2016; Xie et al., 2016).

Studies of the molecular mechanisms of livestock adaptation
to high altitude have focused on miRNA-mRNA interaction
networks. Here, we performed an integrative analysis of the
miRNA-mRNA expression profiles in the lungs of high- and low-
altitude pigs (Tibetan pigs and Landrace pigs, respectively) to
identifymolecular pathways and networks involved in the genetic
adaptation of Tibetan pigs to hypoxic conditions.

MATERIALS AND METHODS

Ethics Statement
All animal experiments were conducted according to the
guidelines for the care and use of experimental animals
established by the Ministry of Science and Technology of
the People’s Republic of China (Approval number: 2006–
398). The procedures for animal care were approved by the
Gansu Agricultural University Animal Care and Use Committee
of Gansu Agricultural University, and all experiments were
conducted in accordance with approved relevant guidelines
and regulations.

Sample Collection
In total, 18 Tibetan male piglets from the highlands (TH group;
Gannan Tibetan Autonomous Prefecture, Gansu, representing
an altitude of 3,000m) and 18 Landrace male piglets from the
lowlands (LL group; Jingchuan, Gansu, representing an altitude
of 1,000m) with similar weights and non-genetic relationships
were selected, and nine piglets from each group migrated to low
altitude (TL group; Tibetan pigs at low altitude) or high altitude
(LH group; Landrace pigs at high altitude) from their original
rearing facility at the age of 1 month. We randomly selected
six pigs from each group to collect the left lower lobes of the
lung from indigenous and imported adult male pigs at the age
of 6 months. These animals (n = 6 in each group) were feed
restricted for 12 h and slaughtered in their feeding place. Six
samples from each group were immediately stored in stationary

Abbreviations: TH, Tibetan male piglets from the highlands; LL, Landrace male

piglets from the lowlands; TL, Tibetan male piglets migrated to the lowlands; LH,

Landrace male piglets migrated to the highlands.

liquid for hematoxylin and eosin (H&E) staining, and three of the
six samples were randomly selected and collected within 1 h after
the pigs were harvested and stored immediately in liquid nitrogen
for subsequent RNA extraction.

Hematoxylin and Eosin Staining
Sections from the left lower lobes of the lung were stained with
H&E (Ban et al., 2018; Zhang et al., 2019b), observed under a
microscope (Sunny Optical Technology Co. Ltd, Ningbo, China),
and then photographed using Image View (Sunny Optical
Technology Co. Ltd).

RNA Extraction
Total RNA from the lungs was extracted using a TRIzol
reagent kit (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s protocol, and eukaryotic mRNA was enriched
by oligo (dT) beads (Epicenter, Madison, WI, USA). RNA
quality was assessed on an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA) and verified by 1% gel
electrophoresis. All samples presented an RNA integrity number
(RIN) > 7.5.

Library Construction and Sequencing for
mRNA
After total RNAwas extracted, eukaryoticmRNAwas enriched by
oligo (dT) beads (Epicenter) and reverse-transcribed into cDNA

using random primers. mRNA was ligated with proper 5
′
and 3

′

adapters. The ligation products were reverse-transcribed by PCR
amplification to generate a cDNA library, which was sequenced
using an Illumina HiSeqTM 2500 by Gene Denovo Biotechnology
Co. (Guangzhou, China).

Library Construction and miRNA
Sequencing
After total RNA was extracted for miRNA sequencing, 18–
30 nt RNA molecules were enriched by polyacrylamide gel
electrophoresis (PAGE). A 3′ adapter was added to enrich the
36–44 nt RNAs, and the 5

′
adapter was then connected to the

RNA. PCR products of 140–160 bp were amplified by reverse
transcription. A cDNA library was generated and sequenced
using Illumina HiSeqTM 2500 sequencing (Illumina Inc., San
Diego, CA, USA) by Gene Denovo Biotechnology Co., Ltd.

Expression Analysis of mRNAs
High-quality clean raw data were screened by removing low-
quality data with fastp (Chen et al., 2018). The short-read
alignment tool, Bowtie 2 (Langmead and Salzberg, 2012) was
used to map reads to the ribosome RNA (rRNA) database.
An index of the reference genome was built, and paired-end
clean reads were mapped to Sus scrofa RefSeq (Sus scrofa 11.1)
using HISAT 2 (Kim et al., 2015). The mapped reads of each
sample were assembled using StringTie v1.3.1 (Pertea et al.,
2015, 2016) in a reference-based approach. For each transcription
region, a fragment per kilobase of transcript per million mapped
reads (FPKM) value was calculated to quantify its expression
abundance and variations using RSEM software. RNA differential
expression analysis was performed with DESeq 2 (Love et al.,
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2014) software between the two groups. The raw mRNA-seq
data (accession number PRJNA687172) were submitted to the
Sequence Read Archive (SRA) database of NCBI.

Expression Analysis of miRNAs
Clean reads were obtained by filtering raw reads, and all of them
were aligned with small RNAs in the GenBank database (Benson
et al., 2013). All the clean reads were aligned with small RNAs
in the Rfam database (Griffiths-Jones et al., 2003) to identify
and remove rRNAs, scRNAs, snoRNAs, snRNAs, and tRNAs.
All the clean reads were also aligned with the reference genome
and were searched against the miRbase database (Griffiths-Jones
et al., 2006) to identify known (Sus scrofa) miRNAs. All the
unannotated reads were aligned with the reference genome by
HISAT2. 2.4. Novel miRNA candidates were identified according
to their genome positions and hairpin structures predicted
by mirdeep2 software. The miRNA expression levels were
calculated and normalized to transcripts per million (TPM). The
raw miRNA-seq data (accession number PRJNA687649) were
submitted to the NCBI Sequence Read Archive (SRA) database.

Functional Annotation of DEmRNAs
DEmRNAs were analyzed using Kyoto Encyclopedia of Genes
and Genomes (KEGG) and Gene Ontology (GO) analyses using

the online tool Database for Annotation, Visualization and
Integrated Discovery (DAVID) (Huang et al., 2009) to explore
their roles, functions, and enrichment in different biological
pathways. Gene Ontology (GO) terms and pathways with q <

0.05 were considered significantly enriched by DEmRNAs. The
hypoxic DEmRNAs were filtered based on the intersection of
our results and published hypoxia-related genes in the HIF-1
signaling pathway. The hypoxia-related genes and target genes
of miRNAs were also mapped to GO terms in the GO database
and pathways in the KEGG (Kyoto Encyclopedia of Genes and
Genomes) database to further elucidate their functions.

Target Prediction and Integrative Analysis
of the Hypoxia-Related miRNA–mRNA
Regulatory Network
We identifiedmRNAs with a fold change≥2 and a false discovery
rate (FDR) <0.05 as DEmRNAs. To explore more DEmiRNAs,
we identified miRNAs with fold change ≥ 2 and p < 0.05
as DEmiRNAs. The potential target genes of DEmiRNAs were
predicted using RNAhybrid 89 (version 2.1.2) + svm_light
(version 6.01), miRanda (version 3.3a), and TargetScan (version
7.0), and the genes at the intersection of the results from the three
software packages were selected as predictedmiRNA target genes.

FIGURE 1 | Morphological characteristics of the lungs in Tibetan pigs by H and E staining. (40×). (A) Morphological characteristics of small bronchiole.

(B) Morphological characteristics of bronchiole. (C) Morphological characteristics of terminal bronchiole. (D) Morphological characteristics of alveolar cells.

(E) Morphological characteristics of alveolar septa in the Tibetan pigs raised in highland (TH) group. (F) Morphological characteristics of alveolar septa in the Landrace

pigs raised in highland (LH) group. (G) Morphological characteristics of alveolar septa in the Tibetan pigs raised in lowland (TL) group. (H) Morphological

characteristics of alveolar septa in the Landrace pigs raised in lowland (LL) group. (I) The histogram shows the expression levels of MMP2 in the lungs of the four

types of pigs and the relationship with alveolar septa. a. Piece of cartilage. b. Smooth muscle. c. Plica. d. Arteriole. f. Alveolar epithelial type II cells. g. Alveolar

epithelial type I cells. h. Alveolar duct. i. Pulmonary alveoli. j. Alveolar septa.
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Because mRNAs and miRNAs have potential negative regulatory
relationships, we assessed the expression correlation between
a miRNA and its predicted target by the Pearson correlation
coefficient (PCC). Subsequently, the negatively coexpressed
miRNA–mRNA pairs with PCC < −0.7 and p < 0.05 were
screened to construct miRNA–mRNA networks.

The coexpression network diagram of DEmRNAs and
DEmiRNAs was generated using the PCC, and only the
relationship pair network diagram of the top 300 is shown. The
coexpression network diagram of the 273 hypoxic DEmRNAs
is displayed, and the correlation between miRNA and mRNA
was required to account for the top 5% of the total correlation.
The potential regulatory network was constructed by Cytoscape
(Szklarczyk et al., 2015).

Quantitative Real-Time PCR Validation
Total RNA from pulmonary tissues was extracted with a TRIzol
reagent kit and reverse-transcribed into cDNA using a FastQuant
cDNA first-strand synthesis kit (TianGen, China). SYBR R©

Premix Ex TaqTM II (TaKaRa, China) was used for real-time
fluorescence quantitative analysis. In total, eight DEmRNAs
and eight DEmiRNAs were randomly selected to determine
sequencing accuracy. The primers used here were designed using
Primer 5.0 software and are listed in Supplementary Tables 1, 2
(Supplementary Material 1).

The experimental data were analyzed with the 2−11CT

method (Livak and Schmittgen, 2001). Statistical analyses were
performed using GraphPad Prism 8.0 (GraphPad Software, San
Diego, CA, USA) and SPSS 20.0 (SPSS, Chicago, IL, USA). The
comparisons were conducted by one-way analysis of variance
(ANOVA), and p < 0.05 was considered statistically significant.

RESULTS

Morphological Structure
H&E staining showed that the lung sections exhibited the
following connective tissues with epithelia: pulmonary alveoli,
smooth muscle, blood capillaries, bronchial tubes, and alveolar
septa (Figures 1A–H). The sections from the TH group were
characterized by smooth muscle hyperplasia and larger alveoli,
while those from the LH group were characterized by a thicker
alveolar septum. In addition, the analysis showed that MMP2
expression had a similar tendency to the alveolar septum
thickness among the four groups (Figure 1I).

Identification of DEmRNAs in the Lung
In total, 12 cDNA libraries, which included six Tibetan pigs and
six Landrace pigs at high and low altitudes, were sequenced
from lung tissues (Supplementary Material 2). After quality
filtering, 51,193,662–69,112,222 clean paired reads were obtained
with 99.70–99.79% of clean reads mapped to the porcine
reference genome (Table 1). A total of 471 DEmRNAs (247
up- and 224 downregulated) were identified in the TH group
compared to the TL group (Figure 2, Supplementary Table 3 in
Supplementary Materials 1, 3). Furthermore, 809 novel genes
were identified in the sequencing data. Eight mRNAs were
randomly selected and detected using qRT-PCR to validate the T
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FIGURE 2 | mRNA expression results among the four groups by RNA-seq. (A) The heatmap shows the relative expression patterns of DEmRNAs among the four

groups. Each column represents a sample, and each row represents the expression levels of a single mRNA in various samples. The color scale of the heat map

ranges from blue (low expression) to red (high expression). a. Heatmap of mRNA for Tibetan pigs raised in highland (TH) and Tibetan pigs raised in lowlands (TL). b.

Heatmap of mRNA for TH and Landrace pigs raised in highlands (LH). c. Heatmap of mRNA for LH and Landrace pigs raised in lowlands (LL). d. Heatmap of mRNA

for TL and LL. (B) The histogram shows the number of DEmRNAs identified among the four groups.

accuracy of the sequencing data. Our verification test indicated
that the qRT-PCR results were consistent with the mRNA-seq
data (Figure 4A).

Identification of DEmiRNAs in the Lung
A total of 12 cDNA libraries were sequenced from lung tissues.
In the miRNA-seq data, 10,810,538–14,920,316 clean reads
were obtained by removing low-quality data and data with
sequences shorter than 18 nt and longer than 30 nt, and 94.380–
97.30% clean reads were obtained and mapped (Table 2). A
total of 464 DEmiRNAs (324 up- and 140-downregulated) were
identified in the TH group compared to the TL group (Figure 3,
Supplementary Table 4 in Supplementary Materials 1, 4). Eight
miRNAs were randomly selected and detected using qRT-PCR
to validate the accuracy of the sequencing data. Our verification
test indicated that the qRT-PCR results were consistent with the
miRNA-seq data (Figure 4B).

Functional Analysis of DEmRNAs
GO and KEGG enrichment analyses showed that most
DEmRNAs were involved in cellular processes and pathways
related to cytokine-cytokine receptor interaction, the PI3K-
Akt signaling pathway, and pathways in cancer (Figure 5).
Interestingly, a number of genes were mainly enriched in
“response to stimulus (GO: 0050896)” of biological process
among the four groups. GO: 0001071 is associated with
nucleic acid binding transcription factor activity and was
significantly enriched between the TH and LH groups. The
top 20 pathways with the most significant enrichment were
obtained. KEGG enrichment results revealed that most of these

genes were significantly enriched in cancer pathways among
Landrace pigs (LH and LL) (breast cancer and transcriptional
misregulation in cancers) or high-altitude groups (LH and TH)
(proteoglycans in cancer, pathways in cancer, breast cancer).
A number of genes were significantly enriched in cytokine–
cytokine receptor interaction, hematopoietic cell lineage, and
African trypanosomiasis among Tibetan pigs and Landrace
pigs in the high- or low-altitude groups. Six pathways were
significantly enriched among the high- (TH and LH) or low-
altitude (TL and LL) groups, and 15 pathways were significantly
enriched between the Tibetan pig (TH and TL) and Landrace pig
(LH and LL) groups.

Identification and Prediction Targets of
DEmiRNAs
A total of 59,636 target DEmRNAs of 1,630 DEmiRNAs (365
functionally annotated miRNAs, 989 known miRNAs and 276
novel miRNAs) were analyzed (Supplementary Materials 5). In
addition, multiple pathways and GO terms were associated with
hypoxia traits. The analysis revealed KEGG pathways that were
significantly related to genes targeted by DEmiRNAs, and the
Wnt signaling pathway, metabolic pathway and hepatocellular
carcinoma were the most significantly related (Figure 6).
Interestingly, the results showed that the targets were primarily
enriched in terms related to hypoxia adaptation. ssc-miR-210,
ssc-miR-101, ssc-miR-7136-5p, ssc-miR-10b, ssc-miR-206, ssc-
miR-1343, ssc-miR-142-5p, ssc-miR-421-5p, and ssc-miR-4331
were identified as key miRNAs. Functional assessment showed
that 100, 56, and 104 putative targets were mainly enriched in the
HIF, PI3K-Akt, and MAPK signaling pathways, respectively.
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TABLE 2 | Overview of the reads and quality control of the 12 libraries of the miRNA sequencing from swine lung tissue.

Sample Clean_reads High_quality Smaller_than_18nt Clean reads Match Ratio (%)

LL-1 11,823,173 (100%) 11,800,040 (99.8043%) 117,090 (0.9923%) 147,719,777 122,350,552 82.83

LL-2 11,353,289 (100%) 11,339,875 (99.8818%) 90,118 (0.7947%) 11,422,900 9,303,536 81.45

LL-3 13,427,720 (100%) 13,404,468 (99.8268%) 107,640 (0.8030%) 10,937,366 9,065,662 82.89

LH-1 13,721,166 (100%) 13,702,350 (99.8629%) 303,894 (2.2178%) 13,042,101 10,696,421 82.01

LH-2 13,752,929 (100%) 13,569,709 (98.6678%) 261,550 (1.9275%) 13,042,192 11,012,185 84.44

LH-3 13,530,906 (100%) 13,507,736 (99.8288%) 153,784 (1.1385%) 12,902,983 10,703,895 82.96

TH-1 12,421,634 (100%) 12,401,306 (99.8364%) 165,479 (1.3344%) 13,093,151 10,784,226 82.37

TH-2 12,972,521 (100%) 12,954,856 (99.8638%) 247,892 (1.9135%) 11,909,246 9,793,972 82.24

TH-3 13,503,266 (100%) 13,476,246 (99.7999%) 161,856 (1.2010%) 12,330,439 10,255,345 83.17

TL-1 10,810,538 (100%) 10,788,450 (99.7957%) 132,232 (1.2257%) 12,998,511 10,664,603 82.04

TL-2 14,920,316 (100%) 14,892,778 (99.8154%) 388,770 (2.6105%) 10,283,765 8,634,859 83.97

TL-3 12,392,682 (100%) 12,373,187 (99.8427%) 226083 (1.8272%) 14,056,433 11,724,322 83.41

FIGURE 3 | miRNA expression results among the four groups by RNA-seq. (A) The heatmap shows the relative expression patterns of DEmiRNAs among the four

groups. Each column represents a sample, and each row represents the expression levels of a single miRNA in various samples. The color scale of the heat map

ranges from blue (low expression) to red (high expression). (B) The histogram shows the number of DEmiRNAs identified among the four groups.

Screening of Differentially Expressed
Hypoxia-Related mRNA Target miRNAs
and Their Functional Enrichment Analysis
Functional analysis was conducted to understand the pathways
and molecular interactions of DEmRNAs and DEmiRNAs.
The DEmRNAs were enriched in a number of important
pathways related to hypoxia, and we identified 273 significant
DEmRNAs involved in hypoxia adaptation among the four
groups (Supplementary Material 6). We predicted potential
target miRNAs of mRNAs according to the negative regulatory
effects of miRNAs on mRNAs, which were further considered
veritable miRNA–mRNA pairs. To further reveal the regulatory
relationship of node mRNAs and non-coding miRNAs, the

resulting potential regulatory networks of miRNA-target genes
associated with hypoxia-genes were constructed (Figure 7).
The target DEmRNAs of DEmiRNAs were assessed using

KEGG and GO analyses. The results indicated that 71.09,

17.00, and 11.90% (total of 273) of the genes were enriched

in the biological process (BP), cell component (CC), and

molecular function (MF) categories, respectively, in the TH-vs.-

TL comparison (p < 0.05). A number of genes were targeted

by hub miRNAs, such as novel-m0237-5p, novel-m0173-3p,

and novel-m0142-5p, which had 45, 19, and 14 target mRNAs

among the four groups, respectively. Furthermore, miR-2465-

x targeted HIF-1α, while novel-m0087-3p and novel-m0237-5p
targeted HIF-3α.
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FIGURE 4 | Expression patterns of randomly selected DEmRNAs and DEmiRNAs. (A) Eight mRNA expression levels were confirmed by qRT-PCR in comparison to

corresponding data detected in mRNA-Seq. GAPDH was used as control. (B) Eight miRNA expression levels were confirmed by qRT-PCR in comparison to

corresponding data detected in mRNA-Seq. U6 was used as control. The broken line indicates the change in transcript level according to the FPKM value of

mRNA-seq and miRNA-seq. Three biological replicates with three technical replicates each were used. The values represent the mean ± SE (n = 3).

Construction of the Coexpression Network
Between DEmRNAs and DEmiRNAs in
Response to Hypoxia
To explore the relationship between miRNAs and mRNAs
in a hypoxic environment, a coexpression network of
DEmRNAs and DEmiRNAs was constructed, and the top
300 relationship pair network diagrams are listed (Figure 8A,
Supplementary Material 7.1). The intersection of differentially
expressed hypoxia mRNAs and miRNAs identified from
the four group comparisons represented their differential
expression in pig lungs with increasing altitude. TAR1-A,
GPD1, ST8SIA5, and LENG8 were selected as the most

affected mRNAs, and there were strong correlations with a
number of miRNAs. Furthermore, a coexpression network
of 273 hypoxic DEmRNAs and DEmiRNAs was constructed
(Figure 8B, Supplementary Material 7.2). MEF2C, AKAP6,
NTRK2, MAPT, and GPR146 were selected as the most affected
mRNAs, and there were strong correlations with a number
of miRNAs.

DISCUSSION

A high-altitude environment plays an important role in
the adaptation of native species, and it may modify gene
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FIGURE 5 | Functional annotation analysis of DEmRNAs in porcine lungs among the four groups. (A) Histogram of GO annotation results of DEmRNAs. The abscissa

is the second level GO term, and the ordinate is the number of DEmRNAs in the term. Red indicates the number of DEmRNAs between Landrace pigs raised in

lowlands (LL) and Landrace pigs raised in highlands (LH) groups, green indicates the number of DEmRNAs between LH and Tibetan pigs raised in highlands (TH)

groups, blue indicates the number of DEmRNAs between TH and Tibetan pigs raised in lowlands (TL) groups, and purple indicates the number of DEmRNAs between

TL and LL groups. (B) Top 20 KEGG enrichment pathways of DEmRNAs. The ordinate is the pathway, and the abscissa is the enrichment factor. Darker colors

indicate smaller q-values. a. Pathway enrichment analysis of DEmRNAs between TH and TL. b. Pathway enrichment analysis of DEmRNAs between TH and LH. c.

Pathway enrichment analysis of DEmRNAs between LH and LL. d. Pathway enrichment analysis of DEmRNAs between TL and LL. (C) Venn diagram of mRNA

interactions based on the overlapping mRNAs among the four groups.

transcription and may irreversibly affect specific phenotypes
(Zhang et al., 2015; Ni et al., 2019). We used a complete migrant
design to evaluate genes interacting with the environment
and selected Tibetan pigs and Landrace pigs in both their
native altitude environments and as migrants in a non-native
environment. Our previous research identified that Tibetan pigs
have heavier and wider lungs, thicker alveolar septa, and a denser
vascular network than Landrace pigs. The hemoglobin (HGB)
and mean corpuscular hemoglobin concentration (MCHC) of
high-altitude pigs (Tibetan and Landrace pigs) were significantly
higher than those of low-altitude pigs (Yang et al., 2021). We next
investigated whether there are gene expression changes specific
to Tibetan pigs that are responsible for hypoxic adaptation.
Sequencing of multiple pigs from different breeds revealed
that certain genomic regions, including genes involved in the
hypoxia response, were under selection in Tibetan pigs (Zhang B.
et al., 2016; Zhang et al., 2017, 2019a). We screened for key
genes related to hypoxic adaptation through genotype and
environment interaction effects via RNA-seq analyses. Several
pathways were enriched in DEmRNAs among Tibetan pigs
and Landrace pigs at different altitudes, including the VEGF
signaling pathway, PI3K-AKT signaling pathway, and mTOR

signaling pathway (Ai et al., 2015; Zhang et al., 2017). Moreover,
GO enrichment analysis revealed that these DEmRNAs were
associated with vascular regulation, regulatory region DNA
binding, or extracellular region. The identified hypoxia-related
signaling pathwaysmay form a complex cascade of responses that
occur in hypoxic conditions in Tibetan pigs to reduce the risk of
pulmonary damage.

Hypoxia-regulated miRNAs play vital roles in cell survival
and have been implicated in the regulation of both upstream
and downstream HIF-1 signaling pathways under hypoxic
conditions. For example, miR-199a, miR-17-92, and miR-20b
induce HIFs (Dai et al., 2015; Chen et al., 2016; Danza
et al., 2016). HIF-1 regulates the expression of various genes
to protect cells from hypoxic injury through cell apoptosis,
glucose metabolism, andmitochondrial function (Bhattarai et al.,
2018; Yu et al., 2018, 2020). HIF-1α is a potential therapeutic
proangiogenic molecule that regulates the levels of VEGF to
elevate interstitial pressure (Zhi et al., 2018; Lin et al., 2019).
Several putative target genes (FOXO3, RASGRF1, and CX3CR1)
that are regulated by ssc-miR-214, ssc-miR-320, and ssc-miR-
101 have been found to be involved in the HIF-1 related
signaling pathway. miR-210 is located on human chromosome
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FIGURE 6 | Functional annotation analysis of DEmiRNA-target genes in porcine lungs among the four groups. (A) Histogram of GO annotation results of

DEmiRNA-target genes. The abscissa is the second-level GO term, and the ordinate is the number of DEmiRNA-target genes in the term. Red indicates the number of

DEmiRNA-target genes between Landrace pigs raised in lowlands (LL) and Landrace pigs raised in highland (LH) groups, green indicates the number of

DEmiRNA-target genes between LH and Tibetan pigs raised in highland (TH) groups, blue indicates the number of DEmiRNA-target genes between TH and Tibetan

pigs raised in lowland (TL) groups, and purple indicates the number of DEmiRNA-target genes between TL and LL groups. (B) Top 20 KEGG enrichment pathways of

DEmiRNA-target genes. The ordinate is the pathway, and the abscissa is the enrichment factor. Darker colors indicate smaller q-values. a. Pathway enrichment

analysis of DEmiRNA-target genes between TH and TL. b. Pathway enrichment analysis of DEmiRNA-target genes between TH and LH. c. Pathway enrichment

analysis of DEmiRNA-target genes between LH and LL. d. Pathway enrichment analysis of DEmiRNA-target genes between TL and LL. (C) Venn diagram of miRNA

interactions based on the overlapping miRNAs among the four groups.

11p15.5 and correlates with angiogenesis and VEGF regulation
in breast cancer patients (Forkens et al., 2008; Dai et al., 2015;
Tang et al., 2018; Zhang H. et al., 2019). In the present study,
the expression of miR-210-x and miR-210-z was significantly
lower in TH than in TL but not significantly different in the
other groups, which may play vital roles in the expression of
proteins in homology-dependent repair pathways and nucleotide
excision repair pathways to reverse cellular DNA damage in
the lungs of Tibetan pigs during hypoxia (Crosby et al., 2009;
Hui et al., 2019). HBB is involved in the malaria reference
pathway and downregulates IL-6, which is a key gene in the
HIF-1 pathway. Comparison ofHBB expression between Tibetan
pigs and Landrace pigs showed that among the beta globin
amino acid substitutions at positions 58, 75, 119 and 137, the
replacement of alanine at position 137 with valine and the
locus mutation improved the affinity of HGB and O2 (Zhang B.
et al., 2016). The expression of the HBB gene in Tibetan pigs
(TH and TL) was significantly higher than that in Landrace
pigs (LH and LL), agreeing with a similar trend previously
reported by other authors, and there was similar variation in

the HGB concentration in Tibetan pigs (Taliercio et al., 2013;
Zhang B. et al., 2016; Yang et al., 2021), indicating that hypoxia
transcriptionally upregulates HBB to increase HGB in the blood
to ensure the transport of blood and nutrients. These findings
may (Jang et al., 2014; Zhang G. et al., 2016; Cai et al., 2018)
explain why Tibetan pigs have better adaption than Landrace pigs
in hypoxic environments regardless of altitude.

The PI3K/Akt pathway is an intracellular signaling pathway
that is promoted by several biological molecules, including
calmodulin, insulin-like growth factor (IGF), and multiple EGF-
like domains 6 (MEGF6) (Pompura and Dominguez-Villar,
2018; Ellis and Ma, 2019; Revathidevi and Munirajan, 2019;
Zhang et al., 2020). IGF2 is the target gene of miR-506-
y and ssc-miR-181d-3p. The expression levels of IGF2 and
MEGF6 were significantly upregulated in LH compared to
LL, but no differences were found in the Tibetan pigs (TH
and TL). We hypothesized that these genes may induce the
growth, proliferation, and differentiation of tumor cells in
the lungs of Landrace pigs living in a hypoxic environment
(Mohlin et al., 2013). Activated Akt induces various biological
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FIGURE 7 | Integrated miRNA-target negative correlation regulatory network. The square nodes represent miRNAs, and the circle nodes represent target genes. The

differentially expressed miRNAs/target genes are highlighted as follows: red indicated differential expression between Landrace pigs raised in lowlands (LL) and

Landrace pigs raised in highland (LH), green indicates differential expression between LH and Tibetan pigs raised in highland (TH), blue indicates differential expression

between TH and Tibetan pigs raised in lowland (TL), and purple indicates differential expression between TL and LL.

processes, including activating mTOR, localizing FOXO to
the cytoplasm, and activating cAMP-response element binding
protein (CREB) (Zhang et al., 2011; Gaecía-Morales et al., 2017;

Marquard and Jücker, 2020). The FOXO signaling pathway
was also enriched in a comparison of pigs living at different
altitudes. It has been shown that alcohol suppresses P450
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FIGURE 8 | Gene coexpression network analyses. Red nodes indicate hypoxic DEmRNAs, and green nodes indicate DEmiRNAs. (A) Gene coexpression network

analyses of DEmRNAs and DEmiRNAs. (B) Gene coexpression network analyses of hypoxic DEmRNAs and DEmiRNAs.

oxidoreductase (POR) and glutathione reductase (GSR) gene
expression by upregulating miR-214, which induces oxidative
stress and plays a crucial role in adaptation to hypoxia
(Zhou et al., 2013; Dong et al., 2014; Stefanetti et al., 2018;
Li et al., 2019). FOXO3 is a targeted gene of ssc-miR-
214-3p, and the expression of FOXO3 in the TH group
was significantly higher than that in the TL group, but
not significantly different between the LH and LL groups.
Changes in ssc-miR-214-3p expression may inhibit the cell
cycle and promote apoptosis, thereby inhibiting cell proliferation
through FOXO3 prolyl hydroxylation in hypoxic conditions.
The regulation of the expression levels of IGF2, MEGF6, and
FOXO3 through miRNAs may lead to the better adaption
of Tibetan pigs in hypoxic environments compared to the
Landrace breed.

Collagens, such as COL1A1, COL1A2, and COL3A1, are
widely represented in ECM–receptor interactions and focal
adhesion pathways (Gelse et al., 2003), and their expression was
significantly higher in the LH group than in the LL group but not
significantly different between the TH and TL groups. All of these
genes function as mechanoreceptors and may provide a force-
transmitting physical link between the EMC and cytoskeleton,
indicating that enhanced expression of COL1A1, COL1A2, and
COL3A1 may be another reason for the superior adaption
to hypoxic conditions of TH. Our study revealed that high
expression of fibroblast growth factors (such as FGF1, FGF2,
FGF9) was higher in the native groups (TH and LL) than in the
migrated groups (TL and LH), which was alleviated by activating
AKT3 (Pompura and Dominguez-Villar, 2018; Revathidevi and
Munirajan, 2019). These findings indicated that Tibetan pigs
may increase the expression of FGF1 and the cross-sectional

area of a blood vessel to increase blood flow in response to
hypoxia (Karar and Maity, 2011; Kir et al., 2018; Sajib et al.,
2018).

GPR146 may be upregulated by a number of miRNAs
(such as miR-8903, miR-11972 and miR-466-x) under hypoxic
stimulation and has been suggested to be an important hypoxia-
inducible gene in recent years. C-peptide inhibits low O2-
induced ATP release in erythrocytes as a putative ligand
of GPR146, which was consistent with our results (Richards
et al., 2014). Ncbi_397391 (MMP2), ncbi_102159047 (FOXC1),
ncbi_100738910 (PRRX1), and ncbi_100520318 (TUB) are
potentially regulated by novel-m0237-5p. In the present study,
MMP2 expression was significantly higher in the LH group
than in the LL group, but no significant differences were
found between the TH and TL groups. The expression of
MMP2 showed a similar tendency to the results of alveolar
septum thickness among the four groups, indicating that MMP2
activities may lead to the widening of the alveolar wall and
septum as well as alveolar structure damage and collapse of
the alveolar space with remarkable fibrosis in Landrace pigs
(Tan et al., 2006).

CONCLUSION

The comparisons between Tibetan pigs and Landrace pigs from
high or low altitudes revealed genes and regulatory pathways with
possible adaptive changes in response to high-altitude hypoxia.
We identified several molecular pathways and hypoxia genes
showing adaptive changes in the lung, including increased blood
circulation and regulation of blood pressure and circulation
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as well as regulation of HGB concentration and angiogenesis.
Integrated analysis of mRNAs and miRNAs demonstrated that
a number of hypoxia genes may be regulated by miRNAs and
participate in the hypoxic regulation of the lung. For example,
novel-m0237-5p may potentially upregulate the expression levels
of MMP2, resulting in widened alveolar septum and alveolar
structure damage. These results provide a better understanding
of the molecular mechanisms regulating the hypoxia response in
the lungs of Tibetan pigs and will help to prevent damage to the
lungs caused by hypoxia.
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