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Transfer learning with chest X‑rays 
for ER patient classification
Jonathan Stubblefield1,3,8, Mitchell Hervert1,2,8, Jason L. Causey1,3,8, Jake A. Qualls1,3,8, 
Wei Dong4, Lingrui Cai4, Jennifer Fowler1,3, Emily Bellis1,3,7, Karl Walker6, Jason H. Moore5, 
Sara Nehring1,2* & Xiuzhen Huang1,3*

One of the challenges with urgent evaluation of patients with acute respiratory distress syndrome 
(ARDS) in the emergency room (ER) is distinguishing between cardiac vs infectious etiologies for their 
pulmonary findings. We conducted a retrospective study with the collected data of 171 ER patients. ER 
patient classification for cardiac and infection causes was evaluated with clinical data and chest X-ray 
image data. We show that a deep-learning model trained with an external image data set can be used 
to extract image features and improve the classification accuracy of a data set that does not contain 
enough image data to train a deep-learning model. An analysis of clinical feature importance was 
performed to identify the most important clinical features for ER patient classification. The current 
model is publicly available with an interface at the web link: http://nbttr​ansla​tiona​lrese​arch.org/.

In this study, we focused on acute respiratory distress syndrome (ARDS) in an emergency room (ER) setting. 
There are many etiologies of acute dyspnea (or shortness of breath), but our model focuses on identifying 
two major categories: cardiac and infectious. Upon admission to a hospital emergency department, attending 
physicians must quickly determine which category the patient falls into. Typically, these patients receive a suite 
of common clinical panels as well as a chest X-ray image early in the diagnostic process. We have developed a 
machine learning model capable of assisting ER physicians with categorizing the acute dyspnea given clinical 
values alone, or in conjunction with an X-ray image if one is available.

Cardiac causes include etiologies of dyspnea secondary to a misfunction in the heart, including acute coro-
nary syndrome, acute heart failure, arrythmias, and valvular disease1. These diseases do not benefit from anti-
biotic therapy. Infectious causes of acute dyspnea include both pneumonia, an infectious process primary to 
the lungs, and sepsis, a systemic response to an infection anywhere in the body that can impair function in a 
variety of organs1. When severity is life-threatening, suspicion of these disease processes require empiric anti-
biotics. Antibiotics have adverse effects in 1 out 5 patients2. Though these adverse effects often include direct 
side-effects from the drugs themselves, antibiotics can also produce adverse effects through their interactions 
with microorganisms2. Our model represents a step toward more rapidly confirming or excluding infectious 
etiology, and thus reducing the unnecessary empiric prescription of antibiotics. Other causes of acute dyspnea 
may fall into neither of these categories1, or a patient may have acute dyspnea with both cardiac and infectious 
contributions. See Fig. 1 for examples of X-ray images for patients whose correct labeling should be (a), “infec-
tion” label (b), and “cardiac” label (c).

Recent advances in machine learning have shown that it can be a valuable tool for aiding in medical plan-
ning. The CheXNet3 model was able to accurately identify 14 categories of abnormalities in chest X-ray images. 
Deep learning techniques have shown promise for automated detection and diagnosis of lung cancer4–7, breast 
cancer8,9, skin cancer10–12, and other diseases. Most of these approaches use deep neural networks13 especially 
convolutional neural networks14,15. In data domains outside imaging, gradient boosted trees and the XGBoost16 
model in particular, have been used to solve a wide variety of problems where the inputs may include variables 
of differing types17–20.
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Current models for evaluating ARDS are typically limited to scoring tools for use by physicians, machine 
learning tools for predicting the incidence of ARDS, machine learning tools for predicting the severity or ARDS, 
and machine learning tools that discover distinct phenotypes in ARDS. Multiple scores for use in clinical medi-
cine have been produced, such as the modified ARDS prediction score (MAPS)21. Other scores exist, but with 
the Berlin definition of ARDS, some researchers question the continued need for these clinical scoring systems22. 
Many of the machine learning models relating to ARDS are focused on predicting the incidence of ARDS23 or 
the severity of ARDS24. These models accomplish a different task than our model, which focuses on the cause of 
ARDS, not on identifying its presence or severity. The most similar models in scope to ours are the models that 
focus on discovering distinct phenotypes of ARDS from clinical data25,26. They are similar in that they distinguish 
between multiple sub-types of ARDS. However, the sub-types distinguished in these models are learned rather 
than pre-defined. Our model distinguishes between two pre-defined subclasses of ARDS with special clinical 
significance: Those with an infectious etiology and those with a cardiac etiology.

Our model makes use of both deep neural networks and XGBoost for examining images and clinical data, 
respectively, and the combination of the two is handled by extracting image features via a deep neural network 
and performing classification using XGBoost. Specifically, our model performs independent binary classification 
against two categorical labels (infection, cardiac), giving four possible labelings: neither label applies, one of the 
labels applies, or both labels apply. The feature extraction is performed by a deep convolutional neural network 
(CNN) model named CheXNet3, which was originally designed to predict 14 categories of abnormalities in chest 
X-ray images, but did not focus specifically on ARDS. By utilizing an output vector from CheXNet as input for 
our additional classifier, we are able to transfer the high-level latent representation of the X-ray’s image features 
and specialize the final classifier using a limited amount of training utilizing a general form of transfer learning27.

Results
Performance in infection labeling task.  On the “infection” labeling task, our model achieved an average 
accuracy of 63.8% (SD = 7.4%) using the clinical features alone. Using image (CheXNet) features only, average 
accuracy was 63.8% (SD = 9.4%). When both types of features were combined, the average performance was 
67.5% (SD = 9.8%), which was a modest (3.7%) improvement over either of the single-modality models alone. 
Figure 2 shows a plot representing the accuracy values over each of the five folds, along with their range and 
mean (as well as the same information for the “cardiac” labels, discussed in the next section). For comparison, 
the same cross validation was performed using a logistic regression model and a k-Nearest Neighbors model 
(k = 5). Table 1 summarizes the results for all five folds of the primary model, as well as the average performance 
for all three models on the “infection” task. It can be seen that although the k-NN model performs quite well 
when only clinical features are considered, the primary (XGBoost) model is best able to aggregate features from 
both modalities.

Performance in cardiac labeling task.  On the “cardiac” labeling task, our model achieved an average 
accuracy of 70.2% (SD = 5.6%) using the clinical features alone. An accuracy of 59.5% (SD = 9.3%) was achieved 
using the image (CheXNet) features alone. The combined clinical and image features improved the accuracy 
4.3% to 74.5% (SD = 4.5%). Figure 2 shows a plot summarizing our model’s accuracy in each of the five folds, 
along with their range and mean for both the “infection” and “cardiac” tasks. For comparison, the same cross 
validation was performed using a logistic regression model and a k-Nearest Neighbors model (k = 5). Table 2 
summarizes the results for all five folds of the primary model, as well as the average performance for all three 
models on the “cardiac” task. As with the “infection” task, the primary (XGBoost) model was best able to aggre-
gate features from both the clinical and image modalities.

SHAP feature importance analysis.  The SHAP “TreeExplainer” algorithm was used to determine the 
most important features in both the clinical and imaging modalities. All 171 examples were used for the SHAP 

Figure 1.   Examples of chest X-ray images where the ground truth label is (a) neither infection nor cardiac label, 
(b) infection label, (c) cardiac label.
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analysis. Figure 3 shows the SHAP feature importance analysis for clinical features on both the “cardiac” and 
“infection” labeling task. Figure 4 shows the SHAP feature importance analysis for image features on both the 
“cardiac” and “infection” labeling task. The image feature names correspond to the categorical label as defined 
by CheXNet3. Each point in the figure is a feature value of a particular training example. The color of the point 
represent the feature value and the X-axis position of the point is its SHAP value. The features are ranked by the 
sum of SHAP value magnitudes over all samples. The top ten ranked features are shown (in ascending order), 
with feature names shown to the side of each plot row.

Figure 2.   Summary of fivefold cross validation results. Infection range (light)/fold (dark) performance is shown 
in blue. Cardiac range (light)/fold (dark) performance is shown in red. Black horizontal bars denote the mean 
across all folds.

Table 1.   Five-fold cross validation results for “infection” label, showing clinical-only, image-only, and 
combined performance. Each fold (1–5) is shown, followed by average performance. Top average performance 
for each feature type is shown in bold, best result for each row in italics. Average performance for a logistic 
regression model and k-NN model (k = 5) shown in last two rows for comparison.

Fold Clinical Image Both

1 0.542 0.625 0.621

2 0.629 0.525 0.632

3 0.731 0.787 0.85

4 0.688 0.628 0.628

5 0.6 0.623 0.642

Avg (SD) 0.638 (0.074) 0.638 (0.094) 0.675 (0.098)

Logistic reg 0.535 (0.105) 0.678 (0.126) 0.570 (0.116)

k-NN (k = 5) 0.637 (0.030) 0.528 (0.128) 0.637 (0.030)

Table 2.   Five-fold cross validation results for “cardiac” label, showing clinical-only, image-only, and combined 
performance. Each fold (1–5) is shown, followed by average performance. Top average performance for each 
feature type is shown in bold, best result for each row in italics. Average performance for a logistic regression 
model and k-NN model (k = 5) shown in last two rows for comparison.

Fold Clinical Image Both

1 0.72 0.747 0.793

2 0.677 0.535 0.719

3 0.618 0.628 0.715

4 0.743 0.528 0.795

5 0.754 0.547 0.705

Avg (SD) 0.702 (0.056) 0.597 (0.093) 0.745 (0.045)

Logistic reg 0.604 (0.059) 0.656 (0.122) 0.637 (0.048)

k-NN (k = 5) 0.677 (0.077) 0.577 (0.145) 0.677 (0.077)
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SHAP analysis, infection task.  SHAP analysis of feature importance for prediction of infection was consistent 
with current medical knowledge. White blood cells count is expected to rise in response to infection28 and was 
found to be the most important feature for determining the presence of infection. Similarly, fever (elevation of 
temperature) was found to be predictive of infection.

SHAP analysis of imaging features for prediction of infection is also consistent with clinical knowledge. 
Consolidation and infiltration can both be radiographic features of a pneumonia29.

SHAP analysis, cardiac task.  SHAP analysis of feature importance for prediction of a cardiac cause of respira-
tory distress also followed a reasonable pattern (see Figs. 3, 4). Brain natriuretic peptide (B-NP) was rated by 
the model as its most important feature for predicting a cardiac cause of infection. Normal values for B-NP have 
been shown to have a high negative-predictive value for heart failure30 and are used to diagnose exacerbation 
of existing heart failure31. Blood glucose levels are not directly associated with heart failure, but the model may 
be looking for associated diabetes mellitus. This common disease is an important risk factor for heart disease32. 
Increases in respiratory rate can be caused by heart failure exacerbations33, so it makes sense that this would be 
an important predictive feature.

The model’s evaluation of imaging features for cardiac causes are less intuitive. The model highly values car-
diomegaly, effusion, and edema as predictive of a cardiac cause. All these radiographic findings can be present 
in heart failure30,33. However, the model’s use of the pneumothorax and pleural thickening features as predictive 
of heart failure, do not make clinical sense. The model may be using these features to evaluate for the presence 
of Kerley B lines. These lines are commonly associated with heart failure and are adjacent to the pleura34.

Feature comparison.  We have conducted feature comparison analysis. Table 3 shows the top five clinical 
features for each labeling task. The top features were determined by summarizing all absolute values of SHAP 
values by features and then ranking features based on the sum. Table 4 shows the top five clinical panels for each 
labeling task. The top panels were determined by further summarizing and ranking the per-feature SHAP value 
magnitudes. A panel with more components is potentially favored in ranking as more values are added together. 
The single-component feature B-NP ranks 1st in the Cardiac experiment suggesting that it is a very strong 

Figure 3.   SHAP TreeExplainer Feature importance plot for the top ten clinical features for the “cardiac” task 
(left) and the “infection” task (right). Color denotes feature magnitude, X-axis shows SHAP value, feature names 
are shown to the side of each row.

Figure 4.   SHAP Feature importance plot for the top ten image features for the “cardiac” task (left) and the 
“infection” task (right). Color denotes feature magnitude, X-axis shows SHAP value, feature names are shown to 
the side of each row.
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indicator. Table 5 shows the top five imaging features, labeled by their corresponding CheXNet label3 for each 
labeling task. The top features were determined by SHAP analysis as previously described.

Feature importance.  As seen in Table 3, the model ranks lactic acid measurements as its second most important 
feature for both infectious and cardiac causes of respiratory distress. Lactic acidosis is usually caused by global 
hypoperfusion which could be secondary to cardiac (cardiogenic shock) or infectious (sepsis) causes35. This sug-
gests that, in our dataset, patients with cardiac causes of acute respiratory distress are more likely to also present 
with lactic acidosis than those with infectious causes, or that they are likely to develop lactic acidosis sooner. 
This makes clinical sense as an infection in the lungs need not have systemic effects to cause respiratory distress 
whereas heart failure is expected to have systemic effects.

The model seems to view the classifications of infection and cardiac causes of acute respiratory distress as 
somewhat dichotomous. For instance, high values of lactic acid are associated with cardiac causes and low values 
are associated with infectious causes, and this value is ranked as the second most important for both classifica-
tions. Similarly, white blood cell count is the most important laboratory value for infection and the fifth most 
important for cardiac, with high values associated with infection and low values associated with cardiac.

As seen in Table 5, we observe imaging features shared between the infection and cardiac classifications, with 
edema, cardiomegaly, and effusion in the top 5 features for both categories. Even though effusion can sometimes 
be associated with complicated pneumonia33, the model treats all of these features as favoring cardiac causes 
while disfavoring infectious causes, reinforcing the model’s overall dichotomous view of these disease processes.

Summary and discussion
Current performance of the model.  We have shown that a combination of imaging and clinical features 
improved overall performance of XGBoost on predicting both infectious and cardiac causes of acute respiratory 
distress. For the infection labeling task, the combined model performed best in 3 of the 5 cross validation folds 
and performed slightly better on average. In this task, the performance was only marginally better than clinical 
features alone, perhaps due to the higher variance in visual presentation of infectious conditions. In the cardiac 
labeling task, the combined model performed best in 4 out of 5 folds. Interestingly, in this task the imaging 
model alone significantly underperformed the clinical model, but the image features provided a larger overall 
improvement when added to the clinical features than we saw on the infection labeling task. The combination 
seems to improve the consistency of XGBoost on prediction of cardiac causes.

Table 3.   Top five clinical features by labeling task.

Rank Infection Cardiac

1 White_Blood_Cells Brain_Natriuretic_Peptide

2 Lactic_Acid Lactic_Acid

3 Temperature Glucose

4 Pulse_Rate Respiration_Rate

5 Hemoglobin White_Blood_Cells

Table 4.   Top five clinical panels comparison. The number of features in each panel is shown in parentheses.

Rank Infection Cardiac

1 Vitals (6) B-NP (1)

2 CBC (3) BMP (7)

3 BMP (7) Vitals (6)

4 ABG (4) Lactic Acid (1)

5 Lactic Acid (1) CBC (3)

Table 5.   Top five image features comparison.

Rank Infection Cardiac

1 Consolidation Cardiomegaly

2 Effusion Pneumothorax

3 Infiltration Edema

4 Cardiomegaly Pleural_Thickening

5 Edema Effusion
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For comparison, we presented results obtained from a logistic regression model and a k-Nearest Neighbors 
model (k = 5). Both baseline models were from the Python SciKit-Learn library. These results can be seen in the 
last two rows of Tables 1 and 2. It must me mentioned that the baseline models were only be able to make predic-
tions on the (preprocessed) “clinical” feature set directly. We included the “image” and “both” feature combina-
tions for completeness, but to do so, the image features required the same deep learning feature extraction stage 
(CheXNet) used with our primary model. As such these two applications represent alternate configurations of 
our primary approach. These simpler models each performed reasonably well on one of the feature types: k-NN 
tended to work reasonably well on clinical features, while the linear logistic regression tended to work well on 
the image-only feature set. This could be due to the relatively small dimensionality of the image feature vector. 
Neither of the alternative models showed much improvement when combining features from the two modalities, 
suggesting that the XGBoost model is more robust when multi-modal features are present.

Possible improvements and future research.  The main limitation on this model’s current perfor-
mance was the relatively small number of example cases. The dataset of 171 patients was far below an ideal num-
ber for training. However, we are continuing to expand our dataset. As our dataset grows, we expect significant 
performance improvements. We are also exploring new image model formulations that make use of “localiza-
tion” annotations we were able to collect on our dataset. These annotations should allow us to provide addition 
feedback to the image model to serve as a forcing function for an attention mechanism. With an updated model 
and by expanding our dataset to hundreds of cases, we expect accuracy to make significant improvements in 
performance.

In our next phase of research, we will allow our collaborating resident physicians to apply the model to new 
patients and help guide decision making. This will allow us to evaluate the model’s efficacy in improving patient 
outcomes and reducing antibiotic use. Additionally, this project began before the recent SARS-CoV-2 pandemic. 
As we move forward with development, we will explore upgrading the model to include a SARS-CoV-2 specific 
classification with COVID-19 patients’ data. This would allow physicians to use the same software to diagnose 
cases of SARS-CoV-2 pneumonia. We expect our model to be able to perform this task with a high accuracy 
as other research teams have had success with this problem36. This would also support our goal of improving 
antibiotic stewardship among physicians as SARS-CoV-2 pneumonia does not benefit from antibiotic therapy37.

Methods
Statement.  Statement regarding informed consent. Informed consent regarding this research was waived 
by the St. Bernards Medical Center’s Institutional Review Board (IRB). This study was approved by the St. Ber-
nards Medical Center’s Institutional Review Board (IRB). The research results of this paper are related to Part 
One of the study of the Translational Research Lab. For Part One of the study, we are completely de-identifying 
the patient, there is no risk to the patient, and it would be impractical to obtain consent, given the number of 
charts to be reviewed for data collection. Confidentiality breach is the only risk to the patient, and we would be 
increasing that risk by obtaining signed informed consent. No interventions were undertaken during this por-
tion. For our future work on Part Two of this study, the patients selected will be patients that are seen in conjunc-
tion with the Internal Medicine Residency Program (IMRP) resident assigned to the ER for that month, who will 
be responsible for obtaining consent, and are subsequently admitted to SBMC for further care as an inpatient.

All methods were carried out in accordance with relevant guidelines and regulations.

Clinical data preprocessing.  The dataset contains clinical data of 188 patients and chest X-ray images of 
171 patients. Each patient has two Boolean classification labels: cardiac and infection, of which both can be true.

We used the clinical and image data of the 171 patients who had both for evaluation. The clinical data were 
hand-entered by a group of residents on rotation and contained some data entry errors that required careful 
cleaning before it could be used. In total, we were able to utilize 23 features from the clinical panels as described 
below.

The complete blood count (CBC) with differential column always contained 3 or 4 values. Based on what 
CBC with diff reports, conventional notation, and their ranges, these values were white blood cell count, hemo-
globin, hematocrit, and platelets, respectfully. When three values were present, hematocrit was always assumed 
to be missing based again on ranges and conventions. Of note, hematocrit should be able to be calculated from 
hemoglobin and is somewhat of a “redundant” value. After cleaning, hematocrit was excluded from the final 
analysis due to a preponderance of missing values.

The basic metabolic profile (BMP) test reports sodium, potassium, chloride, bicarbonate, blood urea nitro-
gen, creatinine, and glucose. By convention, they are reported in this order. The original dataset included some 
missing values in the BMP report. We identified which values were missing based on the positions and ranges 
of the values present compared to typical ranges for corresponding components of the BMP.

The column for brain natriuretic peptide (B-NP) always contained a single value. Where a real number was 
present, the value was kept as is. Otherwise, it was given an appropriate sentinel value to represent “missing”.

The first troponin measurement was represented as a continuous (real number) value, but sometimes con-
tained values that could be directly interpreted as a real number. Values such as “ < 0.012” were given the sentinel 
value “0” for “undetectable.” Multiple values were sometimes given, documenting the trend of multiple troponin 
measurements. In these cases, only the first measurement was kept.

The procalcitonin measurements contained too many missing values to be used in the final analysis, so it 
was excluded.

The lactic acid value was measured as a continuous (real number) value. All instances containing a value that 
could be directly interpreted as a real number were kept. All other values were marked as “missing”.
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The vital signs column usually contained 6 values in the following format: Temperature; Pulse Rate; Systolic 
Blood Pressure/Diastolic Blood Pressure; Respiration Rate; Pulse Oximetry. Real number values were recorded 
without lettering or comments. Though pulse oximetry is typically recorded as a percentage, we converted it 
to a real number in the range [0,1]. The residents recording these measurements were not consistent with the 
ordering of these values. The overwhelming common alternative format transposed the blood pressure and 
pulse rate values. Missing values were identified using typical ranges of these values, the order of the values, and 
the fact that blood pressure values are always expressed as x/y with x > y. Information about the patient’s use of 
supplemental oxygen was not kept.

The arterial blood gas column was the most problematic. There were usually 4 or 5 values: Arterial pH, arte-
rial pressure of CO2 (PCO2), arterial bicarbonate (bicarb), arterial pressure of O2 (PO2), and pulse oxygenation 
(SpO2) at time of blood draw. The residents recording these measurements were least consistent following the 
conventional order for this column. The conventional order of pH PCO2, bicarb, PO2, SpO2 was assumed unless 
the values were outside the typical range. However, interpretation was limited as the typical and possible ranges 
of PCO2 and PO2 overlap significantly. Though recommended for proper interpretation, information on SpO2 
and patient supplemental oxygen utilization were not included.

The logistic regression and k-NN models required that all missing values (represented by NaN, or “not a 
number” values initially) were replaced with a numeric sentinel value. This additional step was not necessary 
for the XGBoost primary model.

CheXNet‑based image features.  Training a deep convolutional neural network model typically requires 
a large number of images (200—1000 images per class)38,39. In this dataset we had 171 images, which is too few 
to attempt training from scratch. Instead, we opted to use a pre-trained neural network model from a similar 
application area as a feature extractor. CheXNet3 is a 121-layer convolutional neural network trained on the 
NIH ChestX-ray1440 dataset, consisting of 100,000 frontal X-ray images with 14 disease labels. We used the 
open source PyTorch implementation of CheXNet3 available at (https​://githu​b.com/arnow​eng/CheXN​et) with 
the pre-trained weights provided.

We utilized the 14 output class scores produced by the output stage of the pre-trained CheXNet model as 14 
image features, and performed testing to determine whether adding these image features to the clinical features 
could improve classification accuracy. The CheXNet output scores are real number values in the range [0,1] 
and were originally interpreted as the probability that the input chest X-ray image should be labeled with the 
corresponding medical condition. We re-interpreted the values as a 14-dimensional feature vector which was 
concatenated to our preprocessed clinical features. The rationale was that this feature vector contains a high-level 
encoding of the medically relevant abnormalities observed in the X-ray image.

Model training and evaluation.  We used XGBoost16, an open-source implementation of gradient boosted 
decision trees. The model was trained and evaluated on the dataset using fivefold cross-validation. We used the 
following parameter settings: ‘n_estimators’ = 1000, ‘learning_rate’ = 0.01, ‘max_depth’ = 2, ‘subsample’ = 0.50, 
‘colsample_bytree’ = 0.60, ‘objective’:‘binary:logistic’. For comparison, we also evaluated a logistic regression 
model and a k-Nearest Neighbors model where k was set to 5 (the default for the SciKit-Learn implementation 
we used). The same fivefold cross validation splits were utilized across all three model types.

Experiments utilizing only the “clinical” feature set were conducted by providing the preprocessed clini-
cal features as the input of the classification model. The logistic and k-NN model had missing (“NaN”) values 
replaced with a valid numeric sentinel value; the XGBoost model did not. Experiments utilizing only the “image” 
feature set were presented with the 14-dimensional feature vector from the CheXNet output stage as their input. 
Experiments utilizing “both” feature sets were presented with the preprocessed clinical features concatenated 
with the 14-dimensional feature vector from CheXNet. Missing clinical values were replaced as described above 
for the logistic regression and k-NN models.

SHAP analysis of feature importance.  SHAP (SHapley Additive exPlanations) is a game theoretic 
approach to machine learning model explanation41. Lundberg et al. examined several contemporary algorithms 
for determine feature importance and showed that they belonged to the same class of measures, then unified 
them into the SHAP framework42. The SHAP analysis computes the Shapley value to each individual feature of a 
training sample. The Shapley value, which is a concept from game theory, represents a feature’s responsibility for 
a change in the model’s output. The features themselves are viewed as cooperating participants in a game with 
the goal of solving the machine learning problem. The Shapley value represents the degree to which the indi-
vidual feature influences the coalition. The sum of the magnitudes of the SHAP values across training examples 
provides a direct measure of the importance of a feature42. We used the Python implementation of SHAP43. The 
“TreeExplainer” algorithm provided by the SHAP library was used for the analyses presented here.

Ethics.  This study was approved by the St. Bernards Medical Center’s Institutional Review Board (IRB).

Data availability
The clinical data and chest x-ray image data for this study were collected and prepared by the residents and 
researchers of the Joint Translational Research Lab of Arkansas State University (A- State) and St. Bernards 
Medical Center (SBMC) Internal Medicine Residency Program. As data collection is on-going for the project 
stage-II of clinical testing, raw data is not currently available for data sharing to the public.

https://github.com/arnoweng/CheXNet
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Code availability
We have published the current version of this model on the Internet for evaluation purposes. Physicians will 
be able to enter the data and receive a prediction through a web interface for research purposes. Eventually, 
our goal is to aid emergency room clinicians in planning treatment strategies, although clinical evaluation and 
approval is required before it can be used as a diagnostic and planning tool. It is available at: http://nbttr​ansla​
tiona​lrese​arch.org/.
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