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Abstract

Recently, attempts to improve decision making in species management have focussed on uncertainties associated with
modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve
estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In
particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for
nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We
present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model
structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial
hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the
absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when
considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach
presented facilitates the description and estimation of population trajectories and associated uncertainties when variability
cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale
datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.
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Introduction

Effective decision making in conservation and management can

be hindered by uncertainty surrounding our understanding of

population trajectories [1]. Improving our understanding of the

variability in temporal fluctuations in species abundances is a

particular challenge when using ecological data because it includes

both endogenous variation in species dynamics as well as errors of

observation and estimation [2–5]. This situation is complicated

further because the long-term and broad-scale surveys that are

needed to efficiently capture ecological trends typically exhibit

variability that increases with the scale of observation [6].

There is an acknowledged lack of statistical tools able to

efficiently deal with non-linear trajectories, multi-scale observa-

tions and the resulting uncertainties in ecology [7–9]. This lack of

tools is particularly relevant for coral reefs where highly variable

species dynamics and complex multi-dimensional interaction

pathways make it difficult to construct models that adequately

describe both overall (linear) trends and (nonlinear) fluctuations or

deviations around these trends, and also sufficiently accommodate

uncertainties inherent in these species trajectories [10–18].

Ignoring such nonlinearities and uncertainties, however, can lead

to imprecise inferences and compromise effective management of

ecosystems. For example, differences in model specification have

led to disagreements in interpretation of reef trajectory and health

[13,18–21].

Globally, coral reefs face diverse threats that are increasing in

frequency and intensity, yet the knowledge required to manage

them effectively is currently unavailable [22]. These threats are

contributing to a global decline of corals, the foundation species in

these ecosystems, through direct sources of mortality (e.g.

destructive fishing, coastal development, anchorage damage) and

degradation of reef environments from different forms of pollution,

over-harvesting, and climate change [23]. These pressures can

affect corals across spatial scales ranging from a few cm2 to

thousands of km2, and across temporal scales ranging from

seconds to decades and centuries [17,24,25]. Despite general

awareness that corals are being seriously impacted by the

simultaneous effects of these multiple sources of degradation, little

attention has been given to the importance of spatial scale in

models of coral trajectories [9,13,26]. Indeed, most models of coral

trajectories have focused on a single spatial scale using either the

scale of observation, or by aggregating data from multiple sources

to achieve some degree of generalization at a larger scale [27–29].

Both of these approaches, however, fail to capture the causal
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mechanisms leading to the actual trajectory observed in nature,

and their variability in time and space [18,30,31].

Recent multi-scale approaches to understanding coral trajecto-

ries have used generalized linear mixed models (GLMMs). These

trajectories are typically fitted using linear equations [12,16,17] or

natural splines [13,14]. In such cases, coral trends at larger spatial

scales (e.g. regions and subregions) are usually fitted by taking into

account the hierarchical structure of smaller scales (e.g. habitats,

reefs and sites) nested within these larger levels [12,13,16,32].

GLMMs typically accommodate this hierarchical structure in the

trends, or fixed components, by including random effects in the

parameterization of the model [33]. However, when using such

methods, care is required to account realistically for the spatial

and/or temporal structure affecting random effects [2]. In all of

these studies, random effects are typically assumed to be

identically, normally distributed and independently at a particular

spatial scale, such as reef [12–14,16]. Since random effects are not

directly observed in such an analytical framework, the validity of

these assumptions is difficult to test, and if violated, can lead to

model misspecifications [2]. Of concern is that violation of these

assumptions may be particularly important when investigating

coral trajectories. Indeed, corals as well as other sessile habitat-

forming communities are often studied using long-term surveys

over large spatial scales [11,13,27]. Data from such surveys are

likely to exhibit temporal and/or spatial structure, with measure-

ments made close together in space and or time being closely

correlated. Such correlations are also likely to be reinforced by

large-scale disturbances that can affect multiple locations simul-

taneously and for long periods [12,16,34–36]. Consequently,

commonly used statistical approaches described above, specify

spatio-temporal structure in the fixed-effects component, but not

in the random effects. Such methods, therefore, are limited in their

ability to realistically describe the underlying generative processes

and the different sources of uncertainty commonly encountered in

ecological monitoring data [4,26,37].

An alternative approach to modelling large-scale survey data is

to break the overall model into a series of hierarchically organized

sub-models and embed them in a Bayesian analytical framework.

These sub-models collectively describe a joint probability distri-

bution for parameters of interest and for predictions. By

construction, the model also accounts for differing sources of

uncertainty emerging at differing stages in the investigation [2,38],

including measurement error in data collection (stage 1), process

error in representation of the ecological process(es) of interest

(stage 2), and statistical error in the estimation of parameters (stage

3). The flexibility of this formulation, coupled with simulation-

based computational methods for parameter estimation such as

Markov Chain Monte Carlo and related algorithms, can be

harnessed to produce more ecologically sensitive nonlinear

models. Using this approach, the posterior predictive distribution,

which incorporates all three levels and other relevant prior

information, can be used to evaluate the adequacy of the model in

terms of its ability to describe the observed data as well as predict

unobserved data including future or missing observations [3].

These models have the added advantage of being able to be

updated when more data become available, thereby facilitating

continual refinement of knowledge about ecological processes and

considerably increasing their predictive capability [39].

We introduce a Bayesian semi-parametric hierarchical model to

simultaneously quantify nonlinearities in the relationships between

a response variable, coral cover, and its covariates, in this case,

time, uncertainties associated with the model structure and

associated parameters, and error associated with multiple scales

of observation. We illustrate this approach using 14 years of

population estimates for the major reef-building coral genus

Acropora, from the northern Great Barrier Reef (GBR), Australia.

We provide posterior estimates and associated uncertainties for

coral population trajectories among sites-, reefs- and habitats

within a sub-region, and within reefs and sites across time. Our

purpose is not to show a full analysis of the dataset, but rather to

illustrate the modelling concept and its broader application. We

demonstrate that this modelling approach is well suited to

estimation of population trajectories and corresponding uncer-

tainty in cases where population variability cannot be assigned to

unique causes and origins. We argue that this approach provides a

useful tool for investigating environmental drivers of population

trajectories, the scales at which they act, and which is applicable to

a wide range of species. In doing so, it facilitates greater

comprehension of the uncertainties associates with trajectories of

these species and, thereby supports more informed decision

making.

Methods

Data
We used estimates of coral cover from the Australian Institute of

Marine Science’s Long Term Monitoring Program (LTMP) of the

GBR [40]. The LTMP sampled benthic communities annually

from 1994 to 2004, and then every second year, on 47 reefs

throughout the GBR using five permanent 5061 m2 photo- (prior

to 2006) and video-transects (from 2006) between 6 and 9 m depth

[41]. Hard coral cover was estimated at the genus level and

expressed as a percentage, based on estimates taken from 200

random points along each transect (see [41] for further details). In

this study, we restrict our investigation to the dynamics of

acroporid corals which dominate the GBR (i.e. 51% of the coral

cover) and are considered responsible for most of the variability

observed in its coral community trajectories [12].

To minimize geographical variability in coral dynamics [14], we

parameterized the model using data from a single sub-region

within the GBR, the Cooktown-Lizard Island section for the

period 1994 to 2010 inclusive (Fig. 1). This sub-region is the

northern-most section of the GBR sampled by the LTMP,

spanning a latitudinal range from 14uS to 15u50’S. Within this

area, the LTMP samples three reef habitats defined by their

positions on the continental shelf. Inner-reefs are the closest to the

coast and are most exposed to terrestrial and human influences

[23]. The mid-shelf habitat extends over a large part of the GBR

lagoon, with reefs situated at various distances between inner and

outer habitats of the barrier reef. The outer-reef habitat extends

into more oceanic conditions. In this sub-region, the survey is

spatially replicated on two to three reefs per habitat, each reef

being itself sampled at three distinct sites (Fig. 1). We investigated

variability in coral dynamics at four spatial scales of observation of

this hierarchical sampling design ranging from ,250 m2 for the

site scale, 1 km2 for the reef scale, 5–45 km2 for the habitat scale,

and ,500 km2 for the sub-regional scale of the Cooktown-Lizard

Island section of the GBR. Observations at the transect scale

within sites were pooled because there were no significant

differences among transects after testing.

Model
A Bayesian longitudinal semi-parametric regression model was

used to assess trends in the study region. Longitudinal models are

suitable for situations like this where repeated measurements on

several individuals (here sites within reefs) have been made to

reflect how a variable of interest behaves through time. Temporal

dynamics are often too complex to be modelled parametrically,

Uncertainties in Non-Linear Population Trajectories
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when the relationship between time and the response variable

cannot be assumed to follow a specific and consistent pattern.

Such patterns are typical for ecological data from corals and many

other natural populations and communities whose dynamics are

driven by myriad interacting biotic and abiotic factors [7]. Semi-

parametric regressions offer an attractive approach for modelling

such data. They combine a linear model and a smooth non-linear

function, and therefore, provide a trade-off between flexibility and

interpretability of results [42]. In this paper, penalized splines were

used to describe the non-linear components of the model [43].

Within- and between-group variability was accounted for by the

inclusions of random effects terms and differing levels of spatial

hierarchy in the structure of the model. The preferred model was

selected based on Deviance Information Criterion (DIC) diagnos-

tics, which take into account both goodness of fit and model

parsimony [44].

Let yij represent the proportion of Acropora spp. observed at

time tij for a site i at the jth time point. There are a number of

potential ways for describing the distribution of yij; for example, it

could be represented by a Beta distribution (continuous over the

range 0 to 1) or by a normal distribution based on an arcsine or

angular transformation [45]. Here, we adopt the latter approach,

so that the dynamics of Acropora are modelled as:

arcsin (
ffiffiffiffiffi
yij
p

)*N(mij ,s
2
e ) ðEq: 1Þ

where the transformed value of Acropora coverage is assumed to

be normally distributed with an expected value mij and measure-

ment error term se. We use a very weakly informative conjugate

prior for the variance with s{2
e *Gamma(10{3,10{3).

The expected value mij is modelled as:

mij~fs(tij)zfh(s)(tij)zfr(sh)(tij)zfi(shr)(tij) ðEq: 2Þ

where fs (.) describes the overall mean curve at the scale of the sub-

region, and deviations from this overall curve represent hierar-

chically the habitat-, reef-, and site-specific trajectories. These

scales are indexed h, r and i respectively with1ƒhƒNhabitats(~3),
1ƒrƒNreefs(~8) and 1ƒiƒNsites(~24). In the following, for

clarity and where it does not cause confusion, the nested subscripts

are ignored.

All four contributions to the expected response are modelled as

combinations of linear trends and splines:

fs(t)~b0zb1tz
XK1

k~1

ckzs
tk,s~1,k~1, . . . ,K1

fh(t)~c0hzc1htz
XK2

k~1

dhkzh
tk,h~1, . . . ,Nhabitats,k~1, . . . ,K2

fr(t)~h0rzh1rtz
XK3

k~1

erkzr
tk,r~1, . . . ,Nreefs,k~1, . . . ,K3

fi(t)~d0izd1itz
XK4

k~1

gikzi
tk,i~1, . . . ,Nsites,k~1, . . . ,K4 ðEq: 3Þ

The matrix zs
tk is the (t, k)th entry of the design matrix [43], for

the penalized spline random coefficients {ck}, corresponding to the

sub-region mean function fs (?). Similarly, zh
tk zr

tk, and zi
tk are

defined as the (t, k)th entries of the design matrices for random

coefficients corresponding to habitat level fh (?), the reef level fr (?),

and site scale curves fi (?). At the habitat scales one set of random

Figure 1. Sampling design of the Long Term Monitoring Program showing the hierarchical levels of observation for the Cooktown-
Lizard Island sub-region, one of six sub-regions of Australia’s Great Barrier Reef. The sub-region is divided into three shelf-positions or
habitats (inner reef (red arrows), mid-shelf reef (orange arrows), and outer reef (green arrows)). Each habitat is sampled on three sites (green dots) in
each of two or three reefs. We highlight three sites at Carter reef from the outer reef habitat. Modified from original satellite images � Landsat and
MODIS satellite imagery courtesy of NASA Goddard Space Flight Center and US Geological Survey.
doi:10.1371/journal.pone.0110968.g001
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coefficients {dhk} is allocated to each habitat. Similarly at reef and

site scales one set of random coefficients {erk} or {gik} are

allocated to each reef or site, respectively. Four knots were used for

the splines for each curve (i.e. K1 = … = K4 = 4). Note that

because the smoothing is controlled by a penalty parameter, the

number of knots K is not a crucial parameter in the model [46].

For modelling trajectories over time t, the model allows random

slopes and intercepts hr and ds at the reef- and site-specific scales.

Trajectories at the sub-regional and habitat scales are considered

as fixed effects, modelled via bs and ch. The time regressor (t) is

centered on the year 2001 to facilitate model convergence, and to

minimize correlation among random effects [17]. Autocorrelated

temporal and spatial terms are not explicitly defined in this model,

since the correlation exhibited in the data was largely incorporated

through the hierarchical structure and the assignment of random

effects at each stage of the model [8,17]. This was checked by

plotting residuals at each modelled spatial scale and using the

autocorrelation function to confirm an absence of temporal

structure in the fitted model (results not shown).

The model also assumes that the c, d, e, g, h and d parameters

are mutually independent, with hierarchical priors defined to

model the random effects s2 as follows:

ck*N(0,s2
c),k~1, . . . ,K1

dhk*N(0,s2
d ),h~1, . . . ,Nhabitats,k~1, . . . ,K2

erk*N(0,s2
e),r~1, . . . ,Nreefs,k~1, . . . ,K3

gik*N(0,s2
g),i~1, . . . ,Nsites,k~1, . . . ,K4

h0r*N(0,s2
h0

),r~1, . . . ,Nreefs

h1r*N(0,s2
h1

),r~1, . . . ,Nreefs

d0i*N(0,s2
d0

),i~1, . . . ,Nsites

d1i*N(0,s2
d1

),i~1, . . . ,Nsites ðEq: 4Þ

The amount of shrinkage induced bys2
c ,s2

d ,s2
e , s2

g is allowed to

differ for each level of the model ands2
h0

,s2
h1

,s2
d0

ands2
d1

represent

variability of intercepts, and slopes among reefs and sites,

respectively.

Temporal trends at sub-regional and habitat scales are

considered specific to each area, and hence fitted using fixed

effects, with vaguely informative prior distributions:

b0,b1,c0h,c1h*N(0,103),h~1, . . . ,Nhabitats ðEq: 5Þ

We use conjugate Gamma priors on the random effects

parameters:

s{2
c ,s{2

d ,s{2
e ,s{2

g ,s{2
h0

,s{2
h1

,s{2
d0

,s{2
d1

*Gamma(10{3,10{3)

s{2
e *Gamma(10{6,10{6) ðEq: 6Þ

Other prior formulations for the precisions were also evaluated,

including the Uniform and half-Cauchy distributions for the

corresponding standard deviations [47], with no substantive effect

on the posterior distributions or inferences (results not shown).

The Directed Acyclic Graphic (DAG) presented in Figure 2

shows connections between the three hierarchical stages of the

model. At the first stage, the data level, the arcsine transformed

value of the response yij is distributed around a population mean

mij with measurement error se (Eq. 1). The second stage comprises

the model for the ecological process and the associated process

error (Eq. 2–4). The third stage includes uncertainty in the trend

parameters (Eq. 5) and variance components (Eq. 6).

Analysis was performed using the R package R2WinBUGS [48]

to call the Bayesian software analysis WinBUGS [49]. We provide

R and WinBUGS code in the supporting information file.

Posterior distributions of parameters were approximated by

Markov Chain Monte Carlo with 200,000 iterations. Convergence

diagnostics were assessed by using visual (trace and density-plots of

parameters and autocorrelation plots between MCMC draws) and

statistical (Gelman and Rubin diagnostic) functions from the R

package coda [50]. Convergence was satisfied using a burn-in of

100,000 iterations. Three MCMC chains were simultaneously run

to further evaluate and confirm convergence to stationarity. A

thinning rate of 50 iterations, mainly used to reduce computer

storage space, also improved the independence of the simulated

values. Parameter inferences were drawn from posterior distribu-

Figure 2. Directed Acyclic Graph showing how Acropora cover
yij at a site i and time j is fitted in three stages. Here, the
transformed data yij are modelled using a normal distribution with an
expected value mij and variance se. The expected value mij is a function
of four spatial scales (sub-region fs, habitat fh, reef fr, and site fi). Linear
trends at sub-region and habitat scale are modelled using fixed effects
(b, c). At the site and reef scale, trend parameters (h, d) are considered
as random. Trend parameters are denoted with the subscript 0
corresponding to the intercept and 1 corresponding to the slope.
Random effects require specification of a variance component (s),
specified for each spatial scale of the model. Refer to the methods
section for equations.
doi:10.1371/journal.pone.0110968.g002
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tions constructed from the retained 2000 iterations from the

MCMC chains. Goodness-of-fit was assessed by overall model fit

diagnostics (DIC), approximate normal distributions for the root-

mean-squared error (RMSE) terms, precision of parameter

estimates (width of credible intervals) and posterior predictive fit

(whether the observed values were contained in the 95% credible

intervals obtained from the respective posterior predictive

distributions). Autocorrelations between parameters within a

spatial scale were also examined to confirm independence between

linear slope and intercept terms. The accuracy of model outputs at

each spatial scale was assessed by inspecting the posterior

distributions of the trend parameters: c0h, c1h, h0r, h1r, d0i and

d1i. The fitted trajectory model was then decomposed into linear

and non-linear components by splitting the respective equations

(Eq. 3) into two parts (for example, linear: d0 izd1it and non-

linear:
PK4

k~1

gikzi
tk,i~1, . . . ,Nsites,k~1, . . . ,K4 for fi(t)). This de-

composition was visualized for each spatial scale. Note that we

examine different components of the expected value mij depending

on the spatial scale. Coverage of Acropora at the habitat scale

is a function of the contribution of the sub-region and habitat

(fszfh)whereas at the reef level it is a function of the contribution

of the sub-region, habitat and reef (fszfhzfr). Finally at

the site scale we retrieve the expected value of observations

(mij~fszfhzfrzfi).

Results

Posterior distributions of model parameters and
uncertainty

Visualization of posterior predictions compared to observations

indicated that the model successfully captured spatial and

temporal variability in Acropora dynamics at the three spatial

scales nested within sub-region (Fig. 3). However, posterior

distributions of the slope and intercept in trend (i.e, fixed

component) show that their precision decreased with the scale of

observation (see top-left inserts on plots in Fig. 3, Fig. S1). At the

finer scale of the site, linear components of the trend were

relatively tightly estimated: slopes were centred around 0 (range of

95% credible interval, RCI,0.05) and intercept terms had slightly

larger variances (RCI<0.1) with occasional non-zero central

values. At the intermediate scale of the reef, the variance of the

trend parameters was also relatively small (RCI,0.1). At the

broadest scale, however, the estimated slopes and intercepts in

trend for all three habitats were poorly estimated (Fig. S1). These

results demonstrate that the temporal trends in the model

successfully capture patterns at the site and reef scales, but not

at the broader scale of habitat. At the finer spatial scales, linear

dynamics were different between and within reefs and sites, with a

consistent increase in the amount of uncertainty in more recent

years (top-right inserts on plots in Fig. 3). The estimated non-

linear dynamics were consistent within each spatial scale with

spline contributions close to zero, but the degree of uncertainty

differed between scales and was smallest at the reef scale,

intermediate at the site, and largest at the habitat scale (top-right

insert on each plot in Fig. 3). As expected, these uncertainties

increased when moving from the centre to the edges of the

surveyed period. The relatively narrow range of the measurement

error (RCI<0.01, Fig. 4) illustrates that coral dynamics were well

explained by the multi-scale dynamics model given the data,

model structure and distributional assumptions.

Modelled coral trajectory patterns
Most of the uncertainty in estimated coral trajectories occurred

among habitats (Fig. 4). Indeed, Acropora dynamics were

substantially different at this scale of observation. Overall coral

cover was least on mid-shelf reefs, intermediate in inner habitats,

and largest on outer reefs (Fig. 3). Inner- and mid-shelf reefs

showed a slow increase in coral cover over the 14 years of survey,

with some evidence of previous decline in the mid-shelf habitat.

Outer reefs showed more pronounced trajectories, with a rapid

increase in coral cover between 1994 and 2000, a sharp decline

from 2000 to 2008, and early signs of recovery afterward.

Within the sub-region of Cooktown-Lizard Island, Acropora
population trajectories were relatively consistent among sites and

reefs with narrow uncertainty in model parameters estimation

(RCI,0.01), however, the degree of uncertainty was higher within

reefs and sites particularly in the estimation of variance

components for slope in the trend,sh1
andsd1

(Fig. 4). These results

indicate that estimation of coral cover is affected by diverse sources

of uncertainty acting at different stages of the model and levels of

observation.

Discussion

Mathematical description of non-linear trends and associated

uncertainties for hierarchically structured data over different

spatial scales is a very big challenge which is extremely difficult to

address using existing statistical approaches. This limitation

severely impacts our abilities to understand a diverse range of

ecological systems, and other systems more broadly. For example,

long-term surveys of ecosystems are typically based on hierarchical

observations [3,8]; in epidemiology, spatial trends in health

outcomes are monitored among different hierarchies in popula-

tions; in finance, temporal patterns in returns are monitored

among financial sectors; and so on. In this paper, we introduce a

new statistical approach that explicitly accounts for variability and

uncertainty present in population trajectory models by coupling

hierarchical and semi-parametric methods. Hierarchical modelling

by its very nature allows the partitioning of variability into multiple

spatial scales and model stages. It has been well demonstrated that

ecological processes can be highly variable both within and across

different spatio-temporal scales and that the relationship between

two variables can change according to the spatial scale considered

[8,51]. As a consequence, robust quantitative descriptions of

natural patterns need to be able to connect broad-scale patterns to

fine-scale processes, and in doing so transfer information across

these scales [52]. Complemented by a semi-parametric formula-

tion, our approach here facilitates a more flexible representation of

trends over time, free of parametric constraints, and thereby, more

effectively ‘‘letting the data speak for themselves’’ [7]. In addition,

we modelled multifaceted trajectories of populations across space

and time by decomposing dynamics into linear and non-linear

components which represent deviations from linearity. Thus, we

are able to simultaneously identify long-term trends (linear) as well

as more temporally localized variations (often non-linear) in

population trajectories [12], contributing to better diagnosis of

sources of variability inherent in long-term ecological data.

There is a growing literature on the philosophical, practical and

inferential benefits of the Bayesian framework for modelling

ecological data [2,3,6,31,38,53]. In the field of coral reef ecology,

applications of Bayesian hierarchical regression models are fairly

new. Published examples have examined: the effects of temper-

ature anomalies on coral cover declines from a global meta-

analysis [17] and spatial variability of reef fish community

structure in French Polynesia [9] and Australia [26]. These

Uncertainties in Non-Linear Population Trajectories
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studies, however, investigated the effects of different covariates

without full consideration of the associated uncertainties in their

models. As a consequence, these studies have not fully utilized a

major benefit of Bayesian computation, which resides in its

capacity to simultaneously quantify uncertainties associated with

estimated data, model structure and model parameters. Indeed,

Figure 3. Observed (dots) and fitted (curves) Acropora dynamics and associated parameter estimates and uncertainties. Coral
dynamics are modelled at the three spatial scales within the sub-region of Cooktown-Lizard Island; with plotted lines for: habitats (top); reefs
(middle); and sites (bottom). Shaded areas encompass 95% posterior predictive intervals around estimated coral trajectories and 95% credible
intervals around model parameters. Top-right inserts on plots illustrate the linear and non-linear components of coral trajectories extracted from
equations for fh, fr and fi. Top-left inserts illustrate posterior distributions of linear parameters (from the top to the bottom, plotted lines are for: h0 and
h1, d0 and d1 respectively; refer to Fig. 2, see equations in main text). Intercept terms were indexed by 0 and slope terms by 1 and shown with their
95% credible interval. Thin black lines on reef- and habitat-scale plots (mid- and top-line) show the fitted dynamics of nested individual sites. Note
different y-axis scales in inserted graphs. Estimates of coral cover trajectories are illustrated at the three sites at Carter Reef from the outer reef habitat
depicted in Figure 1.
doi:10.1371/journal.pone.0110968.g003
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we are no longer restricted to making a choice: whether to account

for the spatio-temporal structure in the data whilst only tracking

positive or negative effects of covariates on a response variable; or

to simplify the spatial structure whilst tracking non-linear effects of

the covariates on the response. By accounting for non-linear trends

(in the fixed component of the model), we may then focus on the

noise at the appropriate spatio-temporal scales (in the random

effects component). For coral reef trajectories, we must allow

sufficient complexity in both of these fixed and random

components. Doing so will help identify and potentially reduce

sources of uncertainty associated with modelling and will

contribute to improved knowledge of the dynamics of populations

studied in this way.

The Bayesian semi-parametric hierarchical model presented

here also provides a more ecologically relevant way of modelling

population trajectories, in cases where variability is large and

cannot be assigned to unique causes and origins. By decomposing

this variation into variance components at multiple spatial scales

and model stages, and directly assessing the posterior distributions

of these components, we have shown that it is not possible to

accurately estimate trend parameters at a spatial scale larger than

that of a reef in the sub-region considered here. That is, coral

trajectories were consistent at the km2 scale of sites within reefs but

diverged at the larger 5 km2 scale of reefs within habitats. These

results suggest that time as a single covariate is insufficient to

explain the coral trajectories at the habitat or sub-regional scales,

and would benefit from additional explanatory factors, such as

processes operating at these larger scales. For example, a historical

review of Acropora populations within the Cooktown-Lizard

Island sub-region modelled here reveals that they were affected

by outbreaks of the coral predator crows-of-thorns starfish

(Acanthaster planci) on mid-shelf reefs between 1995 and 1999,

and by white syndrome disease from 2000 to 2003 on outer reefs

[12]. Crowns-of-thorns starfish outbreaks are relatively slow and

diffusive disturbances whose propagation is driven by prey

availability [16]. Similarly, the spread of diseases and impacts

from other major disturbances such as cyclones and coral

bleaching are not homogenous on reefs and typically attenuate

as the result of multiple factors acting at differing scales [12,28]. As

a consequence, the effects of disturbances are seldom homoge-

neous across reefs, particularly at larger spatial scales such as, in

the case of the GBR, shelf-position, making it difficult to explain

coral trajectories using time as a single covariate. Nonetheless, this

sort of approach is sometimes adopted [12–14]. Moreover, the

three categories of shelf-position sampled by the LTMP were

initially defined for management purposes but in a largely ad hoc

Figure 4. Estimation of the uncertainty in the three hierarchical stages of the model. The measurement error se corresponds to the
uncertainty at the data stage, and all other variance components s account for uncertainty in the process model, decomposed into the variability in
trend (intercept and slope) of coral cover at the three spatial scales of habitat, reefs and sites.
doi:10.1371/journal.pone.0110968.g004
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fashion and were based on limited knowledge of reef ecology at

that time [21]. Indeed, the observed reduction in the precision of

parameter estimates at larger spatial scales can be partly attributed

to a lack of trends in the data at this habitat scale. A remedy for

this may be to include informative covariates in the model or use

more informed prior information [54], obtained perhaps from

similar analyses of other coral reef systems; these options are the

subject of ongoing research. Moreover, based on the more

extensive information extracted from our statistical approach,

more informative spatial sampling programs could be designed to

address specific management issues in an adaptive learning

framework as advocated for example by [55]. At present, however,

our results indicate that in the absence of better prior knowledge,

other explanatory covariates and/or other spatial designs,

conclusions about GBR coral cover trajectories become more

uncertain at a scale larger than individual reefs. Therefore, in this

context, management actions and the assessment of their efficacy

may be better focused at the reef scale.

In conclusion, the Bayesian semi-parametric hierarchical

approach introduced here facilitates flexible and environmentally

relevant description of non-linear population trajectories and

associated uncertainties. As illustrated, it can be used to identify

critical spatial thresholds beyond which ecological data reveal

divergence in the trajectories and so hinder model efficiency.

Without this decomposition of uncertainties at multiple spatial

scales and model stages, patterns remain concealed and conclu-

sions regarding population trajectories can be considerably

compromised. In contrast, we argue that our model can unlock

information contained in spatially extensive time-series data,

facilitate the design of better future surveys, provide guidance for

understanding sources of uncertainty, and support better informed

decision making.
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27. Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term

region-wide declines in Caribbean corals. Science 301: 958–960.

28. Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific:

timing, extent, and subregional comparisons. PLoS ONE 8: e711.

29. Graham NAJ, Nash KL, Kool JT (2011) Coral reef recovery dynamics in a

changing world. Coral Reefs 30: 283–294.

30. Austin MP (2002) Spatial prediction of species distribution: an interface between

ecological theory and statistical modelling. Ecological Modelling 157: 101–118.

31. Clark JS (2003) Uncertainty and variability in demography and population

growth: a hierarchical approach. Ecology 6: 1370–1381.

32. Mellin C, Bradshaw CJA, Meekan MG, Caley MJ (2010) Environmental and

spatial predictors of species richness and abundance in coral reef fishes. Global

Ecology and Biogeography 19: 212–222.

33. Bolker BM, Brook ME, Clark CJ, Geange SW, Poulsen JR, et al. (2009)

Generalized linear mixed models: a practical guide for ecology and evolution.

Trends in Ecology and Evolution 24: 127–135.

Uncertainties in Non-Linear Population Trajectories

PLOS ONE | www.plosone.org 8 November 2014 | Volume 9 | Issue 11 | e110968



34. Connell JH (1997) Disturbance and recovery of coral assemblages. Coral Reefs

16: 101–113.

35. Pandolfi JM, Bradbury RH, Sala RE, Hughes TP, Bjorndal KA, et al. (2003)

Global trajectories of the long-term decline of coral reef ecosystems. Science 301:

955–958.

36. Halford AR, Caley MJ (2009) Towards an understanding of resilience in isolated

coral reefs. Global Change Biology 15: 3031–3045.

37. Hadfield JD, Wilson AJ, Garant D, Sheldon BC, Kruuk LEB (2010) The misuse

of BLUP in ecology and evolution. The American Naturalist 175: 116–125.

38. Clark JS, Gelfand AE (2006) A future for models and data in environmental

science. Trends in Ecology and Evolution 21: 375–380.

39. Gelman A (2005) Multilevel (hierarchical) modeling: what it can and can’t do.

Technometrics 48: 432–435.

40. Sweatman H, Cheal A, Coleman G, Emslie M, Johns K, et al. (2008) Long-term

monitoring of the Great Barrier Reef. Statut report number 8, Australian

Institute of Marine Science, 369 pp.

41. Jonker M, Johns K, Osborne K (2008) Surveys of benthic reef communities using

underwater digital photography and counts of juvenile corals. – Long-term

Monitoring of the Great Barrier Reef Standard Operation Procedure Number 10.

42. Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric Regression.

Cambridge University Press, Cambridge.

43. Crainiceanu CM, Ruppert D, Wand MP (2005) Bayesian Analysis for penalized

spline regression using WinBUGS. Journal of Statistical Software 14: 1–24.

44. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Line A (2002) Bayesian

measures of model complexity and fit. Journal of the Royal Statistical Society,
Series B, 64: 583–639.

45. Rao PV (1998) Statistical Research Methods in the Life Sciences. Brooks/Cole

Publishing Company, Pacific Grove, California.
46. Ruppert D (2002) Selecting the Number of Knots for Penalized Splines. Journal

of Computational and Graphical Statistics 11: 735–757.
47. Gelman A (2006) Prior distributions for variance parameters in hierarchical

models. Bayesian Analysis 3: 515–533.

48. Sturtz S, Ligges U, Gelman A (2005) R2WinBUGS: A Package for Running
WinBUGS from R. Journal of Statistical Software 12: 1–16.

49. Spiegelhalter DJ, Thomas A, Best N, Lunn D (2003) WinBUGS Version 1.4
Users manual. MRC Biostatistics Unit, Cambridge.

50. Plummer M, Best N, Cowles K, Vines K, Sarkar D, et al. (2006) CODA:
Convergence Diagnosis and Output Analysis for MCMC. R News 6: 7–1.

51. Wiens JA (1989) Spatial scaling in ecology. Functionnal Ecology 3: 385–397.

52. Wu J, David JL (2002) A spatially explicit hierarchical approach to modelling
complex ecological systems: theory and applications. Ecological Modelling 153:

7–26.
53. Ellison AM (2004) Bayesian inference in ecology. Ecology Letters 7: 509–520.

54. Low Choy S, O9Leary R, Mengersen K (2009) Elicitation by design in ecology:

using expert opinion to inform priors for Bayesian statistical models. Ecology 90:
265–277.

55. Caley MJ, Fisher R, Mengersen K (2014) Global species richness estimates have
not converged. Trends in Ecology and Evolution 4: 187–188.

Uncertainties in Non-Linear Population Trajectories

PLOS ONE | www.plosone.org 9 November 2014 | Volume 9 | Issue 11 | e110968


