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Screening cytosine-phosphate-guanine dinucleotide (CpG) DNAmethylation sites in association with some covariate(s) is desired
due to high dimensionality. We incorporate surrogate variable analyses (SVAs) into (ordinary or robust) linear regressions and
utilize training and testing samples for nested validation to screen CpG sites. SVA is to account for variations in the methylation
not explained by the specified covariate(s) and adjust for confounding effects. To make it easier to users, this screening method
is built into a user-friendly R package, ttScreening, with efficient algorithms implemented. Various simulations were implemented
to examine the robustness and sensitivity of the method compared to the classical approaches controlling for multiple testing: the
false discovery rates-based (FDR-based) and the Bonferroni-based methods. The proposed approach in general performs better
and has the potential to control both types I and II errors. We applied ttScreening to 383,998 CpG sites in association with maternal
smoking, one of the leading factors for cancer risk.

1. Background

Due to its high throughput, accuracy, small sample require-
ment, and acceptable cost, the Illumina Infinium Human-
Methylation450 BeadChip has been widely used to analyze
deoxyribonucleic acid (DNA) methylation profiles in epige-
netic studies that target various types of cancer. In particular,
the illumina infinium assay utilizes a pair of probes (a
methylated probe and an unmethylated probe) to measure
the intensities of methylated and unmethylated alleles at
the interrogated cytosine-phosphate-guanine dinucleotide
(CpG) sites [1]. Two measures of DNA methylation are
usually used: beta-values and 𝑀-values. A beta-value is the
ratio of signal from the methylated probe relative to the
sum of both methylated and unmethylated probes. Beta-
values are in the range of (0, 1) with 0 being completely
unmethylated and 1 being fully methylated. 𝑀-values are
log 2 ratio of intensities for methylated and unmethylated

probes and range from (−∞, +∞) [2, 3].𝑀-values are used
more often in appreciation of its wide data range and variance
homogeneity compared to beta-values.

Given the feature of high dimensionality of high-
throughput methylation data, when performing designed
and possibly complicated statistical analyses, it is wise to
target potentially important CpG sites, for instance, CpG sites
potentially associated with single-nucleotide polymorphisms
(SNPs) and/or other covariate(s) of interest. Otherwise, the
statistical power will be substantially lost. There is evidence
that methylation is affected by genetic and some known
factors such as smoking [4, 5]. Screening CpG sites have
become overwhelmingly important across multiple health
fields of study such as cancer research, genetic diseases, and
epigenetic research.

Common methods for screening CpG sites assume some
relationship of the 𝑀-values in association with SNPs or
some other genetic or environmental factors conditional on
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the assumption of linearity with some post hoc adjustment
for multiple comparisons. The advantage to this method
is the flexibility of incorporating additional covariates and
their interactions. The primary limitation lies in controlling
for multiple testing. Two popular adjustment methods are
the Bonferroni-based method [6, 7] and the Benjamini-
Hochberg method for controlling the false discovery rate
(FDR) [8, 9]. These methods alter the 𝑝-value or critical
value to control for type I error. Bonferroni correction is
the most conservative by dividing the linear regression 𝑝-
value, respective of the regression term of interest, by the
total number of comparisons (𝑚) or CpG sites in this case
such that those adjusted 𝑝-values above the significance level
are rejected. The FDR method first orders the 𝑝-values, 𝑃(𝑘)
for 𝑘 ∈ 1 ⋅ ⋅ ⋅ 𝑚, such that lower ordered 𝑝-values that are
less than or equal to 𝑘/𝑚 × 𝛼 are rejected [9]. It follows that
the conservative Bonferroni-based method cannot control
for type II error while the FDR-based method cannot control
for type I error.

There are other potential issues that arise when dealing
with DNA methylation. It is possible that the variation
in methylation cannot be fully explained by the known
covariates and there exist latent factors that confound with
these known covariates [5]. To improve the screening quality,
it is thus important to account for variations introduced by
other unknown factors. Furthermore, CpG sites screened
from one data set may not be consistent with those from
another data set which directly affects the type I error rate
and leads to a loss of power. It is thus equally important to
improve the reproducibility of the selected CpG sites.

In this paper, we propose a novel collaboration of existing
statistical techniques to screen genome-wide methylation.
It takes unknown factor effects into account and achieves
better reproducibility. The method has the ability to control
for both types I and II error while adjusting for covariates
as well as latent variables. The proposed screening method
incorporates surrogate variable analysis [5], which identifies
unknown latent variables, in conjunction with a training and
testing approach [10] across CpG methylation sites linearly
associated with covariates of interest, including the identified
surrogate variables. Independently, each method is well
established for different purposes. We mingle these methods
and form, compared to existing methods, an improved and
more efficient process to screen (filter) informative DNA
methylation sites. In addition, this proposed method has
been built into an efficient and user-friendly R package.
In the following sections, further description and details of
the proposed method can be found in Section 2, simulation
studies and a real data application are included in Section 3,
and we summarize the approach in Section 4.

2. Materials and Methods

The proposed screening procedure is built for analyzing
the associations between methylation data (𝑀-values), or
some high-dimensional data, and covariates of interest and
their potential interactions. It consists of two consecutive
components and surrogate variable analysis followed by a

series of regressions while controlling for multiple test-
ing. Surrogate variable analysis (SVA) aims to identify and
estimate latent factors or surrogate variables (SVs) that
potentially affect the association between known factors and
the response variable, for example, SNPs (known factor)
and DNA methylation (response variable) [5]. Including the
estimated surrogate variables into the screening process has
the potential to reduce unexplained variations, adjust for
confounding effects, and consequently improve the accuracy
of screening in terms of important variable identification [5].
In the context of DNAmethylation, inclusion of the surrogate
variables explains the variation in DNA methylation not
explained by the covariates currently under consideration.
This implies that the identified surrogate variables can be
further used to identify important factors (markers) showing
large contribution to the variation in the response variable
explained by the surrogate variables [11].These surrogate vari-
ables along with other variable(s) of interest can be included
in regression analysis as independent variables. After SVA, we
then begin the screening process with regressions and adjust
for multiple comparisons.

As mentioned in the introduction, several methods exist
to adjust for multiple testing but lack the ability to control
for both types I and II errors. We have elected to implement
a method that will control for both while simultaneously
helping the issue of reproducibility. We let randomly chosen
training and testing samples estimate and test the effects of
the primary covariate(s), termed the TT method. General
ideas of this approach are discussed in Dobbin and Simon
and Faraggi and Simon [10, 12]. This method follows the
concept of cross-validation. It has been shown that the
implementation of the training and testing technique can
provide a better control of type I error rate [10, 12]. In the
next two subsections, we provide detailed steps and options
available to both the surrogate variable analysis component
and the TT method.

2.1. Identifying Surrogate Variables. Surrogate variables are
inferred prior to screening using an algorithmic method
developed by Leek and Storey (2007) called surrogate variable
analysis [5]. Following the descriptions in Leek and Storey
(2007), these SVs are developed by removing the amount
of methylation or signal due to the variable(s) of interest
and then decomposing the remaining residuals to identify an
orthogonal basis of singular vectors that can be reproduced.
These vectors are further examined for significant variation
to form surrogate variables. Leek and Storey built an R
package to perform the surrogate variable analyses (SVAs).
The first step in SVA is to identify the number of surrogate
variables based on the data using one of two methods, “be”
or “leek” as noted in the package. The “be” method, being
the default choice according Leek and Storey’s R package, is
based on a permutation procedure originally proposed by
Buja and Eyuboglu in 1992 [13], while the “leek” method
provides an interface to the asymptotic approach proposed
by Leek in 2011 [14]. Once the number of surrogate variables
is calculated, they are then estimated using one of three
algorithms, the iteratively reweighted (“irw”), supervised
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Figure 1: A conceptual representation of the training and testing algorithm.

(“supervised”), and the two-step (“two-step”) method. Iter-
atively reweighted method is for empirical estimation of
control probes, supervisedmethod is for when control probes
are known, and the two-stepmethod is for general estimation
of surrogate variables [15].We elected to implement the “two-
step” method following Leek and Storey [5]. Conditional on
the data, a number of latent unknown variables have been
identified, estimated, and will now be incorporated into the
regression in associationwithDNAmethylation as additional
covariates.

2.2. The Training and Testing (TT) Screening Method. After
surrogate variable analysis is complete, the TT screening
method then begins as an iterative process of randomly
sampling the training and testing data by a specified pro-
portion. By default, 2/3 of the data will be included in the
training data set, which is suggested in Dobbin and Simon
[10] to maximize statistical power. Linear regressions are
first applied to the training data to calculate the 𝑝 values
for the association between the CpG site and the covariates,
including SVs, using either ordinary least squares (this is a
default choice in our R package) or robust regression. Robust
regression is a type of linear regression that allows for more
relaxed assumptions about normality and presence of outliers
in the data. A CpG site is included as a candidate if the
covariate(s) of interest is statistically significant according to
a prespecified significance level, for example, 0.05. In our
designed R package, we give user the flexibility to define
which term (covariate) is used to decide the selection of CpG
sites. For example, suppose the defined right-hand side of
the regression is 𝑥

1
+ 𝑥
2
+ 𝑥
1
× 𝑥
2
, where 𝑥

1
× 𝑥
2
denotes

the interaction of 𝑥
1
and 𝑥

2
. If the decision of selecting

a CpG site is based on one single term, for example, the
significance of the interaction effect, the 𝑝 value for the

interaction term would be used to test statistical significance
against the prespecified significance level of 0.05.

The process continues with these candidate CpG sites
being further tested using the remaining subjects (testing
data set) with linear regressions. For one pair of training
and testing data sets, a candidate CpG site is deemed as
being important if the significance still holds in the testing
data. The significance level for the testing data by default
is set at the same level as for the training data, 0.05. This
screening process will be repeated 𝑖 times (i.e., iterations); at
each iteration, a training and testing data set will be randomly
selected. After one iteration, a pool of candidateCpG siteswill
be selected. This process is continued for total 𝑖 iterations.
We summarize this screening process in Figure 1. Across
all 𝑖 iterations, CpG sites selected in at least 𝑚 iterations
will be included in the final pool of potentially important
CpG sites; that is, the cutoff percentage of selection is
𝑚/𝑖 × 100%. Final estimates of the associations and statistical
significance for the selected CpG sites are inferred by use of
the complete data via the same analytical methods (i.e., linear
regression including surrogate variables previously estimated
from complete data) as in the training and testing process. A
cutoff percentage of 50 (𝑚 = 50 across 100 total iterations
(𝑖 = 100)) was used to determine the final pool of potentially
importantCpG sites. Suggestions on the determination of this
predefined value,𝑚, are discussed later in Section 3.1.

The user-friendly R package, ttScreening, is available
from the Comprehensive R Archive Network (CRAN) at
https://cran.r-project.org/web/packages/ttScreening/index
.html, which implements the proposed screening procedure
discussed above. This ttScreening package also provides
access to other screening methods: FDR and Bonferroni
methods. Various options, such as type of linear regression
and surrogate variable estimation method, are available for
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the user to specify while other options are data specific and
will need to be defined by the user. However, the package
does provide acceptable defaults values for those options that
are not data specific. A list of package options along with
descriptions are available in the package manual at https://
cran.r-project.org/web/packages/ttScreening/ttScreening.pdf.

3. Results and Discussion

Simulations are used to demonstrate and assess the TT
screening method in comparison with the FDR- and
Bonferroni-based methods using the ttScreening R package.
These are followedupby an application to a data set of 383,998
CpG sites and their association with maternal smoking.

3.1. Simulations. Simulation Scenarios. In total, 2,000 CpG
sites across 𝑛 = 600 subjects were simulated. In these 2,000
CpG sites, 𝑘 sites were assumed to be important. Different
settings of 𝑘 were considered, 𝑘 = 10, 100, 200, and 400.
Among the 𝑘 important sites, DNA methylation at 90%
of the 𝑘 CpG sites was associated with two variables 𝑥

1

and 𝑥
2
, their interaction, and 5 unobservable independent

uncorrelated variables, and the remaining 10% of the 𝑘
sites were associated with 𝑥

1
, the interaction of 𝑥

1
and 𝑥

2
,

and the 5 unobservable independent uncorrelated variables.
Variable 𝑥

1
is generated from normal distribution with mean

1 and variance 1, and 𝑥
2
is a four-level categorical variable

generated from multinomial with parameters 𝑛 and 𝜋 =
{0.15, 0.25, 0.25, 0.35}. The remaining CpG sites (2000 − 𝑘)
were only associated with the 5 unobservable variables and
were deemed as unimportant ones. Linear regressions were
applied to simulate the data. To assess the robustness of
each method (TT screening and FDR- and Bonferroni-based
methods), we considered two types of random error in the
regressions, one following normal distribution with mean 0
and variance 𝜎2 = 1.5 and the other 𝜒2 distribution with a
degree freedom of 1. Combining the choices on 𝑘 and the
distributions of random error, in total, we have 8 settings. For
each setting, we generated 100 Monte Carlo (MC) replicates.
The results presented below include means of the number
of incorrect selections (rounded to the nearest integer),
estimates of sensitivity, and estimates of specificity across the
100 MC replicates. The number of incorrect selections refers
to the number of CpG sites misidentified (refers to both false
positive and false negative CpG sites) out of the 2,000 CpG
sites.

3.2. Results. Variables 𝑥
1
or 𝑥
2
would be selected if their

interaction effect was statistically significant. All package
options were chosen as the default values with training and
testing significance levels both set to 0.05. The screening
results (Table 1) indicate that, in general, the sensitivity from
the FDR-based method is comparable to that from the TT
screeningmethod but its specificity is lowerwhen the number
of important variables is not sparse; for example, 𝑘 = 200.
Compared to the Bonferroni-based method, the TT method
in general gave better sensitivity and comparable specificity.
These were as expected, as the Bonferroni-based method

lacks the ability to control type II error while the FDR-
based method cannot control well type I error [16]. The
TT screening method, on the other hand, has the potential
to control both types I and II errors. This is reflected by
the results that the TT screening method overall produced
the smallest number of incorrectly identified variables, a
statistic incorporating information from both sensitivity and
specificity. We also performed the screening using robust
regressions and similar results were obtained (not shown).
These findings are invariant to the distribution pattern of
random errors, normally, or skew distributed.

Recall that the default value of the cutoff percentage
required for a CpG site to be treated as an informative site
across all iterations was 50%, and the significance levels for
both the training and testing data set were at 0.05. To further
evaluate how the choices of this cutoff percentage and the
significance levels in the training and testing steps influence
the screening results, we chose a set of the cutoff percentage
values ranging from 30 to 90 and set the training significance
level to 0.1 instead of default value 0.05. All other settings
were kept the same. As seen in Figure 2, across the different
number of important CpG sites and sample sizes, overall
taking the cutoff percentage close to 50% works the best with
significance level of 0.05 for both the training and testing
steps. If a higher significance level is chosen in the testing step,
then a higher value for cutoff percentage should be used.

The above examination on cutoff percentage is with
sample size 𝑛 = 600. To assess whether and how sample size
influences the choice of cutoff percentage, we repeated the
above analyses for different sample sizes (and for each sample
size, 100MCreplicateswere generated), 𝑛 = 200, 400, and 800
with all options in ttScreening() set at default values except for
cutoff percentage. The results (Figures 3–5) indicated that if
the number of important variables is expected to be sparse
(e.g., 0.5% of the total number variables), the default cutoff
value (50%) is a reasonable choice regardless of the sample
size. On the other hand, if important variables are not sparse,
for example, at least 5% of the total number of variables, then
the cutoff value tends to be influenced by the sample size only
if sample size is not large, for example, ≤400. In this case,
the smaller the sample size is, the lower the cutoff percentage
should be taken. This is as expected; when the sample size is
smaller, the probability of true positives will be lower.We thus
do not expect a higher proportion of correct selection and
consequently a lower cutoff percentage is desired. From our
simulations, we recommend 20% cutoff if both the following
two conditions are not satisfied: (1) important variables are
not expected to be sparse (which rarely happens in high-
throughput and high-dimensional data) and (2) we have
small samples compared to the number of candidate CpG
sites. However, if sample size is large, the default cutoff 50%
is still recommended. The selection results for sample sizes
𝑛 = 200, 400, and 800 following these recommendations are
included in the appendix (Tables 3, 4, and 5).

To demonstrate the benefit of using the identified sur-
rogate variables in screening, we reanalyzed the simulated
data (for 𝑛 = 600) but with the surrogate variable analysis
excluded (this option is available in the package). The rel-
ative patterns of statistics between different methods were
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Figure 2: Numbers of misidentified CpG sites versus cutoff frequency for a CpG site being potentially important (based on ordinary least
squares regressions). The true numbers of important CpG sites are (a) 10, (b) 100, (c) 200, and (d) 400 out of 2,000 CpG sites. For the TT
screening method, two sets of significance levels are considered: (1) 0.05 for training data and 0.1 for testing data; (2) 0.05 for both training
and testing data. For the FDR-based and Bonferroni methods, the level was set at 0.05.

intact compared to the results when surrogate variables were
included in the screening process. However, when surrogate
variables were not considered, a drastic drop in the mean
sensitivity was observed across all the settings (Table 2). The
sensitivity measures across all the 100 replicates ranged from
0 to 30%, implying that all methods had trouble deciphering

CpG sites that are truly important. However, instead of com-
pletely excluding surrogate variables, what if we include a set
of surrogate variables with each surrogate variable explaining
quite a small portion of variation (i.e., less informative)?
To examine this, we extracted surrogate variables that are
less informative and reanalyzed the data. Similar findings as
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Figure 3: Numbers of misidentified CpG sites versus cutoff frequency for a CpG site being potentially important (based on ordinary least
squares regressions). The true numbers of important CpG sites are (a) 10, (b) 100, (c) 200, and (d) 400 out of 2,000 CpG sites across 200
subjects. For the TT screening method, significance levels considered are 0.05 for both training and testing data. For the FDR-based and
Bonferroni methods, the level was set at 0.05.

shown in Table 2 were concluded (Table 6), indicating the
importance of including informative surrogate variables in
order to substantially improve the quality of selection.

We further examined confounding effect of surrogate
variables. To achieve this, we followed the same simulation

scenarios noted earlier but, instead of assuming indepen-
dence between all the (observed and unobserved) indepen-
dent variables, we allow the 5 unobserved variables to be cor-
related with observed variable 𝑥

1
with a correlation of 0.7|𝑖−𝑗|

where 𝑖, 𝑗 ∈ 𝐿 and 𝐿 = (0, 1, 2, 3, 4, 5) represents an arbitrary



BioMed Research International 7

0

5

10

15

N
um

be
r o

f m
isi

de
nt

ifi
ed

 C
pG

 si
te

s

10 20 30 40 50 60 70 80 900
Iteration cutoff (%)

TTsame: 0.05/0.05
FDR: 0.05

Bonferroni: 0.05

(a) 10 important CpG sites out of 2000

0

50

100

150

200

250

N
um

be
r o

f m
isi

de
nt

ifi
ed

 C
pG

 si
te

s

10 20 30 40 50 60 70 80 900
Iteration cutoff (%)

TTsame: 0.05/0.05
FDR: 0.05

Bonferroni: 0.05

(b) 100 important CpG sites out of 2000

0

50

100

150

200

250

N
um

be
r o

f m
isi

de
nt

ifi
ed

 C
pG

 si
te

s

10 20 30 40 50 60 70 80 900
Iteration cutoff (%)

TTsame: 0.05/0.05
FDR: 0.05

Bonferroni: 0.05

(c) 200 important CpG sites out of 2000

0

100

200

300

400

N
um

be
r o

f m
isi

de
nt

ifi
ed

 C
pG

 si
te

s

10 20 30 40 50 60 70 80 900
Iteration cutoff (%)

TTsame: 0.05/0.05
FDR: 0.05

Bonferroni: 0.05

(d) 400 important CpG sites out of 2000

Figure 4: Numbers of misidentified CpG sites versus cutoff frequency for a CpG site being potentially important (based on ordinary least
squares regressions). The true numbers of important CpG sites are (a) 10, (b) 100, (c) 200, and (d) 400 out of 2,000 CpG sites across 400
subjects. For the TT screening method, significance levels considered are 0.05 for both training and testing data. For the FDR-based and
Bonferroni methods, the level was set at 0.05.

locations of the variables. For example, the observed variable
is identified at location 0 and the 5 unobserved variables are
locations (1, 2, 3, 4, 5). Then we generated 100 Monte Carlo
replicates based on normal distributions with a sample size
of 𝑛 = 600. In the simulations, we considered the impact
of including and excluding identified surrogate variables.The

screening results (results not shown) are consistent with the
previous findings when no correlations between unobserved
and observed variables were assumed (Tables 1 and 2); that
is, including the identified surrogate variable substantially
improves the screening statistics (number of incorrectness,
sensitivity, and specificity).
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Figure 5: Numbers of misidentified CpG sites versus cutoff frequency for a CpG site being potentially important (based on ordinary least
squares regressions). The true numbers of important CpG sites are (a) 10, (b) 100, (c) 200, and (d) 400 out of 2,000 CpG sites across 800
subjects. For the TT screening method, significance levels considered are 0.05 for both training and testing data. For the FDR-based and
Bonferroni methods, the level was set at 0.05.

Based on the simulations, it is advised that users follow
default setting for the TT screening method: 2/3 of the
data for training, “two-step” for SVA analysis as described
in the published literature [5], 100 iterations for the total
number of TT screenings, 50% as the cutoff proportion
of those 100 iterations, and 0.05 significance level for the
training and testing data. We recommend 100 iterations

as a balance between computing efficiency and adequate
resampling of the subjects to decipher true associations.
We recommend 50% as the default because in general
informative CpGs are sparse compared to the number of
candidate CpG sites, in which case, as seen in simulations the
50% cutoff percentage is suitable for small and large sample
sizes.
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Table 1: Simulation results for selecting 𝑘 important variables among 2,000 candidates with surrogate variables included.

Statistics Bon FDR TT Bon FDR TT
Random error normally distributed

𝑘 = 10 𝑘 = 100

# incorrect 0 1 1 3 8 2
Sensitivity 0.981 0.991 0.994 0.968 0.999 0.991
Specificity 1 1 1 1 0.996 1

𝑘 = 200 𝑘 = 400

# incorrect 13 32 7 78 213 46
Sensitivity 0.936 0.998 0.982 0.814 0.996 0.931
Specificity 1 0.982 0.998 0.998 0.868 0.989

Random error 𝜒2 distributed (df = 1)
𝑘 = 10 𝑘 = 100

# incorrect 1 1 1 16 9 7
Sensitivity 0.892 0.958 0.963 0.837 0.982 0.941
Specificity 1 1 1 1 0.996 1

𝑘 = 200 𝑘 = 400

# incorrect 46 29 21 169 158 95
Sensitivity 0.771 0.981 0.906 0.582 0.969 0.790
Specificity 1 0.986 0.999 0.999 0.909 0.993
Bon: Bonferroni, FDR: false discovery rate, and TT: training and testing.

Table 2: Simulation results for selecting 𝑘 important variables among 2,000 candidates with surrogate variables excluded.

Statistics Bon FDR TT Bon FDR TT
Random error normally distributed

𝑘 = 10 𝑘 = 100

# incorrect 10 51 9 99 114 90
Sensitivity 0.011 0.054 0.100 0.014 0.167 0.102
Specificity 1 0.979 1 1 0.984 1

𝑘 = 200 𝑘 = 400

# incorrect 197 182 180 394 310 359
Sensitivity 0.015 0.232 0.102 0.015 0.288 0.104
Specificity 1 0.984 1 1 0.984 1

Random error 𝜒2 distributed (df = 1)
𝑘 = 10 𝑘 = 100

# incorrect 10 38 9 98 103 91
Sensitivity 0.018 0.053 0.095 0.015 0.158 0.096
Specificity 1 0.986 1 1 0.99 1

𝑘 = 200 𝑘 = 400

# incorrect 197 176 181 394 314 363
Sensitivity 0.014 0.217 0.094 0.014 0.273 0.095
Specificity 1 0.989 1 1 0.986 1
Bon: Bonferroni, FDR: false discovery rate, and TT: training and testing.

3.3. Real Data Analysis. We applied the ttScreening package
to 383,998 CpG sites with DNA methylation available for
245 subjects. The data were collected from a study cohort
of 18-year-old females on the Isle of Wight (IOW) in the
United Kingdom [17]. We examined a single factor that may
be potentially associated with DNA methylation, maternal
smoking status during pregnancy (0/1). It is thought that
maternal smoking in utero increases chances of asthma

and wheezing in children and modifies defensive mecha-
nisms such as xenobiotic detoxification systems, antioxidant
responses, and damage repair mechanisms [18]. Certain
modifications to such systems have been known to increase
risk of lung cancer [18].

We applied the TT, FDR-based, and Bonferroni-based
methods to identify potentially important CpG sites. In the
TT method, 2/3 of the samples were used for training and
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Table 3: Simulation results for selecting 𝑘 important variables among 2,000 candidates including surrogate variables across 200 subjects.

Statistics Bon FDR TT Bon FDR TT
Random error normally distributed

𝑘 = 10 𝑘 = 100
†

# incorrect 7 6 6 77 43 41
Sensitivity 0.292 0.423 0.475 0.227 0.605 0.641
Specificity 1 1 1 1 0.998 0.997

𝑘 = 200
†

𝑘 = 400
†

# incorrect 165 87 93 361 214 244
Sensitivity 0.175 0.616 0.571 0.099 0.565 0.432
Specificity 1 0.994 0.996 1 0.975 0.989

Random error 𝜒2 distributed (df = 1)
𝑘 = 10 𝑘 = 100

†

# incorrect 9 8 7 88 62 55
Sensitivity 0.126 0.193 0.307 0.124 0.408 0.498
Specificity 1 1 1 1 0.998 0.997

𝑘 = 200
†

𝑘 = 400
†

# incorrect 182 123 119 380 274 288
Sensitivity 0.093 0.422 0.435 0.051 0.377 0.314
Specificity 1 0.996 0.997 1 0.985 0.992
Bon: Bonferroni, FDR: false discovery rate, and TT: training and testing. †Cutoff percentage of 20%.

Table 4: Simulation results for selecting 𝑘 important variables among 2,000 candidates including surrogate variables across 400 subjects.

Statistics Bon FDR TT Bon FDR TT
Random error normally distributed

𝑘 = 10 𝑘 = 100
†

# incorrect 2 1 1 24 10 9
Sensitivity 0.851 0.949 0.941 0.761 0.968 0.965
Specificity 1 1 1 1 0.997 0.997

𝑘 = 200
†

𝑘 = 400
†

# incorrect 64 29 21 210 141 93
Sensitivity 0.682 0.968 0.947 0.479 0.948 0.864
Specificity 1 0.988 0.994 0.999 0.925 0.976

Random error 𝜒2 distributed (df = 1)
𝑘 = 10 𝑘 = 100

†

# incorrect 4 3 3 47 19 18
Sensitivity 0.612 0.767 0.786 0.531 0.878 0.883
Specificity 1 1 1 1 0.997 0.997

𝑘 = 200
†

𝑘 = 400
†

# incorrect 111 42 42 289 146 141
Sensitivity 0.445 0.88 0.837 0.281 0.841 0.717
Specificity 1 0.99 0.995 0.999 0.949 0.983
Bon: Bonferroni, FDR: false discovery rate, and TT: training and testing. †Cutoff percentage of 20%.

the remaining for testing. The number of iterations was set
at 100 with relative frequency of 50% as the cutoff and the
significance level in both training and testing steps was set at
0.05. The significance level for FDR-based and Bonferroni-
based methods was set to 0.05. OLS regression was used
to estimate associations and 𝑝 values. Other settings were
chosen as the default.

FDR- and Bonferroni-based methods, respectively, iden-
tified ten and five CpG sites associated with maternal smok-
ing status. The five CpG sites identified by the Bonferroni-
based method were also included in the ten CpG sites
identified by FDR. The TT screening method identified 91
CpG sites potentially linked to maternal smoking status. The
10 CpG sites collectively identified by Bonferroni and FDR
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Table 5: Simulation results for selecting 𝑘 important variables among 2,000 candidates including surrogate variables across 800 subjects.

Statistics Bon FDR TT Bon FDR TT
Random error normally distributed

𝑘 = 10 𝑘 = 100

# incorrect 2 44 5 26 309 36
Sensitivity 0.991 1 0.998 0.949 1 0.988
Specificity 1 0.976 0.998 0.996 0.807 0.981

𝑘 = 200 𝑘 = 400

# incorrect 64 29 32 210 141 130
Sensitivity 0.682 0.968 0.847 0.479 0.948 0.696
Specificity 1 0.988 0.999 0.999 0.925 0.995

Random error 𝜒2 distributed (df = 1)
𝑘 = 10 𝑘 = 100

# incorrect 0 1 1 4 9 2
Sensitivity 0.975 0.994 0.993 0.961 0.998 0.99
Specificity 1 1 1 1 0.995 0.999

𝑘 = 200 𝑘 = 400

# incorrect 15 34 7 82 214 50
Sensitivity 0.928 0.998 0.98 0.803 0.994 0.924
Specificity 1 0.981 0.998 0.998 0.868 0.988
Bon: Bonferroni, FDR: false discovery rate, and TT: training and testing.

were included in the 91 identified by TT. Significant CpG
site locations and annotated genes identified are included in
Table 7 in Figure 6.

To understand the biological meaning of the identified
sets of CpGs, pathway analysis was used. The genes
annotated to each significant CpG site were extracted from
the 450K array manifest file (v1.2; available: http://support
.illumina.com/downloads/humanmethylation450 15017482
v1-2 product files.html). Where a CpG site was annotated to
more than one gene, all annotated genes were included. The
resulting gene lists were analyzed with Ingenuity Pathway
Analysis tool (IPA; Qiagen). Statistical significance for each
pathway is reported by IPA using 𝑝 values. The set of 91
CpGs differentially methylated with maternal smoking
identified by TT (includes the 5 and 10 CpG sites identified
by Bonferroni and FDR, resp.) were mapped to 54 unique
genes.

The 91 CpGs differentially methylated with maternal
smoking included 18 previously identified top maternal
smoking-associated CpG sites in AHRR, CYP1A1, GFI1,
MYO1G, CNTNAP2 [4, 19–21], FRMD4A [4, 21], LRRC32,
and intergenic CpGs near LOC284998 and PDE10A-SDIM1
[21]. Bonferroni identified five maternal smoking-associated
CpGs and FDR identified ten (including all five identified by
Bonferroni), all of which have been previously published in
associationwithmaternal smoking. However, the TTmethod
identified many more CpGs that have been previously iden-
tified as statistically significant in other cohorts, suggesting
that these are not simply false positive results, and represent
additional truly maternal smoking associated genes worthy
of future investigation and validation. Our observation of
differential methylation at age 18 in response to maternal

smoking during pregnancy also agrees with previous obser-
vations that these epigenetic responses are preserved at least
into adolescence [20]. The top pathways enriched among
genes containing the 91 CpG sites included aryl hydrocarbon
receptor signaling (𝑝 = 0.005) and xenobiotic metabolism
signaling (𝑝 = 0.030), which support a long-lasting effect
of maternal smoking on metabolic pathways controlling
responses to smoke exposure. Furthermore, these pathways
overlap with other pathways including the nicotine degra-
dation II and nicotine degradation III pathways, as well as
pathways for the metabolism of cigarette smoke components,
and producing known effects of smoke exposure (Figure 6),
such as melatonin degradation [22]. The TT method also
identified six differentially methylated CpG sites in HOXA2,
whose mutation causes cleft palate [23], the risk of which is
known to be affected by maternal smoking [21].

In conclusion, the CpGs detected by TT in association
with maternal smoking were enriched among pathways
related to the known biology of those processes. Disruption
or modification of some of these pathways results in greater
risk of lung cancer [18]. TT also identified CpGs located in
genes not previously identified which indicates potentially
new findings.

4. Conclusions

We developed a unique screening procedure built into an
R package for the purpose of screening important variables.
It includes the developed method that involves training and
testing steps (the TT screening method), along with another
two existing methods, the method controlling for FDR and
the other controlling overall significance level through the



12 BioMed Research International

Table 6: Simulation results for selecting 𝑘 important variables among 2,000 candidates including the most and least important surrogate
variables across 600 subjects.

Bonferroni FDR TT
𝑛.sv = 5 𝑛.sv = 10 𝑛.sv = 15 𝑛.sv = 5 𝑛.sv = 10 𝑛.sv = 15 𝑛.sv = 5 𝑛.sv = 10 𝑛.sv = 15

Most important surrogate variables included
# incorrect

𝑘 = 10 0 0 0 6 6 6 5 4 3
𝑘 = 100 2 3 2 19 19 19 7 5 5
𝑘 = 200 6 6 5 26 29 29 6 6 4
𝑘 = 400 12 11 11 40 38 39 7 7 7

Sensitivity
𝑘 = 10 1 1 1 1 1 1 1 1 1
𝑘 = 100 0.98 0.97 0.98 1 1 1 0.98 0.98 0.98
𝑘 = 200 0.97 0.97 0.975 0.995 0.995 0.995 0.985 0.985 0.985
𝑘 = 400 0.97 0.973 0.973 1 1 1 0.988 0.988 0.985

Specificity
𝑘 = 10 1 1 1 0.997 0.997 0.997 0.997 0.998 0.998
𝑘 = 100 1 1 1 0.99 0.99 0.99 0.997 0.998 0.998
𝑘 = 200 1 1 1 0.986 0.984 0.984 0.998 0.998 0.999
𝑘 = 400 1 1 1 0.975 0.976 0.976 0.999 0.999 0.999

Most important surrogate variables not included
# incorrect

𝑘 = 10 10 10 10 10 10 10 10 10 10
𝑘 = 100 100 100 100 100 100 100 100 100 100
𝑘 = 200 200 200 200 200 200 200 200 200 200
𝑘 = 400 400 400 400 400 400 400 400 400 400

Sensitivity
𝑘 = 10 0 0 0 0 0 0 0 0 0
𝑘 = 100 0 0 0 0 0 0 0 0 0
𝑘 = 200 0 0 0 0 0 0 0 0 0
𝑘 = 400 0 0 0 0 0 0 0 0 0

Specificity
𝑘 = 10 1 1 1 1 1 1 1 1 1
𝑘 = 100 1 1 1 1 1 1 1 1 1
𝑘 = 200 1 1 1 1 1 1 1 1 1
𝑘 = 400 1 1 1 1 1 1 1 1 1
FDR: false discovery rate, TT: training and testing, 𝑛.sv = number of surrogate variables, and 𝑘: the number of truly important CpG sites out of 2,000.

Bonferronimethod. Simulations are used to demonstrate and
assess the TT screening method.

Overall, the TT screening method produced compara-
ble sensitivity results to that of FDR-based method and
comparable specificity results of Bonferroni-based methods.
However, the number of misidentified CpG sites from the TT
method is in general smaller than those from the other two
approaches. The findings on sensitivity and specificity were
as expected, because the Bonferroni-based method lacks the
ability to control type II error while the FDR-based method
cannot control well type I error [16]. The TT screening
method, on the other hand, has the potential to control
both the types I and II errors, which was supported by the
smaller numbers of incorrect detections. It was also noticed
that, by incorporating surrogate variable analysis, all three
methods produced higher sensitivity measures. In the real

data application, the TT method identified a larger number
of CpGs compared to the other twomethods.The subsequent
pathway analyses further support the practical strength of the
proposed method. It is worth noting that since the screening
process is to identify the CpG sites, to properly assess the
functionality of these sites, it is critical to evaluate them
jointly, for example, using pathway analyses.

An important contribution of the developed process is its
computing efficiency. Although we combined three methods
into one package, the computing is not burdensome. The
computing time for screening 383,998CpG sites (the real data
analysis) with the ttScreening() function using default options
only takes 82 minutes on a personal computer with a central
processing unit (CPU) of 2.0 gigahertz (GHz) and memory
of 4.0 gigabytes (GB) of random-access memory (RAM).
The ttScreening() function always automatically adjusts for
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Table 7: Information for CpG sites associated with maternal smoking identified by the training and testing screening method.

Model 2: maternal smoking only
CpG site Chromosome: map Gene Promoter region CpG island
name information name and exon location
cg20464068 chr1: 14026054 PRDM2 TSS1500 14026481–14027200
cg07951355 chr1: 40123717
cg14179389 chr1: 92947961 GFI1 Body 92945907–92952609
cg00909806 chr1: 212688762 212688031–212688448
cg26143053 chr2: 3718125 ALLC 5󸀠UTR
cg03690080 chr2: 39188006 LOC100271715, LOC375196 Body, TSS1500 39186777–39187968
cg19243656 chr2: 73340094 RAB11FIP5 5󸀠UTR, 1stExon 73339292–73340733
cg18703066‡ chr2: 105363536
cg07516970 chr2: 157181359 NR4A2 3󸀠UTR 157184389–157184632
cg19273101 chr2: 191734576
cg14075934 chr2: 200137014 SATB2 Body
cg03158780 chr3: 577964
cg10663973 chr4: 6642559 MRFAP1 1stExon, 5󸀠UTR 6642194–6643322
cg10364374 chr4: 125857940
cg23743778 chr4: 140357491 140357362–140357610
cg21401642 chr4: 174421114 174421347–174421559
cg17924476† chr5: 323794 AHRR Body 320788–323010
cg05575921 chr5: 373378 AHRR Body 373842–374426
cg21161138 chr5: 399360 AHRR Body
cg12287936 chr5: 1800606 NDUFS6, MRPL36 TSS1500 1799461–1801905
cg16244648 chr5: 141555043
cg18349863 chr6: 29912713 HLA-A Body 29910202–29911367
cg11492288 chr6: 30290596 HCG18 Body 30294169–30295071
cg04325960 chr6: 147124986 LOC729176, C6orf103 TSS200, Body
cg00004963 chr6: 147124996 LOC729176, C6orf103 TSS200, Body
cg11881038 chr6: 154408701 OPRM1 Body, 1stExon, 5󸀠UTR
cg20418529 chr6: 166260012
cg00794911 chr6: 166260532
cg18132363† chr6: 166260572
cg08634229 chr6: 169326603
cg06769202 chr7: 27142535 HOXA2 TSS200 27143181–27143479
cg23206851 chr7: 27143046 HOXA2 TSS1500 27143181–27143479
cg02225599 chr7: 27143252 HOXA2 TSS1500 27143181–27143479
cg10319053 chr7: 27143370 HOXA2 TSS1500 27143181–27143479
cg00445443 chr7: 27143478 HOXA2 TSS1500 27143181–27143479
cg06401979 chr7: 27143717 HOXA2 TSS1500 27143181–27143479
cg11986226 chr7: 40026390 CDK13 Body
cg19089201‡ chr7: 45002287 MYO1G 3󸀠UTR 45002111–45002845
cg04180046‡ chr7: 45002736 MYO1G Body 45002111–45002845
cg12803068‡ chr7: 45002919 MYO1G Body 45002111–45002845
cg25949550‡ chr7: 145814306 CNTNAP2 Body 145813030–145814084
cg11207515 chr7: 146904205 CNTNAP2 Body
cg21015808 chr7: 149809179
cg21330896 chr7: 28205705 ZNF395 3󸀠UTR
cg17199018 chr7: 28206278 ZNF395 Body
cg04690729 chr8: 133494328 KCNQ3 TSS1500 133492398–133493586
cg15707110 chr8: 144311102 144311708–144311985
cg08126560 chr9: 92291523 LOC100129066 Body 92291268–92291524
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Table 7: Continued.

Model 2: maternal smoking only
CpG site Chromosome: map Gene Promoter region CpG island
name information name and exon location
cg13393408 chr9: 132874232 GPR107 Body
cg11813497 chr10: 14372879 FRMD4A TSS200
cg12490835 chr10: 22623821 22623350–22625875
cg26520012 chr10: 42672589 42672509–42673432
cg05329352 chr10: 112838983 ADRA2A 1stExon 112835990–112839303
cg18424850 chr10: 132945786 TCERG1L Body
cg19494188 chr11: 1466780 BRSK2 Body 1466304–1467210
cg26204383 chr11: 2435667 TRPM5 Body 2435295–2436651
cg14436038 chr11: 6494706 TRIM3 5󸀠UTR 6494725–6495453
cg15627089 chr11: 16625751 16626053–16629180
cg25160605 chr11: 21087846 NELL1 Body
cg17517598 chr11: 61659090 FADS3 TSS200 61658569–61659592
cg10788371 chr11: 76381040 LRRC32 5󸀠UTR, 1stExon 76381449–76382295
cg11395306 chr11: 98939366 CNTN5 5󸀠UTR
cg01186919 chr11: 111742365 ALG9 TSS1500, TSS200 111741953–111742292
cg02820646 chr11: 115398838
cg05730269 chr11: 118477055 PHLDB1 TSS200, TSS1500 118478235–118481896
cg18493761 chr11: 125386885
cg09932758 chr12: 58022542 B4GALNT1 Body 58021294–58022037
cg09644707 chr12: 114885161 114885105–114885418
cg27103591 chr12: 124809023 NCOR2 3󸀠UTR 124808972–124809176
cg02032696 chr14: 67982198 TMEM229B TSS200 67981514–67982380
cg21511816 chr14: 76597824 76597648–76597911
cg24874277 chr15: 33211107 FMN1 Body
cg03643241 chr15: 44487910 FRMD5 TSS1500 44486741–44487860
cg20596162 chr15: 45408861 DUOXA2 Body 45408573–45409528
cg16754378 chr15: 57179394 LOC145783 Body 57179277–57179838
cg06899985 chr15: 65689298 IGDCC4 Body 65689142–65689362
cg05549655† chr15: 75019143 CYP1A1 TSS1500 75018186–75019336
cg17852385 chr15: 75019188 CYP1A1 TSS1500 75018186–75019336
cg11924019† chr15: 75019283 CYP1A1 TSS1500 75018186–75019336
cg18092474† chr15: 75019302 CYP1A1 TSS1500 75018186–75019336
cg01060282 chr16: 17033575
cg07675285 chr16: 27121267 27121011–27121241
cg11705699 chr16: 87742845 KLHDC4 Body 87742556–87743109
cg09554007 chr16: 89627174 RPL13, SNORD68 5󸀠UTR, 1stExon, TSS1500 89626644–89627869
cg16483033 chr17: 1090441 ABR 1stExon, 5󸀠UTR
cg08682866 chr17: 13818946
cg17624073 chr17: 79393583 BAHCC1 Body 79393341–79393742
cg13723693 chr17: 80656731 RAB40B TSS200 80655335–80657183
cg18495341 chr17: 80909836 B3GNTL1 Body
cg18449879 chr19: 16045054 CYP4F11 1stExon, Body
cg02543506 chr20: 33876594 FAM83C Body 33879904–33880215
CpG: cytosine-phosphate-guanine dinucleotide, chr: chromosome, locations of each CpG are for v37 of the human genome, †CpG sites identified by false
discovery rate, and ‡CpG sites identified by false discovery rate and Bonferroni-based methods.
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Figure 6: Top pathways enriched among genes identified by training and testingmethod from the Isle ofWight data include aryl hydrocarbon
receptor signaling and xenobioticmetabolism signaling, which overlapwith other pathways including the nicotine degradation II and nicotine
degradation III pathways, as well as pathways for the metabolism of cigarette smoke components and producing known effects of smoke
exposure.

multiple testing using three methods, FDR, Bonferroni, and
the training and testing method.

Lastly, the versatility of the proposed screening method
allows it to be applied to a variety of scientific fields in which
large data or high dimensionality is a computational problem.
DNAmethylation is of growing interest in all aspects of public
health, in cancer and genetics/epigenetics specifically. TT
reduces dimensionality in a timely manner while controlling
for types I and II errors and adjusting unknown latent vari-
ables estimated using the surrogate variable analysis. Finally,
the package incorporates a variety of options which allows
the user to create very specific settings while maintaining
convenient usability.

Appendix

See Tables 3, 4, 5, 6, and 7 and Figures 3, 4, 5, and 6.
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