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Neural spatio‑temporal patterns 
of information processing related 
to cognitive conflict and correct 
or false recognitions
Romuald A. Janik1, Igor T. Podolak2, Łukasz Struski2, Anna Ceglarek3*, 
Koryna Lewandowska3, Barbara Sikora‑Wachowicz3, Tadeusz Marek3 & 
Magdalena Fafrowicz3*

Using a visual short-term memory task and employing a new methodological approach, we analyzed 
neural responses from the perspective of the conflict level and correctness/erroneous over a longer 
time window. Sixty-five participants performed the short-term memory task in the fMRI scanner. 
We explore neural spatio-temporal patterns of information processing in the context of correct or 
erroneous response and high or low level of cognitive conflict using classical fMRI analysis, surface-
based cortical data, temporal analysis of interpolated mean activations, and machine learning 
classifiers. Our results provide evidence that information processing dynamics during the retrieval 
process vary depending on the correct or false recognition—for stimuli inducing a high level of 
cognitive conflict and erroneous response, information processing is prolonged. The observed 
phenomenon may be interpreted as the manifestation of the brain’s preparation for future goal-
directed action.

Cognitive control is a neuropsychological construct, describing the process in which information processing 
and behaviour vary from moment to moment, adapting to current goals and alterations of the environment. 
This process is guided mostly by the prefrontal cortex and its activation is depending on the demand required 
to better perform or complete a task. The essential function of cognitive control is conflict monitoring. Conflict 
monitoring includes two components: the monitoring component, which evaluates the degree of conflict, and 
the second one—control adaptation, which adjusts attentional filters to the task demands1. The link between the 
two components has been confirmed in studies using congruent and incongruent stimuli consecutively, which 
demonstrated that increased conflict monitoring is associated with an increased size of sequential congruence 
effect (index of control adaptation)2,3. According to the conflict-monitoring theory, the detected conflict or 
error triggers a negative affecting signal4,5, which drives the control adaptation6,7. Some researchers assumed 
that errors and conflicts can be considered as the same events8. However, recent error-related negativity (ERN) 
studies suggested that neural networks of error and conflict monitoring are disparate9.

The usually chosen pivotal tasks for studying the cognitive conflict are Stroop, Simon, or Flanker tasks, where 
the incongruent trials cause the interference in processing and require inhibition and reversion of the motor reac-
tion/response. Nevertheless, some experimental paradigms investigating memory also invoke cognitive conflict 
of varying intensity. In the current study, a popular paradigm for investigating false memories formation—the 
Deese–Roediger–McDermott (DRM) paradigm—was applied10,11. In the original version of the DRM task, the 
students were asked to recall a previously read list of twelve words related to the not previously presented critical 
lure10. It turned out that the participants recalled more often the lure-word among related words. Such false rec-
ognition effects have been demonstrated also for visual stimuli (abstract shapes)12. Therefore, the DRM paradigm 
was incrementally modified to investigate false recognition with other material types (semantic, phonological, 
visual) as well as other memory types (working, long-term, episodic etc.). Neuroimaging studies using the DRM 
paradigm indicate the greatest activations in the prefrontal and visual regions in relation to false memories (for 
a review, see: REF13). Atkins and Reuter-Lorenz with semantic interference in short-term memory revealed 
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increased dorsolateral prefrontal cortex and fusiform gyrus activations associated with the correct rejection of 
related lure and true recognition, respectively14. Some research also demonstrated neural mechanisms of true 
and false recognition with the use of visual stimuli (including abstract objects). Slotnick and Schacter, using this 
type of memoranda, showed activations of prefrontal, parietal and visual regions correlated with true recogni-
tion as well as frontal, insular, and temporal cortices— with false recognition15. Likewise, Garoff-Eaton indicated 
prefrontal, parietal and temporal cortices associated with both true and false related recognition16. According to 
our knowledge, there are no studies that investigate the neural response in the DRM paradigm from the point 
of view of cognitive conflict of varying intensity.

To provide a detailed insight into spatio-temporal patterns of information processing related to correct and 
erroneous responses and different levels of cognitive conflict, we analyse four types of responses: correct recog-
nition of positive probes (POScorr), correct rejection of lure probes (LURcorr), false recognition of lure probes 
(LURfalse) and correct rejection of negative probes (NEGcorr) in two types of contrasts (POScorr–LURfalse and 
NEGcorr–LURcorr). Traditionally, researchers who investigate the cognitive conflict using fMRI techniques have 
addressed this aspect employing the General Linear Model (GLM) method of analysis17,18. With the recent meth-
odological advances occurring, the new perspectives to investigate the spatio-temporal dynamics of information 
processing, which is not possible with classical methods. The standard GLM analysis allows identifying regions 
whose activations are statistically relevant for a particular contrast. The conventional GLM setup, however, does 
not yield more fine-grained information about the differences in the temporal structure of the responses for dif-
ferent events and/or different regions.

In this study, we employed the classical fMRI analysis method and two non-standard methods of fMRI analy-
sis: machine learning methods and interpolated mean signals analysis on volumetric and surface-based data. The 
machine learning classifiers trained to distinguish events based on data from a particular time repetition (TR) 
provide to assess the amount of information contained in the brain at a particular time after retrieval, which 
allows distinguishing the correct and false responses. This gives us the first indication that there is quite a lot 
of relevant activation rather late after the retrieval event, which motivates our subsequent, more detailed study. 
As the area under curve (AUC) of the machine learning classifiers can be understood as measuring available 
information for distinguishing two events, we use them to assess whether surface based registration of cortical 
data is better in this respect than the standard volumetric analysis. Then, the analysis of mean interpolated signals 
for each event, allows us to identify relative temporal delays in processing between the events as well as isolate 
regions which exhibit significantly late activations. Finally, our analysis of Shapley values gives a complementary 
picture using a state-of-the-art machine learning methodology.

The main goal of this paper is to investigate the neural mechanism of changing cognitive demand in short-
term memory. It is the first attempt of using surface-based data with short-term false memory research. We 
investigate the spatio-temporal features of information processing related to erroneous and correct responses 
and varying intensity of cognitive conflict with the use of new methods of fMRI data analysis.

Results
Behavioural results.  The general linear model (GLM) with accuracy and reaction times as dependent 
variables and probe types as fixed factor was performed (for description of probe types, see “Methods” section). 
In case of accuracy, the probe type was significant ( F(1, 4) = 445 , p < 0.0001 , η2p = 0.848 ). The HSD Tukey’s 
post-hoc tests revealed differences between all probe types (p < 0.0001). For the reaction times (RTs), the probe 
type was also significant ( F(1, 4) = 59.29 , p < 0.0001 , η2p = 0.426 ). The HSD Tukey’s post-hoc tests revealed 
differences between all probe types ( p < 0.0001 ) except pairs: POScorr–LURcorr and LURcorr–LURfalse. The 
descriptive statistics on accuracy and RTs are presented in Fig. A3 (see Supplementary Information). Post-error 
slowing (PES) was not confirmed. The t tests between reaction times for all trials and trials after erroneous 
responses for positive probes ( T(128) = 0.634 , p = 0.527 ) and for lure probes ( T(128) = 0.450 , p = 0.653 ) 
were not significant.

GLM results.  The GLM analysis with elongated duration of events (see “Methods” for details) was per-
formed to validate the results on surface-based data. The group analysis revealed significant clusters only for the 
contrasts POScorr>LURfalse and LURfalse>POScorr. For other contrasts, no significant results were observed.

•	 POScorr > LURfalse at retrieval (section a of Fig. A1, Supplementary Information) left middle occipital gyrus 
( T = 5.77 , k = 75 , p(FDR corr.) = 0.020 ), left and right precuneus ( T = 5.17 , k = 379 , p(FDR corr.) < 0.001).

•	 LURfalse > POScorr at retrieval (section b on Fig. A1, Supplementary Information) right middle frontal gyrus 
( T = 5.22 , k = 156 , p(FDR corr.) = 0.001 ), right superior frontal gyrus medial part ( T = 5.18 , k = 394 , 
p(FDR corr.) < 0.001).

Motivation for using surface‑based HCP style data.  In contrast to conventional volumetric fMRI 
data, this work uses, to a large extent, surface-based data in the form pioneered by the Human Connectome 
Project19. The key difference is that the cortex is represented by a 2D surface mesh, while the subcortical ana-
tomical structures are represented through voxels. The vertices and voxels are then collectively referred to as 
grayordinates. The mapping of the cortex to the 2D mesh incorporates individual folding patterns so that the 
MNI coordinates of a particular vertex differ between participants. On the other hand, the mapping aims to 
maximize the anatomical/functional identification of a given vertex across different participants and thus should 
enhance the quality of inter-subject analysis w.r.t. conventional volumetric data. A quantitative comparison20 
indicates that this is indeed the case. As shown in Fig. 1 (for details see “Methods”) the superiority of surface data 
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also applies in our setting. Let us also note that the classification accuracy for the contrast NEGcorr–LURcorr 
are noticeably higher than for the contrast POScorr–LURfalse, which indicates that the distinction in the brain 
activity between the latter two events is much more subtle.

Let us now return to the distinctive pattern of the classifier performance as a function of time after the 
retrieval event seen in Fig. 1a. It is striking that the best performance is obtained as late as 5 TR after the retrieval 
event, with 6 TR being also quite high. This indicates that the brain activations are significantly different between 
the POScorr or LURfalse even quite late after the retrieval event. We shall study the details of the brain’s temporal 
response in the following section.

Temporal structure of the response to a retrieval event.  The subject’s neural response associated 
with a retrieval event has a non-trivial temporal profile, which depends on whether the subject gave a false 
answer to a lure probe or a true answer to a positive probe. Beside the correctness (POScorr–LURfalse), the high 
and low (NEGcorr–LURcorr) level of cognitive conflict is considered. In order to uncover the temporal struc-
ture, we have to go beyond just associating a standard haemodynamic response function (HRF) to the retrieval 
event, so we adopt a different methodology, somewhat analogous to event-related-potentials (ERP) in EEG, but 
of course on a completely different timescale.

After appropriately normalizing the individual fMRI signals (see “Methods”) and projecting to the Cole-
Anticevic parcellation, we take the mean signal over all trials with a given response (POScorr, LURfalse, NEGcorr, 
and LURcorr), temporally locked to the TR frame with the retrieval event. In this way, we may expect noise and 
neural processes unrelated to the event and the specific response to cancel out. In order to ascertain the statisti-
cal relevance of the particular regions, we adopt permutation tests to account for False Discovery Rate and use 
bootstrap for estimating statistical errors for the introduced observables. The observables of interest are defined 

Figure 1.   The mean of AUC for 5-fold cross-validation of different classification methods. (a) Results of logistic 
regression classifier for POScorr–LURfalse at time 0–9 TR (upper horizontal axis) post retrieval event for both 
surface and volumetric data (bottom horizontal axis). All data was normalized to have zero mean and unit 
standard deviation. (b) Results for two type of data: Cole–Anticevic (CA) and Automated Anatomical Labelling 
(AAL). We consider two classification problems POScorr–LURfalse, NEGcorr–LURcorr and five classifiers: 
logistic regression, linear SVM, rbf SVM, MLP (deep classifier), and the gradient boosting of decision trees21—
two cases: untuned GradientBoosting, tuned GradientBoosting. The tuning was performed by computing first 
Shapley contribution values for all features and computing models with only the most contributing features (see 
Shapley values in “Methods” and Fig. A4, Supplementary Information, for AUC values of models with different 
number of features). About 10–15% of features proved to be satisfactory.
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using a spline interpolation of the mean signals (see “Methods” for details). The interpolated signal is also used 
for visualization.

Early stage of the neural response for the POScorr–LURfalse contrast.  Among the 718 regions, we first select 
regions whose (interpolated) mean neural response to both events (i.e., POScorr or LURfalse) has a local maxi-
mum in the period 1–5 TR after the retrieval event. We then quantify their sensitivity to the POScorr–LURfalse 
contrast by measuring the area between the respective mean responses in the period 0–5 TR. In this way, we 
obtain 33 statistically relevant regions for the early stage of processing (see “Methods”). The regions are listed in 
Table A1 (Supplementary Information).

In Fig. 2a, we show representative examples of regions which exhibit a temporally differentiated response to 
the correct recognition of the positive probe with respect to the false recognition of the lure probe. This contrast 
represented the high level of the cognitive conflict. One can clearly see that the two regions from the cerebellum 
have a much faster initial response for the correct recognition and lower cognitive conflict. It is very important 
to emphasize, that although the time delay from the retrieval event to the button press for the correct response 
is on the average shorter than for the false response by 91 ms (1314 ms for the false and 1223 ms for the correct 
response), this time difference is much smaller than the temporal shift observed in Fig. 2a (recall that 1 TR=1.8s).

The cortical region shown in Fig. 2a (right) exhibits, on the other hand, a clear delay in the trailing part of 
the neural response, which seems to indicate longer activity associated with the false response to the lure probe 
and higher cognitive conflict.

The regions with significant leading delayed response are listed in Table 1a, and the ones with significant 
trailing delayed response are listed in Table 1b. The precise criteria and definitions of the relevant observables 
are given in “Methods”.

Late stage of the neural response for the POScorr–LURfalse contrast.  A very surprising phenomenon occurs 
quite late after the retrieval event. We observed a group of regions with a significantly higher activity for the cor-
rect answer than for the false answer around 5–9 TR after the retrieval event.

To this end, we first selected regions for which the interpolated mean signals of both events have a local 
maximum in the interval 5–9 TR. The 17 statistically significant regions for the contrast POScorr vs LURfalse 
(as measured by the area between the mean activities and permutation tests, see “Methods”) are shown in Sup-
plementary Information Table A2. The temporal profiles of the mean neural responses for the most relevant 
region are shown in Fig. 3 (left).

Since the time delay of the neural reaction occurs so late after the retrieval event, one has to be very careful 
to ensure that the effect is really associated with the retrieval event. Below, we provide arguments that this is 
indeed so.

First, for the region shown in Fig. 3 (left), we observe a very clear difference in the magnitude w.r.t. correct 
vs false response. This can be quantitatively seen in two independent ways: (i) the area between the curves is 
much higher than the critical value from permutation tests (see Supplementary Information Table A2) and (ii) 

Figure 2.   Differences in the course of the neural response for two contrasts (POScorr–LURfalse and NEGcorr–
LURcorr). (a) Mean signals temporally locked to the retrieval event for POScorr–LURfalse for three selected 
subcortical and cortical regions. (b) Mean signals temporally locked to the retrieval event for lower (NEGcorr) 
and higher (LURcorr) levels of cognitive conflict for three selected regions, with maxima in the early time 
window.
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the bootstrap error of this area is significantly smaller than its value. Therefore, the neural processing in this 
region is clearly tied to the correctness of the response given to the retrieval event, even though the processing 
occurs so late after the event.

Second, the maximum of the neural response occurs roughly 7 TR after retrieval, which is already around 
the time the participants are shown the next batch of images in the following encoding event. One can wonder 
then whether the observed activity should not be associated to that following encoding event. We can answer 

Table 1.   (a) Regions in the MMP/CA parcellation with significant leading delayed responses between 
POScorr and LURfalse. AAL indicates the AAL region where the centre of mass of the MMP/CA region is 
located. The MNI coordinates x, y, z of the centre of mass of each region are evaluated as an average over the 
region coordinates for each subject, as the surface-based cortical data is sensitive to the individual cortical 
folding patterns. size is the number of grayordinates for each region, i.e., voxels for subcortical and vertices 
for the cortical ones. 

〈

�leading t
〉

 is the average leading time delay (see “Methods” for the definition) between 
POScorr and LURfalse activations, expressed in units of TR. The errors are estimated by bootstrap. CB 
cerebellum, INS insula, IPG inferior parietal gyrus, SMA supplementary motor area, L left hemisphere, R right 
hemisphere. (b) Regions in the MMP/CA parcellation with significant trailing delayed responses between 
POScorr and LURfalse. The columns are as in Table (a) apart from 

〈

�trailing t
〉

 , which is the average trailing 
time delay (see “Methods” for the definition) between POScorr and LURfalse activations, expressed in units of 
TR. The errors are estimated by bootstrap. ACC​ anterior cingulate cortex, INS insula, MCC middle cingulate 
cortex, SFGmed superior frontal gyrus medial part, SMA supplementary motor area, L left hemisphere, R right 
hemisphere.

MMP CA AAL size x y z
〈

�leading t
〉

(a)

L_LIPd

Dorsal-Attention-15_R-Cerebellum CB lobule 8 R 794 28.8 − 46.8 − 47.4 3.38± 1.06

Visual2-15_R-Cerebellum CB Crus2 R 347 7.1 − 70.8 − 29.7 2.37± 0.58

Visual1-34_R-Cerebellum CB Vermis R 324 2.7 − 63.0 − 32.5 1.77± 0.36

Cingulo-Opercular-21_R-Cerebellum CB lobule 6 R 763 28.2 − 53.6 − 24.0 1.47± 0.27

Dorsal-Attention-15_L-Ctx IPG L 99 − 29.8 − 55.0 45.5 1.26± 0.32

Dorsal-Attention-17_R-Cerebellum CB lobule 6 R 22 33.3 − 46.5 − 25.5 1.07± 0.22

Somatomotor-13_R-Cerebellum CB 4,5 lobule R 707 19.6 − 49.3 − 22.1 1.03± 0.19

L_SCEF Cingulo-Opercular-33_L-Ctx SMA L 203 − 5.9 1.4 54.8 0.60± 0.18

L_AVI Frontoparietal-44_L-Ctx INS L 126 − 31.5 23.0 − 4.3 0.50± 0.14

(b)

R_a32pr Cingulo-Opercular-28_R-Ctx MCC R 127 8.7 26.5 30.5 1.26± 0.18

L_8BM Frontoparietal-32_L-Ctx SFG L 174 − 4.8 27.2 44.5 1.25± 0.22

R_8BM Frontoparietal-06_R-Ctx SFGmed R 175 5.9 26.3 44.4 1.14± 0.17

L_a32pr Cingulo-Opercular-55_L-Ctx ACC L 128 − 7.7 28.1 29.6 1.09± 0.18

R_FOP5 Cingulo-Opercular-26_R-Ctx INS R 156 39.1 26.4 4.2 0.88± 0.13

R_AVI Frontoparietal-20_R-Ctx INS R 150 33.8 23.7 − 4.4 0.84± 0.13

L_AVI Frontoparietal-44_L-Ctx INS L 126 − 31.5 23.0 − 4.3 0.82± 0.13

R_FOP4 Cingulo-Opercular-19_R-Ctx INS R 156 38.4 15.6 6.6 0.78± 0.17

L_FOP5 Cingulo-Opercular-53_L-Ctx INS L 138 − 35.9 25.4 4.3 0.76± 0.13

L_SCEF Cingulo-Opercular-33_L-Ctx SMA L 203 − 5.9 1.4 54.8 0.47± 0.12

Figure 3.   Mean signals for a region exhibiting a significant difference in the neural responses quite late after 
the retrieval event. On the left, the signals are temporally tied to the retrieval event. On the right, the signals are 
temporally tied to the encoding event following the retrieval event.
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this question by constructing mean signals for the activity of the same region, but now temporally locked to 
the time of the following encoding event. Note that the time delays between retrieval events and the following 
encoding events were not fixed but had some random spread. The relevant curves are shown in Fig. 3 (right). 
We observe that there was already a very substantial rise in the activity before the encoding event took place. 
Indeed, the encoding event is almost at the top of the peak, hence it cannot be considered to be the neural source 
of the activity.

Let us note that the pattern of behaviours of the regions shown in Supplementary Information Table A2 
could not be observed using the standard GLM methodology of an HRF tied directly to the retrieval event. The 
analysis of temporal profiles of mean events proposed in the present paper shows thus its versatility and opens 
up prospects for observing novel phenomena.

Early and late stage of neural responses for the NEGcorr–LURcorr contrast.  It is instructive to 
compare the results discussed above with the case when the subject is shown one of two types of false images—
one which is clearly different from the ones shown in the encoding stage (NEGcorr) or one which is quite similar 
(LURcorr). In both cases, the subject gives the correct answer, but the difference lies in the level of cognitive 
conflict. The statistically significant regions for the contrast NEGcorr–LURcorr in the early period (0–5 TR) and 
late period (5–9 TR) are shown in Supplementary Information Tables A3 and A4, respectively.

In Fig. 2b we show the mean signals of three selected regions from visual, attentional and executive networks 
for the contrast NEGcorr–LURcorr, in which the neural response differentiate between two types of stimuli—the 
higher activity of structures for stimulus with higher cognitive conflict.

For the late stage of neuronal response (5–9 TR), the regions from default mode network were activated 
(Fig. 4—bottom). It can be easily seen that the course of neural response for stimulus with low cognitive conflict 
(NEGcorr) looks differently than that for other stimuli. The depicted regions with the greatest difference in the 
response time-courses are posterior and middle cingulate cortex as well as angular gyrus.

Comparison of early and late stage for POScorr–LURfalse and NEGcorr–LURcorr con‑
trasts.  To compare the two contrasts, which are the same in terms of different levels of cognitive conflict, 
but differ in context of correctness, we depicted the mean signals of the same regions in both contrasts (see 
Supplementary Information, Fig. A5). Regarding the cognitive conflict of varying intensity, we found that for 
the anterior cingulate cortex (ACC) as well as for the superior frontal gyrus, the course of activity is similar for 
LURcorr, LURfalse, and POScorr, in contrast to the NEGcorr, when the signal course is flattened and has lower 
amplitude, respectively. In the angular gyrus, the highest activity is for the less conflicting stimuli (NEGcorr), 
then for POScorr, and the lowest for both LURcorr and LURfalse. In the case of correctness, the differences in 
activations of ACC, calcarine gyrus, and superior frontal gyrus were noticed in contrast POScorr–LURfalse, 
compared to the NEGcorr–LURcorr. The similarity of the signal courses for all depicted regions was noticed 
in the case of POScorr and LURcorr responses. The contrast with two correct responses (NEGcorr–LURcorr) 
has lower values of mean signal except for activations from posterior and middle cingulate cortex, and angular 
gyrus, compared to POScorr–LURfalse contrast. Both the mean signals analysis and Shapley’s analysis showed 

Figure 4.   Selected regions with maxima in the period 5–9 TR after POScorr–LURfalse (top) and NEGcorr–
LURcorr (bottom) events.
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that in the contrast NEGcorr–LURcorr the information is processed earlier (in TRs 3 and 4) than in the contrast 
POScorr–LURfalse (TRs 5-7), as shown in Fig. 5a.

Temporal structure as viewed by a machine learning classifier.  An alternative way to assess the 
relevance of specific regions at particular TRs would be to extract that information from a machine learning 
model trained to distinguish the given pair of events (like POScorr–LURfalse) based on the parcellated fMRI 
time series in the 0–9 TR time window following the retrieval event. Concretely, as explained in more detail in 
the “Methods” section, one can assess the importance of the activation of a given region at a given instant of 

Figure 5.   Results of Shapley analysis. (a) Stacked histograms show the regions used in the best gradient 
boosting models, weighted by their Shapley values for each TR on the horizontal axis. For each TR, a stack 
is composed of bars that correspond to relevant regions. The vertical width of each bar corresponds to that 
region’s Shapley relative value, and are sorted from the most relevant at the bottom. AAL (top) and MMP/CA 
parcellations (bottom row) for the POScorr–LURfalse (left) and NEGcorr–LURcorr (right column) problems 
are given. Histograms show that the same TRs are most relevant irrespective of brain parcellation method 
and surface/volume registration used. (b) The Shapley sum vs � Area values for POScorr–LURfalse (left) and 
NEGcorr–LURcorr (right plot) problems and the 0–4 (inclusive) TR time windows. Red vertical and green 
horizontal lines denote critical values for the � Area Shapley sums, respectively. Dot and cross marks denote 
individual regions. Crosses represent regions where local maxima of mean activations for both measures occur. 
Colors are introduced for readability to denote different critical values quadrants. (c) Mean signals temporally 
locked to the retrieval event for POScorr–LURfalse for region with the highest Shapley sum in the early time 
window 0–5 TR (left) and regions with the 1st and 4th the highest Shapley sums in the late time window 5–9 TR 
(centre and right). The relevance of the latter two regions for the ML classifier in the late time window comes 
from two qualitatively different types of behaviours.
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time for classifying a trial. Aggregating this information over time, we may find the most crucial regions, while 
aggregating over the regions for a given instant of time will isolate the most informative TR’s for distinguishing 
the two events. We should note that analysing feature importance and interpretability for nonlinear classifiers is 
still a very intensely studied topic in the machine learning community22–24. In the present paper, we perform a 
Shapley analysis24 (see “Methods” section). Let us contrast this procedure of analysing region importance with 
the previous analysis using the interpolated mean signals of the activations of individual regions for each event.

In the mean signal analysis, the importance of each region is assessed individually (independently of other 
regions), and we have full control to impose such conditions as both mean signals having local maxima in given 
time-windows. On the other hand, the analysis cannot be done for individual trials.

In the machine learning Shapley analysis using a gradient-boosted tree classifier21, the regions are analysed 
in the context of the whole brain (i.e., all other regions and times), even though the Shapley approach aims to 
isolate as good as it can the contributions of the individual region-time pairs. Moreover, there are no a priori 
restrictions on the type of activation behaviour used by the algorithm for classifying a given trial. The analysis, 
however, can be done for individual trials.

Thus, the Shapley analysis might be more difficult to interpret, however, the lack of a priori assumptions may 
identify patterns in brain activations relevant for distinguishing the events which might have been overlooked 
in the mean signal analysis. Of course, we would also like to check the consistency of the two very different 
methods. We leave the possible trial-by-trial analysis for future work.

Figure 5a shows the Shapley weighted regions aggregated for a given TR for the MMP/CA (bottom row) and 
AAL (top row) parcellations, which are fairly consistent between each other. We observe, however, a marked 
difference in the importance of the particular TR for the two pairs of events. In the NEGcorr–LURcorr con-
trast (right column) the regions in TRs 3 and 4 are essentially sufficient for discriminating the events. For the 
POScorr–LURfalse contrast (left column), however, we observe also the importance of later moments in time 
(TRs 5–7) consistent with the earlier analysis using mean signals. The importance of TR 0 is probably due to the 
fact that the Gradient Boosted Trees classifier does not really use the individual features in isolation, but in the 
context of others (in particular, if the difference of activations between e.g., TR 3 and TR 0 would be significant, 
then the TR 0 would appear as relevant in the Shapley analysis).

In Fig. 5b we analyse the consistency of the Shapley and the interpolated mean signal analysis. We show a 
scatter-plot of the aggregated Shapley weights and � Area for regions in the early and late time windows. We 
can see that the regions with the highest Shapley weights have also significant � Area (to the right of the statisti-
cally critical value, denoted with a vertical line). In the mean signal analysis, we restricted ourselves to regions 
with peaks in the relevant time windows (these are marked by crosses in Fig. 5b). In the early time window for 
POScorr–LURfalse the regions with the highest Shapley indeed have peaks, however in the late time window, 
this is generically not the case. Indeed, in Fig. 5c (centre) we show the mean time series of the region with the 
highest Shapley weight in the late period. We observe a significant difference in the depth of the trough of the 
activation between the two types of events. This kind of behaviour was not taken into account in the mean signal 
analysis, as there we required that both mean signals have a local maximum in the relevant period 5–9 TR. The 
regions shown on the left and right, however, appear consistently in both methods of analysis.

Tables 2 and A5 (in Supplementary Information) show regions that were most relevant in the Shapley analysis 
for the gradient boosted tree models for POScorr–LURfalse and NEGcorr–LURcorr contrasts and MMP/CA 
parcellation. The tables show the summary Shapley values for the 0–4 TR and 5–9 TR time windows.

Discussion
Spatio-temporal patterns of information processing related to erroneous and correct responses were revealed 
using surface-based fMRI data and machine learning classifiers. It allows us to establish the neural correlates of 
goal-directed behaviours and cognitive conflict at different levels during a visual short-term memory task. Four 
types of responses: correct recognition of positive probes (POScorr), correct rejection of lure probes (LURcorr), 
false recognition of lure probes (LURfalse) and correct rejection of negative probes (NEGcorr) and two types of 
contrasts (POScorr–LURfalse and NEGcorr–LURcorr) were used.

Neural structures such as prefrontal cortex, insula, anterior cingulate, sensory, and motor cortices detected 
in presented analysis confirmed the results of a number of previous studies on error commission (for a review, 
see: REF25). Our results of mean signal analysis indicated that the cerebellar regions exhibit a delay for the false 
response (in the contrast to POScorr–LURfalse) in the ascending part of the neural response (see Table 1a and 
Fig. 2a). More and more research in recent years has pointed to a role of cerebellum in cognitive functions. It is 
assumed that the cerebellum has its functional topography, with individual parts responsible for certain func-
tions (motor and non-motor)—as in the cerebral cortex, as well with connections to the regions in the cortex 
involved in that function26–28. The meta-analysis of neuroimaging studies demonstrated the engagement through 
activations of respective lobules during various cognitive tasks29. More specifically, activations of lobules VI, VIIb, 
VIIIa and Crus were identified in spatial, working memory, and language tasks. Furthermore, the cerebellum 
is also involved in performance monitoring, error detection, response inhibition, and using error information 
to improve action execution30–32. The recent studies indicated that the cerebellar lobule VIIIa seems to be a part 
of brain’s visual attention and working memory networks28. Our results are consistent with above-mentioned 
studies, showing cerebellar delay for false recognition of lure probe.

The other regions which show the significantly delayed response for false recognition of the lure probe in the 
trailing part of the neural response are mostly located in the prefrontal cortex and in the insula (see Table 1b). 
The prefrontal cortex is involved in cognitive control through storing and manipulating information for actions 
in the future, and its work is managed by the dopamine neuromodulator. Dopamine influences cognitive con-
trol in three distinct ways: gating sensory signals, maintaining stimuli in working memory and sending motor 
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commands33. During working memory tasks, the salient stimuli activate dopaminergic neurons in the dorso-
lateral part of the substantia nigra, which particularly project to the prefrontal cortex, modulating the networks 
responsible for reacting to environmental changes (among others, executive control)34. Dopamine receptors 
in the prefrontal cortex are linked with the stability of task-goal representations25. The delayed response to an 
error-related stimulus seems to be explained by the modulatory role of the dopamine system, which show long 
latency responses, up to several seconds35,36. The insula, a structure hidden within the lateral sulcus, is involved 
mainly in sensorimotor and socioemotional processing, however its role was also confirmed in cognitive func-
tions like attention or salience processing37,38 as well as in cognitive control together with frontal networks39. 
Singer and colleagues proposed a unifying model assuming the contribution of insula in emotion and uncertainty 
processing in context of decision-making40. Moreover, anterior insula was shown to be involved in performance 
monitoring and error processing41.

Two contrasts of different trial types used in the study allowed us to investigate the effect of cognitive conflict. 
In the first (POScorr–LURfalse), we compare correct and erroneous responses, in the second (NEGcorr–LUR-
corr)—two correct responses, but in both, the cognitive conflict at different levels is studied: lower for NEGcorr, 
higher for POScorr, and the highest for LURcorr and LURfalse. There are both many similarities but also many 
differences in spatio-temporal patterns of information processing in two studied contrasts. In the case of the 
contrast POScorr–LURfalse, we found significant activation of the anterior cingulate cortex (ACC), calcarine 
gyrus, and superior frontal gyrus in comparison to the contrast NEGcorr–LURcorr. ACC plays a major role in 
conflict processing, error detection, and action selection (for a review, see: REF42). The calcarine gyrus located in 
the primary visual cortex is thought to be responsible for visual information integration and selective attention43. 

Table 2.   The most relevant regions for MMP/CA parcellation POScorr-LURfalse problem with Shapley value 
Sh sums for the regions RTR found to be most important in the 0–4 TR and 5–9 TR time windows. The mean 
� AreaTR area values are given accordingly for TR regions. ACC​ anterior cingulate cortex, ANG angular gyrus, 
CAL calcarine gyrus, CAU​ caudate, CB cerebellum, FFG fusiform gyrus, HIPP hippocampus, INS insula, 
MCC middle cingulate gyrus, MTG middle temporal gyrus, OFC orbitofrontal cortex, OIFC opercular part of 
inferior frontal gyrus, SFG superior frontal gyrus, SPG superior parietal gyrus, STG superior temporal gyrus, 
THA thalamus, L left hemisphere, R right hemisphere.

MMP CA AAL

∑

TR∈[0,4]

Sh(RTR)

� AreaTR∈[0,4]

∑

TR∈[5,9]

Sh(RTR)

� AreaTR∈[5,9]

R_a32pr

Cingulo-Opercular-28_R-Ctx MCC R 0.0649 0.8525 0.0415 0.5966

Somatomotor-13_R-CB CB 4,5 lobule R 0.0491 0.7478

Somatomotor-12_R-CB CB 4,5 lobule R 0.0475 0.7275

Dorsal-Attention-18_R-CB CB lobule 8 R 0.0438 0.6811

R_AVI Frontoparietal-20_R-Ctx INS R 0.0360 0.8335 0.0601 0.5519

R_PGp Dorsal-Attention-10_R-Ctx ANG R 0.0358 0.3022

L_a32pr Cingulo-Opercular-55_L-Ctx ACC L 0.0334 0.6867 0.0180 0.5021

L_p10p Frontoparietal-49_L-Ctx OFC L 0.0322 0.4954

L_OP1 Somatomotor-36_L-Ctx OIFC L 0.0304 0.4593

L_FOP5 Cingulo-Opercular-53_L-Ctx INS L 0.0303 0.6829

R_31a

Frontoparietal-25_R-Ctx MCC R 0.0285 0.1220 0.0335 0.3635

Frontoparietal-41_L-HIPP HIPP L 0.0269 0.1643

Auditory-30_R-Thalamus THA R 0.0268 0.3687

L_PGp
Dorsal-Attention-22_L-Ctx ANG L 0.0257 0.3983

Frontoparietal-38_R-CB CB Vermis R 0.0241 0.6168

L_8Av Default-49_L-Ctx SFG L 0.0225 0.0542

R_Pir
Orbito-Affective-01_R-Ctx INS R 0.0224 0.2933

Visual1-32_R-CB CB Vermis R 0.0215 0.3263

L_PH
Visual2-45_L-Ctx FFG L 0.0682 0.6434

Default-05_L-CAU​ CAU L 0.0574 0.4147

L_POS1 Default-39_L-Ctx CAL L 0.0474 0.8192

L_a24 Default-44_L-Ctx ACC L 0.0463 0.5909

R_8BM Frontoparietal-06_R-Ctx SFG R 0.0411 0.6318

R_7AL
Somatomotor-07_R-Ctx SPG R 0.0369 0.3196

Visual1-24_L-CB CB Vermis L 0.0341 0.5912

L_AVI
Frontoparietal-44_L-Ctx INS L 0.0288 0.5893

Orbito-Affective-03_L-CAU​ CAU L 0.0233 0.3581

L_TGv Language-23_L-Ctx MTG L 0.0233 0.1134

L_STSda Language-20_L-Ctx STG L 0.0219 0.2740

R_POS1 Default-02_R-Ctx CAL R 0.0210 0.7036
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Superior frontal gyrus (SFG) as a part of the prefrontal cortex is strongly connected with a variety of brain regions 
and contributes to many cognitive (especially in working memory) and motor control tasks44. Moreover, Hu and 
colleagues showed that the role of SFG is related to the active control of impulsive responses in a way that activa-
tion of the gyrus is correlated with more efficient response inhibition45. We found similar signal courses for three 
types of responses: POScorr, LURcorr, and LURfalse, in the contrast to the NEGcorr response, which has a differ-
ent signal course in almost all presented regions (see Figs. 2a, b and 4 and Supplementary Information, Fig. A5).

When we look at both contrasts from the perspective of correctness, we noticed that the signal courses are 
similar in the case of POScorr and LURcorr responses. The contrast with two correct responses (NEGcorr–LUR-
corr) has lower values of mean signal except for activations from posterior and middle cingulate cortex, and 
angular gyrus. The results related to the level of cognitive conflict showed stronger activation and the course 
shifted towards the right in the middle cingulate cortex (cingulo-opercular network) for more conflicting stimuli. 
In the angular gyrus, the highest activity is for the less conflicting stimuli (NEGcorr), then for POScorr, and the 
lowest for both LURcorr and LURfalse. The previous studies indicated that the angular gyrus is responsible for 
the conscious prediction of action consequences46. For the ACC as well as for the SFG, the course of activity is 
similar for LURcorr, LURfalse, and POScorr, in contrast to the NEGcorr, when the signal course is flattened and 
has lower amplitude, respectively. From the functional point of view, the cingulo-opercular network is engaged 
in maintenance of “tonic alertness” defined as cognitive effortful, self-initiated preparation for information pro-
cessing and response, conversely to the “phasic alertness”, which is initiated by the stimulus47. Posterior cingulate 
cortex is thought to be responsible for cognitive demands to recall spatial information. Clinical research revealed 
that lesions of PCC are associated with memory impairments and spatial disorientation48.

Shapley’s analysis provided relevant brain regions for two studied contrasts (see Table 2 and Supplementary 
Information Table A5) partly consistent with the analysis of mean signals, which confirms the effectiveness of 
both methods. The results (see Fig. 5a) allowing to state that information processing related to erroneous response 
and higher cognitive conflict engages more time and brain areas.

The most interesting result, in our opinion, are the late responses (from 5 to 9 TR) associated with the retrieval 
(as shown in Fig. 3) and not affected by the encoding process of precise stimuli presented in the next trial. Most 
of the regions showing differences for correct and false recognitions as well as between more and less conflicting 
stimuli in late TRs are in the default mode network (DMN), see Fig. 4. Traditionally this network, composed 
of medial prefrontal cortex, posterior cingulate cortex, precuneus and angular gyrus, is active when the people 
are not focused on the external tasks, but rather on their inner state or while mind-wandering49,50. Its role has 
been revisited by a recent study of Sormaz and colleagues, showing its activity during ongoing cognition. They 
also suggested that DMN is active in cognition broadening beyond the off-task state. The results of our study are 
consistent with the process-memory framework proposed by Hasson et al.51, in which timescales of information 
processing increase along the cortical hierarchy. Using single-unit electrophysiology and fMRI allowed them to 
discover the timescales of changes in the processing of information on various cortical hierarchy. The longest 
processing timescales were seen in the areas forming DMN including the angular gyrus, precuneus, posterior 
cingulate cortex, and medial prefrontal cortex. The results of our study employing the stimuli inducing different 
levels of cognitive conflict corroborated the mentioned above findings—the stimuli with higher cognitive conflict 
require longer information processing.

The confirmation of the cortical hierarchy of information processing was possible using single-unit elec-
trophysiology and fMRI, as well as a new methodological approach employed in our study. The use of our 
methodological approach for EEG data (which have good time resolution) would provide the new insight in 
cognitive control studies. The previous research revealed that theta oscillations recorded from sensors overlying 
medial prefrontal cortex, included ACC render efficient cognitive control52–54. The theta phase synchronization 
studies provided an evidence for occurring the integration and exchange of information between brain regions. 
Furthermore, another EEG study55 showed that frontal theta amplitude was significantly higher for unexpected 
compared to the expected condition. It would be the most interesting to deploy the simultaneous EEG–fMRI to 
see what is the mechanism of the late responses.

In conclusion, the use of a new methodological approach allows us to determine how the human brain 
prepares for future events in relation to previous recognition (correct or false) and different levels of cognitive 
conflict (low and high) in visual short-term memory. The analysis of interpolated mean signals allowed us to 
uncover a distinct pattern of time delays in the activations of various brain regions. Such an analysis would not 
be possible with a classical GLM-type investigation. The use of machine learning classifiers, on the one hand, 
confirmed the observations on the importance of delayed processing and the identification of key relevant regions 
and on the other hand opened up a possibility of trial by trial studies, which we plan to pursue in the future. 
This result indicates that machine learning methods are reliable and can be used in the analysis of fMRI data.

To the best of our knowledge, this is the first study showing spatio-temporal patterns of information process-
ing related to erroneous and correct responses aimed at preparing to the adaptive behaviour occurred during 
retrieval phase, in contrast to previous research which dealt with post-error adjustments related to the encoding 
process of stimuli presented in the next trial. The brain focusing on the previously-encoded information, provides 
the evidence that cognition is guided by memory rather than information occurring later in the task. Our results 
showed that new methods of analysis allow drawing more specific conclusions about neural activity related to 
cognitive conflict and erroneous and correct responses than the classical methods.

Methods
Participants.  5354 young and healthy volunteers participated in the first stage of selection via online adver-
tisements on the university website and Facebook. It includes diurnal preference assessment measured by the 
Chronotype Questionnaire56, night sleep quality measured by the Pittsburgh Sleep Quality Index (PSQI)57, and 
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daytime sleepiness measured by the Epworth Sleepiness Scale (ESS)58. From this step, 451 individuals were 
selected and identified as morning and evening chronotypes and went through the next stage of selection. The 
exclusion criteria were sleep problems or excessive daytime sleepiness (as determined by the cut-off points from 
the PSQI ( ≤ 5 points) and ESS ( ≤ 10 points) questionnaires), drug, alcohol or nicotine dependence, shift work, 
and travel comprising passing more than two time zones within the past 2 months. The final sample consisted 
of sixty-five (32 women; mean age: 24.54 ± 3.43 years old) participants, who completed the selection criteria: 
age between 20 and 35 years, right-handedness according to the Edinburgh Handedness Inventory (EHI)59, 
normal or corrected-to-normal vision, no neurological or psychiatric disorders, and no MRI contraindications. 
Informed, written consent was provided by all participants prior to completion of the study procedures. The 
individuals were remunerated for participation in the experiment. The study was conducted in accordance with 
the Declaration of Helsinki and approved by the Research Ethics Committee at the Institute of Applied Psychol-
ogy at the Jagiellonian University.

Task.  The modified short-term memory DRM paradigm14 was employed in the study. The task was per-
formed twice—during morning and evening functional magnetic resonance imaging sessions in two versions 
(A and B). The versions as well as order of sessions were counterbalanced between participants. They were asked 
to memorize a set consisting of two abstract objects, followed by a mask. Thereafter, a probe was displayed in 
three conditions: positive (when the probe was in the previously presented set), negative (when the probe was 
not presented at all) and lure (when the probe was similar on the holistic level to the stimuli in the preceding set). 
The participants’ goal was to determine whether the stimulus occurred in the previously presented set (right-
hand key for “yes”, left-hand key for “no”). The procedure for one trial looks as follows: a fixation point presented 
for 450 ms, blank screen presented for 100 ms, then the memory set presented for 1800 ms followed by a blank 
screen (1000 ms) and mask (1200 ms). Afterwards, the probe was displayed for 2000 ms. Duration of the first 
fixed inter-stimulus interval (ISI) was 1000 ms, the second ISI ranged from 2000 to 16,000 ms (avg. 6097 ms). 
Mean duration of the inter-trial interval was 8403 ms and ranged from 6000 to 15000 ms. There were 60 memory 
sets followed by 25 positive, 25 lures and 10 negative probes. The dark gray (RGB 72, 72, 72) stimuli were pre-
sented on a light-gray background (RGB 176, 176, 176). The abstract objects (5° wide and 4° high) in memory 
sets were displayed 3° from the centre of the screen to the left and right, while masks and the objects in memory 
probes in the centre of the screen. The task was prepared using E-Prime 2.0 (Psychology Software Tools) and 
presented via a mirror (located on the head coil) on an MR-compatible LCD screen (NordicNeuroLab, Bergen, 
Norway) with a refresh rate of 60 Hz and a resolution of 800× 600 pixels. The detailed task and procedure 
description is presented in Ceglarek et al.60, however for the convenience of the reader the task procedure is 
depicted in Fig. A2 (Supplementary Information).

Procedure.  One week before the exact study, the duration and quality of sleep were controlled using the 
MotionWatch8 actigraphs (CamNtech, Cambridge, UK) during the week preceding the study and the experi-
mental days. At the start of the experiment, participants went to the lab to complete a training session (to avoid 
the influence of the learning process) and to familiarize themselves with the MR lab environment. The training 
session consisted of three parts. In the first, each participant was informed about the course of the experiment. 
Next, six experimental trials (2 positive probes, 2 lure probes, and 2 negative ones) were presented to the par-
ticipant. There was no time limit to familiarize with each trial component, and the participant pressed a key to 
proceed to the next part of the trial. In the third part of the training session, a whole-task training approach was 
used. The participants responded to both the probe and distractor by pressing a key with the right or left hand 
(for “yes” or “no” response, respectively). Stimuli for training differed to those used for the experimental tasks. 
The participant could complete the task as many times as he/she needed. The possibility of the practice effect was 
rejected, no differences were found in the performance indices between the first session held for each participant 
(morning or evening) and the second. The study was conducted on one (when the morning session was the first 
one) or two (when the morning session was the second one) experimental days. The session order was counter-
balanced across participants. They were asked to abstain from alcohol (48 h) and caffeine (24 h) before study and 
during the experimental days. During days of exact study, they could engage in non-strenuous activities. The 
night before the morning session, participants slept in rooms located in the same building as the MR laboratory. 
In the analysis, we look at the response types regardless of the time of day.

Imaging data acquisition.  MRI data were acquired using a 3T Siemens Skyra MR System with a 64-chan-
nel coil. For anatomical reference, a T1-weighted MPRAGE sequence was performed (TR = 2.3 s, TE = 2.98 ms, 
FA = 9°, 176 sagittal slices, slice thickness = 1.1 mm, FOV = 256 × 256 mm). For the BOLD imaging, a T2*-
weighted EPI sequence was used (TR = 1.8 s, TE = 27 ms, FA = 75°, 34 slices with interleaved acquisition, voxel 
size = 4 × 4 × 4 mm, slice thickness = 4 mm, inter-slice gap = 0 mm, FOV = 256 × 256 mm). The 709 volumes 
were acquired during task performance. Participants’ eye movements were monitored using an eye tracking 
system (Eyelink 1000, SR research, Mississauga, ON, Canada).

Volumetric MR data preprocessing.  Data preprocessing was performed using the Statistical Parametric 
Mapping software package (SPM12, Welcome Department of Imaging Neuroscience, UCL, London, UK; www.​
fil.​ion.​ucl.​ac.​uk/​spm/) and DPABI (V4.2)61 implemented on MATLAB (Mathworks, Inc., MA, USA). Scans were 
slice-timed corrected and realigned by inclusion of field maps. Following motion correction, each individual’s 
structural T1-weighted image was co-registered and spatially normalized to Montreal Neurological Institute 
(MNI) space. The normalized volumes were smoothed using a 4 mm FWHM Gaussian kernel to increase the 

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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signal-to-noise ratio of the data. Then the band-pass filtering (0.01-0.08 Hz) was applied. Additionally, the time 
series for structures from Automated Anatomical Atlas (AAL)62 were extracted.

Surface‑based MR data preprocessing.  The raw fMRI BIDS data were converted to the HCP style sur-
face-based data using the ciftify63 tool (we used the tigrlab/fmriprep_ciftify:v1.3.2-2.3.3 
Docker image), which incorporated preprocessing using fMRIPrep 1.3.264, as well as parts of the HCP minimal 
preprocessing pipeline65. The description of the anatomical and functional preprocessing steps is adapted from 
the boilerplate output of fMRIPrep. 

Anatomical and functional data preprocessing Two T1-weighted (T1w) images for each subject were corrected 
for intensity non-uniformity (INU). Brain surfaces were reconstructed using recon-all FreeSurfer 6.0.166, 
spatial normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c was performed 
through nonlinear registration with antsRegistration (ANTs 2.2.0). Brain tissue segmentation of 
cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted 
T1w using fast FSL 5.0.967.
For each BOLD run, a reference volume and its skull-stripped version were generated using a custom meth-
odology of fMRIPrep. A deformation field to correct for susceptibility distortions was estimated based on a 
field map that was co-registered to the BOLD reference, using a custom workflow of fMRIPrep derived from D. 
Greve’s epidewarp.fslhttp://​www.​nmr.​mgh.​harva​rd.​edu/%​7egre​ve/​fbirn/​b0/​epide​warp.​fsl and fur-
ther improvements of HCP Pipelines65. An unwarped BOLD reference was calculated for a more 
accurate co-registration with the anatomical reference, and then co-registered to the T1w reference. BOLD 
runs were slice-time corrected using 3dTshift from AFNI 20160207, then were subsequently resampled to 
MNI152NLin2009cAsym standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym 
space. Global signals within the CSF and WM were extracted.
Surface-based data preprocessing The data obtained above were transformed to the composite surface-
based cortical and volume based subcortical cifti format by the ciftify tool using MSMSulc surface 
realignment68. The resulting BOLD signal was smoothed using a 4-mm FWHM kernel (taking into account 
cortical surface distances and boundaries of subcortical structures), detrended, band-pass filtered (0.01–
0.1 Hz) and the CSF and WM signals were regressed out.

Comparison of volumetric and surface based data.  As the present data were collected in a conven-
tional manner, not optimized towards the HCP-like pipeline65, and the surface-based data were obtained using 
ciftify63—a tool for converting legacy MR acquisitions (see “Methods”), we investigated whether the ben-
efits also apply in our case.

To this end, we take a pair of retrieval events (moments when participants had to recognize or not the 
previously presented stimuli and give a motor response) and compare the performance of machine learning 
classifiers in predicting the type of retrieval event (e.g., POScorr vs LURfalse) from the brain activations using 
either conventional volumetric data or the HCP-style surface-based data. Note that the classifier is trained and 
evaluated on data coming from multiple participants, hence its performance reflects the inter-subject consist-
ency of the brain activation data.

In Fig. 1a we show the cross-validated performance of a logistic regression classifier trained on the grayordinate 
or conventional voxel based data at a fixed given time frame after the retrieval event. We observe that, indeed, 
the surface-based data yields consistently better performance across all time frames. We will return to the time-
dependence of the performance shortly.

Since the dimensionality of either grayordinates (91,282) or voxels (68,241) is very high, in the analysis of this 
paper we will mostly use parcellated data. In Fig. 1b we compare the performance of various machine learning 
classifiers (see “Methods”) trained on parcellated activations in the period 0–9 TR after retrieval event. For the 
surface-based data we use the Cole-Anticevic parcellation69 (CA) which extends the Multi-Modal-Parcellation70 
(MMP) comprising 360 cortical regions by another 358 subcortical regions. For the volumetric data, we use here 
the standard Automated Anatomical Atlas (AAL)62 parcellation. We observe that all classifiers perform better 
on the CA parcellated surface-based data than on the volumetric AAL data. Hence, for subsequent analysis, we 
will employ the former.

Statistical analyses for behavioural data.  Behavioural data analyses were performed using SPSS v27 
(IBM Corp., 2020) software. The general linear model (GLM) with accuracy and reaction times as dependent 
variables and probe types as fixed factor was performed. The probe types were: POScorr (correct recognition 
of positive probe), POSfalse (erroneous response for positive probe), LURcorr (correct rejection of lure probe), 
LURfalse (erroneous response for lure probe) and NEGcorr (correct rejection of negative probe). Due to almost 
100% correctness for negative probes, the erroneous responses for them were excluded from the analysis. The 
post-error slowing (PES) was calculated by t tests comparisons of reaction times for all trials and trials after erro-
neous responses for positive and lure probes, separately. The significance level was set to p < 0.05 throughout 
the analysis, Bonferroni corrected, additionally the effect size was computed through partial eta squared ( η2p).

GLM analysis.  The general linear model of SPM12 was used to conduct the fMRI data analyses. At the first 
level, the event-related design was modelled for each condition during encoding and retrieval phases (correct 
and false recognitions of positive probe, correct rejections of lure, false recognitions of lure, correct rejections of 
negative probe) with onsets and durations of presentation of the stimuli, and convolved with a canonical hemo-
dynamic response function. Durations of stimuli during the retrieval phase were elongated to 9 seconds (5 TR) 

http://www.nmr.mgh.harvard.edu/%7egreve/fbirn/b0/epidewarp.fsl
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except the trials with the shortest ITI, in which they were elongated to 8 seconds. The eight contrasts for each 
subject and session were constructed (correct recognition of positive probe >false recognition of lure probe, false 
recognition of lure probe > correct recognition of positive probe, correct rejection of lures > false recognition of 
lure probe and false recognition of lure probe > correct rejection of lures at encoding and retrieval). The negative 
probes were not included in contrasts due to the small number of probes in the task. The contrasts for all partici-
pants and two sessions were included into group analysis. The results are presented at cluster-wise p < 0.05 level 
with FDR correction for multiple comparisons and a cluster size of at least 10 voxels.

Machine learning classifiers.  Various machine learning methods were considered in the classification 
experiments. The first group included linear models: logistic regression, linear Support Vector Machines (linear 
SVM), and Support Vector Machines with an RBF kernel (rbf SVM). The best results were obtained by a gradient 
boosting model.

Training and validation procedure.  Each of the considered is optimized by 5-fold cross-validation, in which the 
dataset was split into 5 subsets with each used as test data and the rest of the parts are taken as train data. The 
procedure is repeated 5 times and results averaged. The performance of the selected hyperparameters is meas-
ured on a dedicated evaluation set that was not used during the model training step. We calculated the average 
and standard deviation of the score of AUC for these 5 test datasets and report them in Fig. 1b. We consider the 
following set of hyperparameters

•	 regularization parameter C from set {0.01, 0.1, 1, 10, 100, 1000} for all above methods,
•	 kernel coefficient gamma as a set {0.0001, 0.001, 0.01, 0.1, 1} for rbf SVM.

We use a balanced train dataset during the learning models, one batch or train dataset contains the same propor-
tion of active and inactive classes.

Logistic regression.  Logistic regression71 is a technique borrowed by machine learning from the field of statis-
tics. It is similar to linear regression, since it finds an equation that predicts an outcome for one dependent binary 
variable from one or more independent variables. However, unlike linear regression, the independent variables 
can be categorical or continuous. To predict class membership, logistic regression uses the log odds ratio rather 
than probabilities and an iterative maximum likelihood method rather than the least squares to fit the final 
model. Logistic regression is relatively fast compared to other supervised classification techniques such as kernel 
SVM but suffers to some degree in its accuracy. For the CA data, the mean of AUC for 5-fold cross-validation 
equals 0.619 and 0.748 for the POScorr–LURfalse and NEGcorr–LURcorr problems, respectively. For the AAL 
data, the mean of AUC is equal to 0.587 and 0.624.

We also considered a more accurate Support Vector Machine72, a supervised machine learning algorithm that 
can be used for both classification or regression challenges. SVM constructs a hyperplane or set of hyperplanes 
in a high- or infinite-dimensional space to separate classes. For this purpose, SVM chooses the extreme points 
that help in creating such a hyperplane, the support vectors. For nonlinear separation problems, a “kernel trick” 
is used to transform the input data space into a higher (even infinite) dimensional space and search there for the 
best dividing hyperplane. SVM offers very high accuracy compared to other classifiers such as logistic regres-
sion, together with theoretical assurances on generalization. The mean of AUC for 5-fold cross-validation for 
CA data are 0.652, 0.719 for the POScorr–LURfalse and NEGcorr–LURcorr problems, respectively. Similarly, for 
AAL data we get 0.622, 0.669. A detailed comparison of the results for each model can be found in the Fig. 1b.

Neural networks.  Artificial Neural Networks (ANN) are widely used today in many applications, in particular 
classification oriented. For ANN classifiers we use here a multilayer perceptron (MLP) classifier with a one, two, 
or three hidden layers with ReLU nonlinear activation function ReLU(x) = max(0, x) , where x is the weighted 
input to a neuron. At the end of a neural network, we apply a standard logistic function (sigmoid) defined as 
f (x) = 1/(1+ e−x) ∈ [0, 1] . Similarly to previous methods, we use a 5-fold cross-validation during learning 
MLP where at each time step of training, the partial derivatives of the loss function with respect to the model 
parameters are computed to update the weight parameters. As a loss function, we take the binary cross-entropy 
loss function which is computed for the target and the output discrepancy of MLP, i.e.,

where yi ∈ {0, 1} is target and xi is the predicted probability by model (output value of sigmoid). Learning occurs 
in the perceptron by iteratively adapting connection weights after each piece of data is processed, based on the 
error value defined as the difference between the output computed and the expected result. This is an example 
of supervised learning is carried out with back propagation. For this model, we obtained the mean AUC for CA 
data of 0.667 and 0.837 for POScorr–LURfalse and NEGcorr–LURcorr problems, respectively. Similarly, for AAL 
data we obtain 0.634, 0.785. Compared to the previous classification methods, this model gives comparatively 
better results, see Fig. 1b.

Gradient boosting.  Gradient boosting is an ensemble model which constructs new classifiers, i.e., ensemble 
elements, by performing gradient descent in a functional space of models trained73. An ensemble is built of 

(1)L
(

(xi)i=1...N , (yi)i=1...N

)

=
1

N

N
∑

i=1

yi · log(xi)+ (1− yi) · log(1− xi),
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several models, usually homogeneous, where each is used to predict the outcome. All the predictions are merged 
together, either by taking a mean or by voting (usually weighted), to compute the final outcome. This approach 
reduces the generalization error of the whole model, by driving down the variance term74.

The construction of ensembles follows first a weak model hypothesis which states that a group of models 
performing just a bit better than random, i.e., are weak models, gives a strong model provided that the weak 
models are diverse75. Models are said to be diverse if they commit errors in different areas of the data space. 
Second, the gradient boosting approach, in a process of additive learning, constructs a series of models fk() , such 
that fk+1(x) = fk(x)+ hk(x) . The new added hypothesis hk(x) = y − fk(x) , where y is the true value, is equal to 
the gradient of the cost function (a squared error cost function in this formulation). The new hypothesis hk() is 
found using gradient descent in the space of models.

In the experiments, we used a CatBoost model21, which builds a forest of decision trees. We applied a grid 
search to find the optimal parameters, and then applied a 5-fold cross validation procedure. After finding opti-
mum parameters, we applied Shapley analysis (see “Methods”) to reduce the regions and TRs used; thus the 
untuned and tuned models in Fig. 1b.

For MMP/CA parcellation POScorr–LURfalse the mean AUC for untuned model was 0.654 (AAL: 0.631) 
while for a tuned one for CA 0.776 (AAL: 0.693). The mean AUCs for NEGcorr–LURfalse MMP/CA parcella-
tion untuned model was 0.837 (AAL: 0.790), while for tuned CA model it was 0.882 (AAL: 0.806). The tuned 
models used about 15% of features.

The analysis of mean signals.  The analysis uses surface-based HCP-style data19 which were obtained 
using the ciftify tool63 from the original raw data, as described earlier in the “Methods” section. At each TR, 
the data contains 91282 grayordinates comprising 59412 cortical vertices and 31870 subcortical voxels represent-
ing neural subcortical structures.

In order to uniformize the data across participants and sessions, for each session, the time signal of each gray-
ordinate was demeaned and normalized to have unit standard deviation. The resulting signals were parcellated 
using the Cole–Anticevic methodology69 (CA), which is an extension of the cortical Multi-Modal Parcellation70 
(MMP) to the subcortical structures. In order to better compare regions of different size, the parcellated signal 
for each region was divided by its standard deviation across concatenated participants and sessions.

For each type of event (POScorr, LURfalse, NEGcorr, LURcorr), 12 temporal frames were extracted—2 pre-
ceding and 10 following each retrieval event. We collected in total 2159 POScorr, 903 LURfalse trials, 1060 NEG-
corr and 1747 LURcorr trials. These signals were then averaged across all trials of a given type, producing the 
mean signals for the appropriate events. Finally, the mean activations were interpolated using splines giving the 
final signals which were used for all subsequent analysis.

The interpolation allows localizing the positions of local maxima and minima of the mean signal, which take 
into account the global temporal dependence of the activations. This is a much finer measure than the positions 
of local minima and maxima of the original signal at integer multiplies of TR (see Figs. 2a and 3 for a variety of 
examples).

Observables.  We quantify to what extent the mean signals of the same region are different between two events 
A and B by measuring

where yA, yB are the interpolated mean signals for the respective events. For the early stage of the signal we take 
Ti = 0 and Tf = 5 , while for the late stage analysis we use Ti = 5 and Tf = 9 (time measured in TR after the 
retrieval event). In order to study temporal delays in the neuronal reactions, we can, e.g., compare the peaks 
(defined through a maximum in an appropriate time period) associated to the two events.

Determining a delay in the rising or trailing parts of the signal (of the type shown in Fig. 2a) is more subtle. 
Let us consider for definiteness the rising part of the signal. We first form straight lines joining the preceding 
minimum (t0, y0) and the maximum (t1, y1) for each of the events, and parametrize them by linear functions 
tlinA , tlinB  . We denote the common part of their domain of definition by [y−, y+]:

We can now define the average leading time delay as

Note that the mean activations shown in Fig. 2a (left, centre) rise almost exactly in parallel. In order to quan-
tify this behaviour, we define in addition

and measure

(2)� Area =
1

Tf − Ti

∫ Tf

Ti

|yA(t)− yB(t)|dt,

(3)y− = max(yA0 , y
B
0 ) y+ = min(yA1 , y

B
1 ).

(4)
〈

�leading t
〉

=
1

y+ − y−

∫ y+

y−

(
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)
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Small σleading should now pick out the parallel rise in Fig. 2a (left, centre). For the precise criterion, see the 
following subsection. Finally, in order to avoid unreliable results, we will restrict the computations to regions for 
which the common domain [y−, y+] is large enough. This can be quantified using the ratio

We define the corresponding observable for the delay in the trailing part of the signal in an analogous way.

Permutation testing, bootstrap and criteria for selecting regions.  In order to reliably select the relevant regions 
out of the 718 regions in the Cole–Anticevic parcellation and avoid the Multiple Comparison problem, we per-
form permutation testing. To this end, we collect together the trials corresponding to the pair of events under 
investigation (like POScorr–LURfalse), permute the event labels and compute � Area for each region, using 
the permuted labels. We repeat the procedure 1000 times, generating our null distribution. Each time, we com-
pute the maximum value of � Area across all regions. We then determine its 0.95 quantile as the critical value 
� Area(critical) . The relevant regions are then selected by the criterion � Area > � Area(critical) . For the 
pair POScorr–LURfalse in the early stage (0–5 TR) we find � Area(critical) = 0.5453 (which selects 31 regions 
(we neglect two regions with less than 10 grayordinates), see Supplementary Information Table A1), while for 
the late stage (5–9 TR) we obtain � Area(critical) = 0.4138 (which selects 17 regions, Supplementary Informa-
tion Table A2). For the pair NEGcorr–LURcorr in the early stage (0–5 TR) we find � Area(critical) = 0.5280 
(which selects 87 regions, Supplementary Information Table A3), while for the late stage (5–9 TR) we obtain 
� Area(critical) = 0.4162 (which selects 14 regions, Supplementary Information Table A4).

As the observables that we define for measuring time delays are rather non-trivial, the only way to assess their 
statistical error is by performing a bootstrap procedure. Again we collect together the N trials corresponding to 
the two events of interest, and construct 1000 bootstrap datasets, each time sampling with replacement N trials 
out of the initial collection, preserving the event labels of the trials. For a given observable, we evaluate it in each 
of the 1000 bootstrap datasets and take the standard deviation as an estimate of statistical error. We take the ratio 
of the mean to the standard deviation to define z(observable).

In order to select the regions listed in Table 1a, with a clear time delay between the rising parts of the neural 
activations, as seen in Fig. 2a (left, centre) we adopt the following criteria: 

1.	 The region has to be relevant: � Area > � Area(critical)
2.	 The leading time delay is statistically significant (as evaluated by bootstrap): z

(〈

�leading t
〉)

> 2
3.	 The rise of the response to the two events is approximately parallel: σleading < 0.15
4.	 There is at least a minimal overlap for a reliable computation of the leading time delay: rangeleading > 0.1

The same criteria are used to select the regions in Table 1a but with the substitution leading → trailing . An 
example of the latter case is shown in Fig. 2a (right).

Shapley analysis.  SHapley Additive exPlanations (SHAP)24 is a framework for interpreting given model 
predictions as a sum of the impact of individual features used, that is based on the Shapley values.

The objective is to explain how, for a given example, each input feature contributes to the difference between 
mean output and the output for this example, i.e., how decisive is that feature. Thus, a Shapley value76 is the aver-
age marginal contribution of a feature across all possible subsets of features. The direct method of computing a 
value for some feature X given a model M would be to first evaluate the target function for a subset including X, 
then replace X with a random value to find the difference—the contribution φX of X. This needs to be repeated for 
all possible feature subsets, where the Shapley value for X would be the average X’s contribution over all coalitions.

In the case of linear models

for an M features model. Then the contribution φj of j-th feature xj is the difference

that is the difference between xj impact and the mean impact of the j-th feature. The sum of contributions of all 
features would give the difference between the output for a given example and the mean output

which is the efficiency property. The φj values can be negative. The other properties supported by a Shapley system 
are: symmetry—if features xj and xk contribute identically to f̂ (x) , then φj = φk ; dumminess—if f̂ (S, xj) = f̂ (S) 
for all subsets S, then the Shapley value φj = 0 ; and additivity—that it is possible to compute the Shapley value 
for a number of models, e.g., trees, individually and then get their average as the Shapley value77.

(6)σleading =

√

〈

�2
leading t

〉

−
〈

�leading t
〉2
.

(7)rangeleading =
y+ − y−

max(yA1 , y
B
1 )−min(yA0 , y

B
0 )

.

(8)f̂ (x) = θ0 + θ1x1 + θ2x2 + · · · + θnxM ,

(9)φj(f̂ ) = θjxj − E(θjXj) = θjxj − θjE(Xj),

(10)
∑

j

φj(f̂ ) = f̂ (x)− E(f̂ (X)),
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The computation time grows exponentially with the number of features. A Monte–Carlo approach23 would 
be to approximate repeating N times

where f̂ (xk+j) is a prediction for x with all values, except xj , sampled from a random z, whereas f̂ (xk−j) has xj taken 
from z. Unfortunately, there is no rule for choosing an appropriate repeat number N. The Shapley approach is 
model-agnostic, i.e., the φ values can be computed for models not necessarily linear.

In this paper, we have used the SHAP framework24 to achieve a twofold advantage. First, to tune the gradi-
ent boosting model by removing features found to be less informative. Second, to use the Shapley values of the 
final gradient boosting model to explain their impact on the main cognition question of the paper. The SHAP 
model defines an explanation as a linearized explanation model g computed on, a so called, simplified features 
z′ ∈ {0, 1}M

where M is the maximum coalition (subset) size, and φj is the appropriate Shapley value. The v′j ∈ {0, 1} corre-
sponds to feature presence in the current coalition; thus an input example x corresponds to a coalition with all 1’s.

The possible SHAP infrastructure is a TreeSHAP methodology for tree based models like the CatBoost21 gra-
dient boosting used here. Because of the tree structure of individual models in CatBoost, the TreeSHAP makes 
polynomial time computation of Shapley values possible. For further details of SHAP, we direct the readers to 
the Lundberg et al.’s original paper24.

By computing once the Shapley values φj for all available features, we were able to reduce the set of features 
used by removing these which had the lowest absolute value expected E(|φj|) and retrain the models. It can eas-
ily be seen in Supplementary Information Fig. A4 that reducing the set of features to about 10% of the original 
number of features resulted in most accurate models.

Due to the high dimensionality of the parcellated fMRI time series (e.g., 718× 10 = 7180 features for 10 time 
steps with the MMP/CA parcellation) in comparison to the number of trials (3062 for the POScorr–LURfalse 
events), we have retained around 15% of the overall number of features (see Supplementary Materials for details). 
Then, for subsequent analysis we used the gradient boosted tree model trained on the reduced feature-space, 
which achieves greater accuracy (see tuned-GradientBoosting in Fig. 1b). In Fig. 5 we present the results of the 
Shapley analysis of this model.

The Shapley values of the features used in the final models for each combination of problem / brain region cod-
ing make it possible to select the most important regions as utilized by the trained gradient boosting model. We 
have selected those with the highest Shapley sum values for the early and late regions. Results are given in Table 2, 
and Supplementary Information Tab. A5. The relation of the Shapley and � Area values for POScorr–LURfalse 
problem is shown in Fig. 5b.

Limitations of the proposed methods.  The key limitation for the analysis of mean signals is the need to 
collect a sufficiently large set of data so that the differences of the mean signals associated with different events 
would be statistically relevant. Since in order to check the statistical relevance we adopt permutation testing, and 
for estimating the errors we adopt bootstrap method, we do not need to assume any kind of normal distribution 
of the data.

One should also note that the mean signals are computed for individual regions, hence they are easy to inter-
pret, but may therefore miss information about the overall context of other regions. The complementary Shapley 
analysis focuses on each region but in the context of all others. Hence, in principle it may be more powerful, but 
at the cost of being much more difficult to interpret from the neurocognitive perspective.

The Shapley analysis using decision tree forests as base models may sometimes be limited by the models’ 
susceptibility to building the most simple one that explains the data at hand. This may be coped with by obtain-
ing a large enough number of examples, which is a limitation. On the other hand, the presented methodology 
for reducing the number of input features used is a tool for counterbalancing it (see Supplementary Materials).
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