Antibacterial activity of a lectin-like Burkholderia cenocepacia protein

Maarten G. K. Ghequire ${ }^{1}$, Evelien De Canck ${ }^{2}$, Pierre Wattiau ${ }^{3}$, Iris Van Winge ${ }^{1}$, Remy Loris ${ }^{4,5}$, Tom Coenye ${ }^{2}$ \& René De Mot ${ }^{1}$
${ }^{1}$ Centre of Microbial and Plant Genetics, University of Leuven, Kasteelpark Arenberg 20 box 2460, 3001, Heverlee-Leuven, Belgium
${ }^{2}$ Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
${ }^{3}$ Department of Bacteriology and Immunology, Veterinary and Agrochemical Research Centre, 1180 Brussels, Belgium
${ }^{4}$ Molecular Recognition Unit, Department of Structural Biology, Vlaams Instituut voor Biotechnologie, 1050 Brussels, Belgium
${ }^{5}$ Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, 1050 Brussels, Belgium

Keywords

Antagonism, Burkholderia cepacia complex, lectin-like bacteriocin, LlpA, MMBL family, planktonic, sessile cells.

Correspondence

René De Mot, Centre of Microbial and Plant Genetics, University of Leuven, Kasteelpark Arenberg 20 box 2460, 3001, Heverlee-
Leuven, Belgium. Tel: +32 16 329681;
Fax: +32 16 321963;
E-mail: rene.demot@biw.kuleuven.be

Funding Information

This work was financially supported by Grant G.0393.09N from FWO-Vlaanderen (to R. D.
M. and R. L.). T. C. acknowledges support received from the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office.

Received: 22 March 2013; Revised: 29 April 2013; Accepted: 6 May 2013

MicrobiologyOpen 2013; 2(4): 566-575

Abstract

Bacteriocins of the LlpA family have previously been characterized in the γ-proteobacteria Pseudomonas and Xanthomonas. These proteins are composed of two MMBL (monocot mannose-binding lectin) domains, a module predominantly and abundantly found in lectins from monocot plants. Genes encoding four different types of LlpA-like proteins were identified in genomes from strains belonging to the Burkholderia cepacia complex (Bcc) and the Burkholderia pseudomallei group. A selected recombinant LlpA-like protein from the human isolate Burkholderia cenocepacia AU1054 displayed narrow-spectrum genus-specific antibacterial activity, thus representing the first functionally characterized bacteriocin within this β-proteobacterial genus. Strain-specific killing was confined to other members of the Bcc, with mostly Burkholderia ambifaria strains being susceptible. In addition to killing planktonic cells, this bacteriocin also acted as an antibiofilm agent.

Introduction

While some members of the β-proteobacterial genus Burkholderia exhibit attractive properties for biodegradation of environmental pollutants or growth promotion of plants (Suárez-Moreno et al. 2012), several species represent a threat to animal and human health. The Burkholderia pseudomallei group includes the causative agents of human melioidosis, B. pseudomallei, and of animal glanders, Burkholderia mallei (Galyov et al. 2010). The Burkholderia cepacia complex (Bcc), encompassing 17 species, is home to opportunistic pathogens, such as Burkholderia multivo-
rans and Burkholderia cenocepacia, that cause respiratory infections in cystic fibrosis patients and immunocompromised individuals (Sousa et al. 2011; Vial et al. 2011; Suárez-Moreno et al. 2012). Bcc bacteria are difficult to combat due to high intrinsic antibiotic and biocide resistance, biofilm-forming behavior, and prevalence of multi-drug-resistant strains (Horsley and Jones 2012).

A possible strategy to devise alternative anti-Burkholderia strategies is to exploit the antibacterial activity of molecules involved in competition among Burkholderia strains and the potentially novel molecular targets involved (Chandler et al. 2012). Production of the polyketide enacyloxins by

