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For the authentication of white rice from different geographical origins, the selection of

outstanding discrimination markers is essential. In this study, 80 commercial white rice

samples were collected from local markets of Korea and China and discriminated by mass

spectrometry-based untargeted metabolomics approaches. Additionally, the potential

markers that belong to sugars & sugar alcohols, fatty acids, and phospholipids were

examined using several multivariate analyses to measure their discrimination efficiencies.

Unsupervised analyses, including principal component analysis and k-means clustering

demonstrated the potential of the geographical classification of white rice between Korea

and China by fatty acids and phospholipids. In addition, the accuracy, goodness-of-fit (R2),

goodness-of-prediction (Q2), and permutation test p-value derived from phospholipid-

based partial least squares-discriminant analysis were 1.000, 0.902, 0.870, and 0.001,

respectively. Random Forests further consolidated the discrimination ability of phospho-

lipids. Furthermore, an independent validation set containing 20 white rice samples also

confirmed that phospholipids were the excellent discrimination markers for white rice

between two countries. In conclusion, the proposed approach successfully highlighted

phospholipids as the better discrimination markers than sugars & sugar alcohols and fatty

acids in differentiating white rice between Korea and China.

Copyright © 2017, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan

LLC. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

As a principal food source of the world, rice (Oryza sativa L.) is

one of the most important cereal crops. Rice provides

approximately more than 20% of the calorific needs for the

world population. In particular, in East Asia, it comprises over

70% of the calorific intake [1]. O. sativa L., which is considered

to be the “Asian rice”, consists of two subspecies: indica and

japonica [2]. Japonica rice is the most common cultivar in East

Asia, particularly in three major markets: Korea, China, and

Japan [3].

The less milled brown rice does not appeal to most con-

sumers because of its appearance and taste. Consequently,

rice in the markets is usually milled to become white rice,

where its brown sea coat, germ, and bran are removed.

Different types of highly milled white rice look considerably

similar, and mislabeling of the white rice origin occurs

frequently, especially in East Asia. To find effective discrimi-

nating factors, except genetic markers, for plant materials

from different locations, we usually consider variables those

significantly affect the cellular processes in the plant, such as

the annual temperature, drought, cultivate techniques, and

biological hazards [4]. Among these variables, temperature is

known for its significant effect on the starch and oligosac-

charide metabolism [5]. The alterations of this mechanism

caused by different annual temperatures induce the aberrant

of the associatedmetabolites. In otherwords, the temperature

of the growth fields alters the metabolic regulations and

metabolite composition of rice plants. Moreover, this change

directly affects themetabolite composition of rice seeds [6]. As

a result, the difference of cultivation temperature between

Korea and China is predicted to induce the divergence in the

metabolomes of white rice.

Untargeted metabolomics is a comprehensive approach to

investigate the metabolic responses of plants to environ-

mental factors [7e9]. It can also reveal the relationship among

metabolic networks because of its unbiased and exhaustive

analysis of metabolites [10]. Common technologies such as

gas chromatographyemass spectrometry (GCeMS) and liquid

chromatographyemass spectrometry (LCeMS) have been well

established. GCeMS is suitable for the separation and detec-

tion of primary metabolites (amino acids, sugars & sugar al-

cohols) with high reproducibility of the retention index. In

addition, this approach is strengthened by invaluable refer-

ence databases in which the National Institute of Standards

and Technology (NIST) library is an excellent example.

LCeMS, on the other hand, detects a wide range of analytes

yet it is more appropriate to analyze secondary metabolites

such as lipids, alkaloids, flavonoids, and glucosinolates,

which represent the quality of plants regarding their nutri-

tional values [7]. Above all else, compare with other spec-

troscopy techniques, such as near-infrared spectroscopy

(NIR), mass spectrometry-based untargeted metabolomics

has great advantages regarding the discrimination analysis

and novel markers discovery with outstanding sensitivity and

accuracy [8].

Although untargeted metabolomics for plant origin

discrimination has been well established and thoroughly

studied in previous studies [11e14], rice metabolomics,
particularly the metabolite-based discrimination of white rice

from different origins has received less attention. This fact

comes from several reasons. First, white rice from the local

markets is not rigidly controlled. Uncontrollable variables,

such as pesticide, temperature, storage time, and storage

conditions may affect the metabolite composition of white

rice [15]. These uncontrolled variables may result in

misleading conclusions of a particular analysis. However, if

these uncontrollable variables are not included in the

discrimination, the analytical method is not practical and

cannot be applied to actual adulteration problems. Second,

there is a serious metabolite loss because most nutrients are

removed during themilling procedures [16]. It is of importance

to mention that the amount of the metabolites is the most

important element in untargeted metabolomics [17]. Howev-

er, nutrients such as sugar, several amino acids, and lipids still

remain in white rice [16], some of which are closely related to

the starch and oligosaccharide metabolism [5]. Therefore, an

evaluation of these compounds in search for potential

markers, which surmount the constraints of white rice from

different origins, should be meaningful.

In this study, novel markers for the discrimination of non-

waxy type of white rice from Korea and China were estab-

lished and compared. Thereafter, we estimated the discrimi-

nation efficiency of markers using several multivariate

analyses. Using GCeMS and LCeMS, we identified both pri-

mary and secondary metabolites with the full-scan mode.

Partial least squares-discriminant analysis (PLS-DA) analysis

was conducted to develop discriminatory models and the

variable importance in projection (VIP) score was employed to

seek for the potential markers. The potential markers and

classification efficiencies were also evaluated by using

Random Forests (RF), a state-of-the-art supervised learning

method. This study, therefore, suggests and evaluates the

most potential markers that are responsible for the

geographical differences, in which temperature is putatively

considered as the main factor.
2. Materials and methods

2.1. Materials and chemicals

HPLC-grade acetonitrile, methanol, isopropanol, water, and

chloroform were purchased from JT Baker (Phillipsburg, NJ,

USA). Formic acid, derivatizing reagent N,O-bis(trimethylsilyl)

trifluoroacetamide (BSTFA), trimethylchlorosilane (TMCS),

methoxyamine hydrochloride, and pyridine were purchased

from SigmaeAldrich (St. Louis, MO, USA).

2.2. Information and preparation of white rice samples

White rice samples cultivated in 2014, 2015, and 2016 were

purchased from the local markets of each country. Detailed

information on all collected samples, which include the

number of samples and cultivated places, is shown in Tables

S1, S2 and S4. The collected samples were directly freeze-

dried in the dark within two days after collecting and stored

at �70 �C to avoid metabolite changes.

https://doi.org/10.1016/j.jfda.2017.09.004
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2.3. GCeMS experiment

2.3.1. Sample preparation
The extraction procedure was followed the optimal protocol

as previously reported [18]. Before extraction with 1 mL of a

chloroform:methanol:water (1:2.5:1) mixture, 1 mg of caffeine

was added as the internal standard to each 200 mg of

powdered samples. The extraction was conducted by soni-

cation for 30 min at room temperature and the crude extract

was centrifuged for 5 min at 16,000 g. Then, 500 mL of the

methanol/water phase was transferred to a 2 mL clear crimp

vial (Agilent, Santa Clara, CA, USA) and dried using a SpeedVac

at 5000 g and 25 �C for 5 h. For derivatization, 80 mL of

methoxyamine hydrochloride in pyridine (15 mg/mL) was

added to each vial and incubated in a 30 �C oven for 90 min.

Thereafter, 100 mL of BSTFAwith 1% TMCSwasmixedwith the

solution and kept in an oven at 60 �C for 15 min.

2.3.2. Instrument parameters
The GCeMS analysis was performed by using the Shimadzu

GCMS-QP2010 system. To separate the analytes, a DB-5

capillary column (30 m � 0.25 mm, 0.25 mm thick film) was

utilized. The flow rate of the helium (carrier gas) was set to

1.0 mL/min. 1 mL of sample was injected using split-mode in-

jection of 1:2 at 300 �C. The oven temperature gradient was

initially set at 60 �C andmaintained for 5min; the temperature

was increased linearly to 300 �C at a rate of 6 �C/min and held

for 10 min. The ion source temperature was 200 �C, and the

interface temperature was set to 300 �C. Electron-impact

ionization was performed with an electron energy of 70 eV.

The mass range was m/z 40e500. The sequence of sample

analysis was randomized.

2.3.3. Data acquisition and processing
The acquired GC/MS datawere exported to the .cdf format and

preprocessed using MZmine 2.23 [19]. The Automated Mass

Spectral Deconvolution and Identification System (AMDIS)

was then applied to group the fragment ions with the pre-

cursor ions of the mass spectra. The corresponding com-

pounds were putatively identified using the NIST08 database

and all the selected markers were finally confirmed using the

authentic standards. All processed data were furthered scaled

using Pareto scaling method prior to statistical and chemo-

metric analysis.

2.4. LCeMS experiment

2.4.1. Sample preparation
Our previous experiment suggests that phospholipids maybe

the potential markers for the discrimination of white rice

between Korea and China [20]. Therefore, the validated

extraction method was utilized to extract starch lipids from

white rice as previously reported [21,22]. First, the dried white

rice samples were pulverized; 150 mg was accurately weighed

and mixed with 1 mg of caffeine as an internal standard. The

mixture of samples was extracted with 8 mL of 75% iso-

propanol and sonicated for 2 h at 100 �C. The crude extractwas

centrifuged for 5 min at 12,000 g, and the supernatant was

filtered through a 0.2 mmpolytetrafluorethylene (PTFE) syringe

filter.
2.4.2. Instrument parameters
The analysis was performed by a high-performance liquid

chromatography (HPLC) system (Agilent) equipped with an

Acquity™ Ultra-performance liquid chromatography (UPLC)

column (BEH C18, 1.7 mm, 2.1mm� 100mm) and Agilent Q-ToF

6530 mass spectrometer (Agilent, USA). For each sample, 5 mL

was injectedandseparatedusing the followinggradientmethod

with Solvent A (water þ 0.1% formic acid) and Solvent B

(acetonitrile þ 0.1% formic acid): 0 min 100% A; 5 min 70% A;

15min 30%A; 25min 20%A; ~27min 0%A.The flow ratewas set

to 0.17 mL/min. The column temperature was maintained at

40 �C. For the column equilibration, 10min of equilibration time

was applied among the sample injection. In direct infusion (DI)-

basedexperiment,with thecolumnremoved,50%Awith0.2mL/

min of flow rate was set during analysis to avoid the damage of

the ion source. Mass spectrometry was performed in the ESI

negative ionmode. Themass rangewas set tom/z 50e1500. The

lock mass was injected together with every sample to maintain

the accuracy of them/z value. For structure elucidation of iden-

tified markers, additional collision energy condition, 20 eV, was

applied. For the validation of the proposed panel of discrimina-

tion markers, LC- and DI-multiple reaction monitoring (MRM)-

based targeted experiment utilizing Agilent Triple Quadrupole

(QqQ) 6460 system (Agilent, USA) were conducted. Quality con-

trol (QC)sampleswerepreparedandrelativestandarddeviations

(RSDs) were calculated. The validation experiment was con-

ducted using different and non-overlapping white rice samples

from Korea and China. Similar to the GCeMS experiment, the

randomized sequence was used for every analysis.

2.4.3. Data acquisition and processing
All LCeMS data were converted to the mzdata format. Data

preprocessing was performed using MZmine 2.23. Fragment

ions were gathered with the corresponding precursor ions.

Precursor ions of the metabolites were identified by their

fragmentation patterns using the authentic standards, MET-

LIN metabolite database (http://metlin.scripps.edu/), pub-

lished references, and our in-house database [23]. Similar to

GCeMS preprocessing strategy, all LCeMS processed data

were furthered scaled using Pareto scaling method prior to

statistical and chemometric analysis. DI-MS data was

extracted and proceeded as previously described [20,24,25].

2.5. Statistical and chemometric analysis

Pareto-scaled data were subjective to the analysis. All statis-

tical, unsupervised learning, and supervised learning ana-

lyses were performed using the web-based metabolomics

data processing tool MetaboAnalyst 3.0 (http://www.

metaboanalyst.ca/) [26].
3. Results and discussion

3.1. Multivariate statistical analysis of the untargeted
metabolomics results and the screening of discrimination
marker signatures

Eighty samples of white rice from Korean and Chinese local

markets were analyzed with GCeMS and LCeMS approaches.

http://metlin.scripps.edu/
http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
https://doi.org/10.1016/j.jfda.2017.09.004
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Table 1 e The characteristics of GCeMS-based discrimination markers.

Identification Retention time Chemical formula NIST VIP t-test

Match Score p-value FDR

Propionic acid 7.81 C3H6O2 973 0.807 5.647E-5 <0.001
Oxalic acid 9.63 C3H2O4 917 0.934 7.051E-9 <0.001
Arabitol 21.92 C5H12O5 937 1.519 6.939E-4 0.002

D-fructose 24.52 C6H12O6 976 1.624 8.595E-6 <0.001
D-galactose 24.84 C6H12O6 941 0.914 2.238E-5 <0.001
D-glucose 24.90 C6H12O6 939 1.151 3.923E-2 0.048

Sorbitol 25.50 C6H12O6 936 1.116 3.134E-2 0.007

Palmitic acid 27.55 C16H32O2 938 1.468 8.731E-8 <0.001
Linoleic acid 30.06 C18H32O2 936 1.723 1.101E-9 <0.001
Oleic acid 30.16 C18H34O2 932 1.802 4.153E-9 <0.001
Stearic acid 30.54 C18H36O2 920 1.219 1.030E-2 0.018
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After data preprocessing and normalization, 69 and 53 fea-

tures were identified in the GCeMS and LCeMS untargeted

experiments, respectively. Among them, the concentrations

of 28 features were found to be significantly different be-

tween two groups (p-value < 0.05 and false discovery rate

(FDR) < 0.05). Thereafter, PLS-DA with cross-validation and

1000-time permutation test were applied to determine

whether the samples could be differentiated [10]. To detect

potential markers, we obtained the VIP scores from compo-

nent 1 to evaluate the importance of the features in the

discriminationmodel. The featureswith VIP score larger than

0.8 and were significantly different in the univariate analysis

were considered to be the marker candidates. Based on this

criterion, 20 features were found to be the potential markers

(11 from GCeMS and nine from LCeMS). Three were consid-

ered to be monosaccharides, two were sugar alcohols, four

were fatty acids, and nine metabolites were phospholipids

(PLs). The detailed information is listed in Table 1 (GCeMS)

and Table 2 (LCeMS). Sugars, sugar alcohols, and fatty acids

derived from GCeMS were confirmed by the NIST08 library

and the authentic standards. Eventually, D-fructose, D-

galactose, D-glucose, arabitol, sorbitol, palmitic acid, linoleic

acid, oleic acid, and stearic acid were confirmed. Themarkers

of LCeMS experiment were regarded as PLs by their precise

m/z. For identification, targeted MS/MS analysis was further

applied for generating unique fragmentation patterns of

specific PL species [27]. With the m/z value of the precursor

ions and the fragmentation patterns at the collision energy of
Table 2 e The characteristics of LCeMS-based discrimination m

Identification Retention time Mass per charge ratio (m

Measured Exact Add

LysoPE(18:3) 12.86 474.261 474.262 [M�H]�

LysoPE(18:2) 13.56 476.277 476.278 [M�H]�

LysoPE(16:0) 14.29 452.279 452.278 [M�H]�

LysoPE(18:1)a 14.58 478.294 478.293 [M�H]�

LysoPC(14:0)a 12.85 512.300 512.299 [M�H þ
LysoPC(16:1) 13.11 538.314 538.315 [M�H þ
LysoPC(18:2) 13.70 564.332 564.330 [M�H þ
LysoPC(16:0) 14.34 540.330 540.330 [M�H þ
LysoPG(16:0)a 16.22 483.271 483.272 [M�H]�

a These compounds were identified by authentic standards.
20 eV, four metabolites matched the lysophosphatidyletha-

nolamine (LysoPE) spectra. They were confirmed to be

LysoPE(18:3), LysoPE(18:2), LysoPE(16:0), and LysoPE(18:1).

Another four markers were corresponded with lysophos-

phatidylcholine (LysoPC) spectra and identified as

LysoPC(14:0), LysoPC(16:1), LysoPC(18:2), and LysoPC(16:0).

One marker was consistent with the spectrum of lysophos-

phatidylglycerol (LysoPG) and turned out to be LysoPG(16:0).

The fragmentation patterns with structure elucidation of

LysoPEs, LysoPCs, and LysoPG were listed in Fig. S1. Conse-

quently, except D-glucose, sorbitol, stearic acid, and

LysoPE(16:0), othermarkers generally showed a relative small

p-value and FDR, which implies that they are the significantly

different features between two groups of white rice. Of note,

the significant level does not necessarily indicate the impact

of the candidates [28]. In terms of the discrimination effi-

ciency, the high accuracy, goodness-of-fit (R2), and goodness-

of-prediction (Q2) values of the constructed models guaran-

teed that good classifications to discriminate white rice

samples from different countries were achieved in both (a)

GCeMS (accuracy ¼ 0.950, R2 ¼ 0.824, Q2 ¼ 0.753), and (b)

LCeMS (accuracy ¼ 1.000, R2 ¼ 0.972, Q2 ¼ 0.894) (Fig. 1). For

visualizing the relative levels of discrimination markers from

white rice of Korea and China, box plots were used. According

to the mean value, sugars & sugar alcohols, fatty acids, and

LysoPEs showed a higher level in Chinese white rice. Mean-

while, LysoPCs and LysoPG showed higher concentration in

Korean white rice (Fig. 2).
arkers.

/z) Chemical formula VIP t-test

uct ion Score p-value FDR

C23H41NO7P 1.777 8.607E-9 <0.001
C23H43NO7P 1.435 1.801E-3 0.006

C21H43NO7P 0.927 1.879E-2 0.031

C23H45NO7P 1.478 1.292E-3 0.004

HCOOH]� C23H47NO9P 3.454 2.762E-13 <0.001
HCOOH]� C25H49NO9P 1.416 1.501E-7 <0.001
HCOOH]� C27H51NO9P 1.411 7.177E-3 0.018

HCOOH]� C25H51NO9P 1.167 4.086E-4 0.002

C22H44O9P 2.464 3.823E-4 0.001

https://doi.org/10.1016/j.jfda.2017.09.004
https://doi.org/10.1016/j.jfda.2017.09.004


Fig. 1 e Untargeted GCeMS-based and untargeted LCeMS-based PLS-DA models reveal good potential for discriminating

white rice samples between Korea and China. (a) The accuracy, goodness-of-fit, and goodness-of-prediction of untargeted

GCeMS-based PLS-DA were 0.931, 0.750, and 0.692 respectively. (b) The accuracy, goodness-of-fit, and goodness-of-

prediction of untargeted LCeMS-based PLS-DA were 0.987, 0.972, and 0.889 respectively.
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3.2. Evaluation of the efficiency of potential marker
groups

From our previous study, lysoPLs are shown to be effective in

discriminating the origins of non-waxy white rice [24,25].

However, it is unclear about the potential of other groups of

biomarkers. Based on the above selection approach for po-

tential markers from both GCeMS and LCeMS experiments,

we evaluated which compound group was more reliable and

efficient for origin discrimination. Therefore, the potential

marker candidates from the untargeted metabolomics ana-

lyses were grouped into (1) sugars & sugar alcohols, (2) fatty

acids, and (3) PLs. Then, the discrimination ability of each

group was evaluated by various multivariate analyses. Prin-

cipal component analysis (PCA) and heatmap were conducted

for data exploration and visualization. Unsupervised k-means

clustering with the predefined group number of two was also

conducted to observe the grouping tendency of white rice

samples. After that, PLS-DA was proceeded to examine the

reliability, significance, and superiority of the differently

constructed discrimination models. Additionally, RF classifier

was also applied to test for the classification accuracy of each

marker group. With these analyses, we investigated which

group had the best accuracy to discriminate white rice from

two different origins.

3.2.1. Principal component analysis (PCA)
As the most famous multivariate statistical tool, PCA is an

unsupervised method to explore the sample variance in a

dataset without referring to the class label and suggest pre-

dictive abilities of the later supervised learning models. In

PCA, the original variables are summarized into significantly

fewer variables using their profiles [29]. To compare the

grouping efficiency of potential candidate markers, we

applied PCA to each group of discrimination markers. The

results are shown in Fig. 3. Results show that the PLs account
for the completely clear grouping tendencies, and the sugars&

sugar alcohols show the worst discrimination tendency for

two different origins of white rice.

3.2.2. Heatmap
Potential markers were constructed to visualize the clusteri-

zation based on Euclidean distance measurement with Ward

clustering algorithm. According to the relative amounts of

markers in two datasets, the heat map used the average

linkage algorithm with correlation distance and classified the

samples into each group [30]. The markers in sugars & sugar

alcohols groups exhibited the poorest difference between two

groups of white rice; even in the same origin, the variations of

each marker were immoderate, especially in white rice from

China. The markers in fatty acids cluster, on the other hand,

showed a relatively clear discrimination result. However, the

cluster which expressed the most outstanding discrimination

capabilities was the PLs cluster (Fig. 3-(d)).

3.2.3. k-means clustering
The k-means clustering has become a widely used clustering

approach of transcriptomic studies in recent years. However,

it is relatively new to other Omics fields, particularly metab-

olomics [31]. In k-means clustering, the number of clusters

should be decided prior to the analysis and then the algorithm

will randomly choose the centers and training sets for the

iterative clustering. The process will proceed until the cluster

centers and the classified groups are no longer changed. As

shown in Fig. S2, the 2-clusters of white rice samples gener-

ated from sugars & sugar alcohols and fatty acids were poor

that containedmanymislabeling samples. On the other hand,

nine PL discrimination marker set showed two distinct clus-

ters of white rice between Korea and China without any

mismatch. This result once again supported the idea of

selecting PLs as novel markers for geographical discrimina-

tion of white rice.

https://doi.org/10.1016/j.jfda.2017.09.004
https://doi.org/10.1016/j.jfda.2017.09.004


Fig. 2 e The box plots that show the differential concentrations among selected discrimination markers. (a) The relative

concentrations of sugars & sugar alcohols and fatty acids. (b) The relative concentrations of phospholipids.
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3.2.4. Subgroup PLS-DA models with cross-validation and
permutation test
As every classification needs strictly validation, cross-

validation is currently the method of choice measure the pre-

dictive performance and challenge the reliability of a classifi-

cation model with limited samples [10]. Our study applied the

10-fold cross-validation (10-fold CV) and permutation test to

estimate the performance of the PLS-DAmodels. TheR2 andQ2

values of the cross-validation as well as permutation test p-

values of the corresponding models are shown in Fig. 4. The

model generated by PLs panel indicates the best performance

(R2 ¼ 0.902, Q2 ¼ 0.870, and p-value < 0.001).

3.2.5. Subgroup Random Forests (RF) classification models
In metabolomics, discrimination procedure using various

statistical methods is important [32]. RF is a powerful and well

established classifier and it is relatively new in metabolomics

[33]. Because a single decision tree is a week classification
model, the RF combines many decision trees and provides an

accurate classification result [34]. The advantages of RF

include the following: (1) notably high classification accuracy,

(2) new method to determine the variable importance, (3) the

ability to model various non-linear interactions among pre-

dictor variables, and (4) consistent with outliers and missing

values [33]. In this study, we focused on the classification ac-

curacy and ability to model the complex interaction among

the predictor variables. Regarding the number of potential

markers from each group, 500 trees were sufficient, and the

number of predictors of each nodewas set to seven. As shown

in Fig. S3, PLs panel had an excellent classification ability

indicated by minimized the classification error (two errors in

Chinesewhite rice, which accounted for 5% and only one error

in Korean white rice, 2.5%). The RF classification using fatty

acids also exhibited a good accuracy (two errors in Chinese

white rice, 5% and four errors in Korean white rice, 10%). The

classification of sugars & sugar alcohols showed poor

https://doi.org/10.1016/j.jfda.2017.09.004
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Fig. 3 e The PCA score plots and heatmap of sugars & sugar alcohols, fatty acids, and phospholipids. (a) The PCA score plot
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visualization of selected discrimination markers.
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accuracy since the class errors of white rice from Korea and

China were 22.5% and 20%, respectively.

3.2.6. The assessment and validation of PL discrimination
panel using MRM-MS-based approaches
In order to verify the PLs as efficient discrimination markers,

LC-MRM-based targeted analysis was performed using nine

identified PLs in new white rice samples. Twenty additional

samples, 10 versus 10, share similar properties with the

analyzed samples of the discovery stage (Table S2). QC sam-

ples were also prepared to evaluate RSDs. All target compo-

nents including the internal standard, caffeine, showed

excellent RSDs, which were lower than 10% (Table S3). The

accuracy, R2, and Q2 of LC-MRM-based PLS-DA were 1.000,

0.913, and 0.886 with p-value of permutation test was lower

than 0.001 (Fig. S4). Concentration differences between two

groups through box plot also showed the similar tendency

with preceded experiments (Fig. S5). Furthermore, the RF also
showed excellent classification results, which can be seen in

Fig. S6.

To measure the reproducibility of the PLs panel, we per-

formed DI-MRM-MS targeted lipidomics approach using 2016

white rice sample from both countries (10 vs 10, Table S4). RSD

of every target compounds were lower than 10% (Table S5). As

shown in Fig. S7, DI-MRM-based PLS-DA shows an excellent

performance (accuracy ¼ 1.000, R2 ¼ 0.940, Q2 ¼ 0.906, and p-

value< 0.001). The box plots show similar tendency in terms of

the lysoPLs' concentrations (Fig. S8). Likewise, the remarkable

classification using RF can be seen in Fig. S9. Collectively, the

validation experiments using newwhite rice samples revealed

the robustness of the nine PL discrimination markers.

3.2.7. The most efficient discrimination markers in the
current study
Collectively, the above results demonstrated the discrimina-

tion accuracy of selected PLs markers with high reliability in
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Fig. 4 e PLS-DA with cross validation and permutation test results of sugars & sugar alcohols, fatty acids, and

phospholipids.
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terms of the remarkable consistency, minor fluctuation, and

low error classification rate in cross-validation. Therefore, PL

discrimination marker signature, which include LysoPE(18:3),

LysoPE(18:2), LysoPE(16:0), LysoPE(18:1), LysoPC(14:0),

LysoPC(16:1), LysoPC(18:2), LysoPC(16:0), and LysoPG(16:0) can

be considered as the best discrimination markers for white

rice between Korea and China in this study. The biological

functions of PLs and the association between amylose and

starch lipids are briefly discussed in supportingmaterials. Our

study has several limitations that have to be mentioned. First,

there is no quantitative analysis to estimate the actual con-

centration of each component identified by GCeMS and

LCeMS experiments. Second, the current study focused on the

comparison of three identified groups of biomarkers regarding

their performances in geographical discrimination of non-

waxy commercial white rice. There is no investigation of

waxy rice. Further studies are required to examine those gaps

as well as extend our findings for the screening of adulterated

white rice.
4. Conclusion

Robust discrimination markers for the authentication of

white rice from different geographical origins are crucial. In

this study, potential markers were proposed and compared

using an untargeted metabolomics approach combined with

current state-of-the-art multivariate methods. Twenty me-

tabolites were initially found to be the potential markers

categorized into sugars & sugar alcohols, fatty acids, and

phospholipids. Further examinations suggested the remark-

able performance of phospholipids over fatty acids and

sugars & sugar alcohols as the discrimination markers. In

conclusion, our proposed phospholipid-based discrimination

panel may improve the reliability of the discrimination

analysis of white rice.
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