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Abstract: A large body of evidence shows the harmful effects of cigarette smoke to oral and systemic
health. More recently, a link between smoking and susceptibility to coronavirus disease 2019 (COVID-
19) was proposed. COVID-19 is due to infection with severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), which uses the receptor ACE2 and the protease TMPRSS2 for entry into host cells,
thereby infecting cells of the respiratory tract and the oral cavity. Here, we examined the effects
of cigarette smoke on the expression of SARS-CoV-2 receptors and infection in human gingival
epithelial cells (GECs). We found that cigarette smoke condensates (CSC) upregulated ACE2 and
TMPRSS2 expression in GECs, and that CSC activated aryl hydrocarbon receptor (AhR) signaling
in the oral cells. ACE2 was known to mediate SARS-CoV-2 internalization, and we demonstrate
that CSC treatment potentiated the internalization of SARS-CoV-2 pseudovirus in GECs in an AhR-
dependent manner. AhR depletion using small interference RNA decreased SARS-CoV-2 pseudovirus
internalization in CSC-treated GECs compared with control GECs. Our study reveals that cigarette
smoke upregulates SARS-CoV-2 receptor expression and infection in oral cells. Understanding the
mechanisms involved in SARS-CoV-2 infection in cells of the oral cavity may suggest therapeutic
interventions for preventing viral infection and transmission.
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1. Introduction

Smoking harms nearly every organ in the body, and remains the leading cause of
preventable disease, disability, and death in the United States [1,2]. Even though the current
smoking rates have been declining, in 2019 approximately 34.1 million Americans were cur-
rently smoking [3], especially in the Midwest and South of the United States. Tobacco smoke
contains a mixture of deadly substances, including more than 7000 chemicals, hundreds of
which are toxic and about 70 that are known cancer-causing agents [2]. Smoking has been
linked to several diseases, such as cardiovascular disease [4,5], cancer [6–8], diabetes [9],
and acute severe respiratory distress syndrome (ARDS) [10–12]. More recently, smoking
has been linked to the current pandemic of coronavirus disease 2019 (COVID-19) [13].

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified
in Wuhan (China) as the cause of a novel viral pneumonia [14]. Later, the World Health
Organization (WHO) announced that SARS-CoV-2 is the causative agent of COVID-19, and
in March 2020 the WHO declared COVID-19 a pandemic [15]. This pandemic has had an
unprecedented social and economic impact on the lives of billions of people worldwide,
having caused over 3.8 million deaths and more than 178 million cases worldwide as of
22 June 2021 [16].

As a first step in the pathogenesis process, SARS-CoV-2 uses the angiotensin-converting
enzyme 2 (ACE2) receptor for entry and the transmembrane serine protease 2 (TMPRSS2)
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for spike protein priming in host cells [17]. As a result of infection, patients have reported
symptoms varying from muscle pain, loss of the sense of smell and taste, shortness of
breath, to more severe manifestations such as ARDS, cardiovascular abnormalities includ-
ing cardiomyopathy, carditis, arrhythmia, and heart failure which are linked to the robust
cytokine storm in infected patients [18,19]. Long-term manifestations of the disease have
also been reported in recovered patients [20]. The prognosis of COVID-19 has been linked
to the health history and underlying conditions of infected individuals, among which
smoking has been proposed to render patients more likely to become infected and develop
more severe symptoms of the disease [13,21–24].

Studies have shown that the lung tissue of current smokers [13,22–24] and former
smokers (cessation less than 10 years) [25] presents higher levels of ACE2 compared with
non-smokers. One could speculate that the mouth is one of the primary entry sites for
the virus before it reaches the lower respiratory tract, as early symptoms of infections are
characterized, among others, by dry mouth, distortion of the perception of taste (dysgeusia)
or complete loss of taste (ageusia) [26]. So far, few studies have shown the presence of
SARS-CoV-2 receptors in the epithelial cells of the oral mucosa [27–29]. Other studies
have shown that SARS-COV-2 is found in the dental biofilm of COVID-19 patients [30],
and that SARS-CoV-2 can infect cells in the oral cavity and saliva [31]. However, there
are no studies showing the effects of cigarette smoke on SARS-CoV-2 infection in the oral
cavity. Therefore, we hypothesized that cigarette smoke could increase the expression
of SARS-CoV-2 receptors, which would favor SARS-CoV-2 infection in human gingival
epithelial cells.

2. Results
2.1. Cigarette Smoke Condensates Enhance ACE2 and TMPRSS2 Expression in Gingival
Epithelial Cells

We initially examined whether receptors for SARS-CoV-2 infection are expressed
in human oral cells. We thus performed Western blots of untreated human gingival
epithelial cells (GECs) and observed expression of ACE2 and TMPRSS2 at the protein level
(Figure 1A). We then examined whether treatment with cigarette smoke condensates (CSC)
at different concentrations [32] could modulate the expression of these proteins. After 24 h
of CSC treatment, we observed that the CSC concentration of 1 µg/mL induced a 2-fold
increase of ACE2 expression, and that 10 µg/mL or 100 µg/mL led to approximately a
2.5-fold increase, compared with untreated cells (Figure 1B,C). On the other hand, CSC had
a less prominent, but still significant, effect on TMPRSS2 expression after CSC treatment
at 1 µg/mL. To investigate whether the concentrations of CSC used in this study were
cytotoxic, we quantified LDH release by GECs after 24 h of CSC treatment. Cell death was
not detectable in our experiments after CSC treatment (Figure S1). These results confirm
that GECs express SARS-CoV-2 receptors, which are upregulated after CSC treatment.

2.2. Activation of the Arzyl Hydrocarbon Receptor Upregulates ACE2 Expression in Gingival
Epithelial Cells

Molecules from cigarette smoke can stimulate the aryl hydrocarbon receptor (AhR).
AhR is an ubiquitously-expressed transcription factor that is activated by a variety of
agonists, including molecules found in cigarette smoke [33]. A xenobiont, 2,3,7,8-tetrachlo
rodibenzo-p-dioxin (TCDD), is the best known AhR ligand [33,34]. AhR activation by
TCDD can lead to pathological effects, while AhR activation by other ligands, such as
bacterial products, can be protective [33].

We hypothesized that AhR could be involved in recognition of CSC by GECs, and that
activation of this receptor could lead to an increase in ACE2 and TMPRSS2 expression upon
CSC treatment. We therefore examined the expression of ACE2 and TMPRSS2 by Western
blot in GECs treated with TCDD or CSC for 24 h. We observed that TCDD treatment
increased ACE2 expression in GECs to levels similar to those obtained by treatment with
CSC at 1 µg/mL (Figure 2A,B). We also showed that the treatment with CSC at 10 µg/mL
induced even higher levels of ACE2 (Figure 2A,B). However, even though TMPRSS2
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expression levels increased after treatment with CSC 1 µg/mL, treatment with neither
TCDD nor CSC at 10 µg/mL significantly increased the expression of the protease. These
data suggest that AhR activation is involved in the increase of ACE2, but not TMPRSS2,
in GECs.
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Figure 1. Cigarette smoke condensate treatment increases angiotensin-converting enzyme 2 
(ACE2) and transmembrane serine protease 2 (TMPRSS2) levels in human gingival epithelial cells. 
Human gingival epithelial cells (GECs) were treated with or without cigarette smoke condensates 
(CSC) at different concentrations for 24 h, and expression of ACE2 and TMPRSS2 were determined 
by Western blot. (A) shows a representative Western blot image for ACE2 and TMPRSS2 in un-
treated GECs. (B) shows representative Western blot images for ACE2 and (D) TMPRSS2 after 
treatment with CSC at different concentrations for 24 h. (C,E) Graphs show average ± SEM of band 
intensity (arbitrary units) for ACE2 (C) and TMPRSS2 (E). (A) n = 3, (B,C) n = 7, (D,E) n = 6. * p ≤ 
0.05; **p ≤ 0.01. 
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Figure 1. Cigarette smoke condensate treatment increases angiotensin-converting enzyme 2 (ACE2) and transmembrane
serine protease 2 (TMPRSS2) levels in human gingival epithelial cells. Human gingival epithelial cells (GECs) were treated
with or without cigarette smoke condensates (CSC) at different concentrations for 24 h, and expression of ACE2 and
TMPRSS2 were determined by Western blot. (A) shows a representative Western blot image for ACE2 and TMPRSS2 in
untreated GECs. (B) shows representative Western blot images for ACE2 and (D) TMPRSS2 after treatment with CSC at
different concentrations for 24 h. (C,E) Graphs show average ± SEM of band intensity (arbitrary units) for ACE2 (C) and
TMPRSS2 (E). (A) n = 3, (B,C) n = 7, (D,E) n = 6. * p ≤ 0.05; ** p ≤ 0.01.
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p ≤ 0.01; *** p ≤ 0.001. 
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Next, we examined whether AhR is expressed in GECs in order to determine whether 
AhR intracellular signaling could be involved in GEC recognition of CSC. AhR is widely 
expressed in the human body and in particular in the immune system [34], but its expres-
sion in GECs needed to be confirmed. We therefore demonstrated by Western blot that 
AhR is expressed in unstimulated GECs (Figure 3A). 

AhR is a cytoplasmic receptor that translocates to the nucleus upon activation [33–
35]. Thus, we evaluated whether AhR would be activated by CSC treatment, using TCDD 
as a positive control. We therefore treated GECs for 1 h with or without TCDD (10 nM) or 
CSC (1 or 10 μg/mL) and visualized AhR translocation to the nucleus by immunofluores-
cence. We observed that TCDD induced AhR nuclear translocation, and that treatment 
with CSC at 1 or 10 μg/mL could also induce nuclear translocation of AhR (Figure 3B). 
Quantification of the images in Figure 3B showed the percentage of AhR nuclear translo-
cation compared with the control group (Figure 3C). Our results thus confirm a previous 
study that oral keratinocytes express functional AhR [36], and reveal that AhR is activated 
by CSC treatment. 

  

Figure 2. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment increases angiotensin-converting enzyme 2 (ACE2) levels,
but not transmembrane serine protease 2 (TMPRSS2), in human gingival epithelial cells. GECs were treated with or without
cigarette smoke condensates (CSC) at different concentrations as indicated, or with TCDD (10 nM), for 24 h. Expression of
ACE2 and TMPRSS2 were determined by Western blot. (A) shows representative Western blots for ACE2 and TMPRSS2 in
GECs after treatment with or without CSC or TCDD. (B,C) Graphs show average ± SEM of band intensity (arbitrary units)
for ACE2 (B) and TMPRSS2 (C). Data shown are representative of at least 3 independent experiments. * p ≤ 0.05; ** p ≤ 0.01;
*** p ≤ 0.001.
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2.3. AhR Is Expressed and Activated in Gingival Epithelial Cells by Cigarette Smoke
Condensate Treatment

Next, we examined whether AhR is expressed in GECs in order to determine whether
AhR intracellular signaling could be involved in GEC recognition of CSC. AhR is widely
expressed in the human body and in particular in the immune system [34], but its expression
in GECs needed to be confirmed. We therefore demonstrated by Western blot that AhR is
expressed in unstimulated GECs (Figure 3A).
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Figure 3. Aryl hydrocarbon receptor (AhR) is activated by treatment with cigarette smoke condensate in gingival epithelial
cells. Human gingival epithelial cells (GECs) were treated with or without cigarette smoke condensates (CSC) at different
concentrations as indicated, or with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 10 nM), for 24 h. AhR expression and
activation was determined by Western blot and immunofluorescence microscopy, respectively. (A) shows a representative
Western blot for AhR in unstimulated GECs. (B) shows representative images of immunofluorescence for AhR. (C) Graph
shows average percentage ± SEM of AhR translocation to the nucleus by measuring the intensity of fluorescence using
Image J. (A–C) n = 3. * p ≤ 0.05.

AhR is a cytoplasmic receptor that translocates to the nucleus upon activation [33–35].
Thus, we evaluated whether AhR would be activated by CSC treatment, using TCDD as a
positive control. We therefore treated GECs for 1 h with or without TCDD (10 nM) or CSC
(1 or 10 µg/mL) and visualized AhR translocation to the nucleus by immunofluorescence.
We observed that TCDD induced AhR nuclear translocation, and that treatment with CSC
at 1 or 10 µg/mL could also induce nuclear translocation of AhR (Figure 3B). Quantifi-
cation of the images in Figure 3B showed the percentage of AhR nuclear translocation
compared with the control group (Figure 3C). Our results thus confirm a previous study
that oral keratinocytes express functional AhR [36], and reveal that AhR is activated by
CSC treatment.

2.4. Cigarette Smoke Condensates Enhance SARS-CoV-2 Pseudovirus Internalization in Gingival
Epithelial Cells

A recent study has shown that SARS-CoV-2 can infect cells in the human oral cavity
and saliva [31]. Given that ACE2 mediates SARS-COV-2 infection and that ACE2 expression
was significantly increased in GECs after treatment with TCDD or CSC, we hypothesized
that the treatment with these compounds might favor SARS-CoV-2 infection in GECs. Thus,
we pretreated GECs with or without TCDD (10 nM) or CSC (1 or 10 µg/mL) for 24 h before
infecting the cells with SARS-CoV-2 GFP-tagged pseudovirus for an additional 24 h. We
then measured viral infection by immunofluorescence microscopy. We confirmed that
SARS-CoV-2 pseudovirus could infect human GECs, whether or not the cells had been
pretreated (Figure 4A). GECs pretreated with TCDD or CSC at 1 µg/mL did not show a
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change in SARS-CoV-2 pseudovirus internalization compared with infection of untreated
GECs (Figure 4A). However, GECs pretreated with CSC at 10 µg/mL showed a significant
increase in SARS-CoV-2 pseudovirus infection compared with infection of untreated control
GECs (Figure 4A). Quantification of SARS-CoV-2 pseudovirus internalization levels is
shown in Figure 4B. Thus, our data suggest that CSC treatment increases the levels of ACE2
in GECs, which enhances SARS-CoV-2 pseudovirus internalization.
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Figure 4. Pretreatment with cigarette smoke condensates increases severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) pseudovirus infection in gingival epithelial cells. Human gingival epithelial cells (GECs) were treated with or
without cigarette smoke condensates at different concentrations as indicated, or with 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD, 10 nM), for 24 h, prior to infection with SARS-CoV-2 pseudotyped GFP-tagged lentivirus for an additional 24 h.
SARS-CoV-2 pseudovirus infection was visualized by immunofluorescence microscopy. (A) shows representative images
of immunofluorescence for GFP-tagged SARS-CoV-2 pseudovirus. (B) Graph shows average percentage ± SEM of GFP
fluorescence intensity, measured using Image J. (A,B) n = 3. * p ≤ 0.05; *** p ≤ 0.001. Diameter bar = 100 µm.

2.5. Cigarette Smoke Condensates Promote SARS-CoV-2 Pseudovirus Internalization via AhR
Activation in Gingival Epithelial Cells

Since CSC induces AhR activation in GECs (Figure 3) and AhR activation increases
ACE2 expression in these cells (Figure 2), we tested whether CSC potentiated SARS-CoV-
2 pseudovirus infection in GECs via AhR activation. We used siRNA to deplete AhR
in GECs before treating the cells with TCDD or CSC, and then infecting the cells with
SARS-CoV-2 pseudovirus. We could successfully deplete AhR expression in GECs after the
siRNA treatment, as shown by Western blot (Supplementary Figure S2, Figure 2). Using
cells that were transfected with siRNA control, we observed high levels of SARS-CoV-2
pseudovirus internalization after CSC treatment (Figure 5A). GECs transfected with siRNA
against AhR and treated with CSC showed lower levels of SARS-CoV-2 pseudovirus
internalization, compared with GECs transfected with siRNA control and treated with
CSC. Figure 5B shows the quantification of the infection observed in Figure 5A. Taken
together, the data show that CSC treatment activated AhR signaling in GECs, and thereby
increased expression of the SARS-CoV-2 receptor ACE2. Increased levels of ACE2 favored
SARS-CoV-2 pseudovirus infection in an AhR-signaling dependent manner (Figure 6).
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Figure 5. Treatment with cigarette smoke condensates increases severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) pseudovirus infection in gingival epithelial cells via aryl hydrocarbon receptor (AhR) signaling. Human gingival
epithelial cells (GECs) were transfected with siRNA sequences against AhR or an unrelated target, and treated with
or without cigarette smoke condensate (10 µg/mL) for 24 h, prior to infection with SARS-CoV-2 pseudotyped GFP-
tagged lentivirus for an additional 24 h. SARS-CoV-2 pseudotyped GFP-tagged lentivirus infection was visualized by
immunofluorescence microscopy. (A) shows representative images of immunofluorescence for GFP-tagged SARS-CoV-
2 pseudovirus. (B) Graph shows average percentage ± SEM of GFP fluorescence intensity, measured using Image J.
(A,B) n = 3. * p ≤ 0.05; ** p ≤ 0.01; Diameter bar = 100 µm.
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Figure 6. Proposed scheme for the mechanism involved in cigarette smoke-induced enhancement of severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) infection in human gingival epithelial cells. Cigarette smoke activates aryl
hydrocarbon receptor (AhR) in human gingival epithelial cells, which increases the surface levels of angiotensin-converting
enzyme 2 (ACE2). Increased expression of ACE2 facilitates SARS-CoV-2 infection of the oral epithelial cells.
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3. Discussion

Cigarette smoke is harmful [1] for oral [2,8,37] and systemic health [2,5,38,39] in
humans. A systematic review and meta-analysis of 16 articles describing 11,322 COVID-19
patients showed a link between history of smoking and severe cases of COVID-19 [13].
This meta-analysis study showed that active smokers were twice as likely to develop severe
COVID-19, compared with non-smokers [13]. Cigarette smoke can impact human immune
responses and is linked to several clinical conditions, which could contribute to a higher
susceptibility to COVID-19 [40–42]. The current study suggests a mechanism whereby
cigarette smoke may increase the risk of SARS-CoV-2 infection in GECs (Figure 6). Our
data suggest that smokers could present AhR-dependent upregulation of ACE2 in the oral
cavity, which could increase susceptibility to SARS-CoV-2 infection, and therefore increase
the risk of contracting severe symptoms of COVID-19.

Our data (Figure S1) confirms a previous study which demonstrated that CSC at
250 µg/mL is not cytotoxic for GECs [32]. In fact, CSC at 250 µg/mL is equivalent to
6 µg/mL of nicotine [32,43]. Because the concentration of nicotine in the saliva of smokers
ranges from 0.9 to 4.6 µg/mL [43,44], we considered concentrations of CSC lower than
250 µg/mL to be physiologically relevant. Therefore, in our study, the physiologically-
relevant concentration of CSC (e.g., 10 µg/mL) upregulated ACE2 and stimulated SARS-
CoV-2 internalization in GECs.

Consistent with our observation that CSC increases ACE2 expression in human oral
epithelial cells, other studies have shown that cigarette smoke increases ACE2 expression in
lung tissues [22–24]. In fact, a recent study showed that ACE2 expression was significantly
increased in bronchial epithelial cells in current smokers and former smokers, and was
significantly correlated with pack-years of smoking [25]. A meta-analysis showed that
the ACE2 and TMPRSS2 genes are widely expressed in human tissues where they are
induced under pro-inflammatory conditions [45]. Interestingly, another study showed
that particulate matter upregulates ACE2 expression and exacerbates susceptibility to
SARS-CoV-2 infection in lung tissue of humanized ACE2 mice [46]. Given that ACE2
mediates SARS-CoV-2 infection in host cells, we also demonstrated that CSC enhances
SARS-CoV-2 pseudovirus infection in GECs. The effects of CSC on ACE2 expression in
oral cells suggests the possibility of therapeutic intervention, since ACE2 antibodies or
soluble recombinant ACE2 can attenuate viral entry and infection by SARS-CoV-2 in other
cells [17,47].

Our data are also consistent with a recent study showing that kynurenine (a commonly-
used endogenous ligand) activates AhR, which binds to the promoter of the ACE2 gene
and upregulates ACE2 expression in the BEAS-2B lung cell line, as well as in lung tissue
of mice and macaques [48]. The same study also showed that macaques infected with
SARS-CoV-2 and treated with AhR inhibitor presented decreased ACE2 expression, and
ameliorated pathological damage, compared with the infected but untreated group [48].

Our results show that CSC modulates ACE2 expression and thus, increases SARS-CoV-
2 infection via activation of AhR. Although TMPRSS2 expression increased after exposure
to CSC in GECs, we did not observe a change in the expression of the protease after AhR
activation using TCDD. This suggests that TMPRSS2 may be regulated via a different
pathway than for ACE2. In this context, it has been reported that smoking increased
androgen levels [49], and it has been proposed that TMPRSS2 expression is modulated by
the androgen pathway [50,51]. We therefore speculate that TMPRSS2 expression in GECs
may be partially regulated through AhR-independent pathways.

Several risk factors for severe symptoms of COVID-19 have been identified, including
old age, male sex, underlying comorbidities such as hypertension, diabetes, obesity, chronic
lung diseases, heart, liver, and kidney diseases, cancer, and immunodeficiencies [52].
Interestingly, smoking has been linked to several of these comorbidities, such as hyperten-
sion [4], cancer [6,7], and diabetes [9]. Future epidemiological and clinical studies should
also investigate whether cigarette smoke could contribute to COVID-19 susceptibility and
severity by affecting comorbidities shared with COVID-19.
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Unfortunately, smoking is a very difficult addiction to break, even for those who want
to quit [53]. Quitting smoking is beneficial to the overall health at any age, and cigarette
smokers who quit before age 35 have mortality rates that are similar to those who never
smoked [54,55]. Since 2002, the number of people who quit smoking has been increasing,
and studies suggest that mass media campaigns, increases in the price of tobacco products,
and smoke-free policies contribute to this trend [55]. In the present study, we show how
cigarette smoke could increase sensitivity to SARS-CoV-2 infection in oral cells. Thus,
besides all the beneficial effects on people’s health, we suggest that smoking cessation
could be advantageous for reducing the susceptibility of coronavirus infection of the
oral cavity.

Other studies have shown that oral cells might serve as a route of coronavirus infection
or transmission from the oral cavity to the lower respiratory tract [27,28,31]. Since SARS-
CoV-2 could also be transmitted to other individuals through activities involving the
oral cavity such as speaking, breathing, coughing, sneezing and even singing [56,57], the
infection of oral cells could be a source or route for extra-oral transmission or coronavirus to
other individuals. Thus, understanding the mechanisms involved in SARS-CoV- 2 infection
in cells of the oral cavity may suggest strategies for inhibiting both infection in the host
and transmission to other individuals. Epidemiologic and clinical studies are needed to
confirm our hypothesis that smoking increases SARS-CoV-2 infection susceptibility in the
oral cavity, and that AhR signaling could be a potential target for treatment and prevention
of coronavirus infection and transmission.

4. Materials and Methods
4.1. Human Gingival Epithelial Cells and Cell Culture

Immortalized human oral gingival keratinocytes, IHGK (HPV-16GM), were purchased
from Applied Biological Materials (ABM, cat# T0717, Richmond, CA, USA), and maintained
as we previously described [58]. Briefly, gingival epithelial cells (GECs) were cultured and
maintained in Keratinocyte serum-free medium (KSFM, Gibco, Gaithersburg, MO, USA)
suplemented with 30 µg/mL of bovine pituitary extract (Gibco), 0.2 ng/mL of human
recombinant epidermal growth factor (Gibco), 100 U/mL of penicillin and 100 µg/mL
of streptomycin (Gibco). All cells were maintained at 37 ◦C in a humidified incubator
containing 5% CO2. Cell counts were performed using Trypan Blue (Sigma-Aldrich, MO,
USA) exclusion for seeding only viable cells for the experiments.

4.2. Reagents

Cigarette smoke condensates (CSC) were obtained from Murty Pharmaceuticals, Inc.
(Lexington, KY, USA). Tetrachlorodibenzo-p-dioxin solution (TCDD, cat #48599), complete
protease inhibitor cocktail (cat# 11836145001) were from Millipore Sigma (St. Loius, MO,
USA). 5X RIPA Lysis buffer was from (Milipore, Temecula, CA, USA). Lactate dehydroge-
nase (LDH) detection assay kit (cat# C20300) was from Thermofisher (Waltham, MA, USA).
Human ACE2 policlonal antibody (cat# AF933) was from R&D Systems (Minneapolis, MN,
USA). TMPRSS2 (cat# sc-515727), AhR (cat# sc-133088), m-IgGk Bp-PE (cat# sc-516141)
were from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Secondary antibodies goat
anti-mouse (cat# ab9700) and rabbit anti-goat (cat# ab97023) were from Abcam (Cambridge,
MA, USA). OPTIMEM was from Gibco (USA).

4.3. SARS-CoV-2 Spike Protein Pseudotyped GFP Lentivirus

SARS-CoV-2 Spike protein pseudotyped GFP lentivirus expressing SARS-CoV-2 Spike
protein (SARS-CoV-2 pseudovirus) was obtained from Creative Biogene (CoV-001, Shirley,
NY, USA). The SARS-CoV-2 pseudovirus is GFP-tagged and was used for imaging analysis.

For quantification of the SARS-CoV-2 pseudovirus internalization, GECs (1 × 104

cells/well) were seeded on 18 mm coveslips in 24-well plates with OPTIMEM and were in-
cubated overnight. On day 1, cells were treated with or without CSC at a final concentration
of 1 or 10 µg/mL, or with TCDD at 10 nM in OPTIMEM for 24 h. On day 2, SARS-CoV-2
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pseudovirus was added to achieve the multiplicity of infection (MOI) of 20. On day 3, cells
were washed twice with warm and sterile PBS, and mounted on slides using Vectashield®

Hardset™ Antifade Mounting Medium with DAPI (Vector Laboratories, Burlingame, CA,
USA). Images were acquired using a Nikon Eclipse 50i fluorescence microscope with an
Infinity 3 camera and Lumenera Infinity Analyze 6.3 software. ImageJ was used to quantify
internalization of SARS-CoV-2 pseudovirus by measuring GFP intensity of fluorescence

4.4. Transient RNA Depletion Using siRNA

Expression of AhR in GECs was repressed using Silencer® Select siRNA (cat#4390824,
siRNA ID s1199) from Ambion by Life Technologies. A negative control transfection was
performed using Silencer® Select Negative Control #1 siRNA (cat# 4390843). Briefly, cells
were treated with 50 nM [59] of the appropriate Silencer® Select siRNA using lipofectamine
2000 (Invitrogen, Carlsbad, CA, USA) in OPTIMEM, following manufacturer’s instructions.
After 24 h of siRNA transfection, knockdown efficiency and specificity was confirmed by
Western blot (Figure S2), as described in the Western blot section.

For experiments using AhR transient knockdown GECs to examine SARS-CoV-2
pseudovirus infection, GECs were seeded on coverslips in 24-well plates, before being
transfected for 24 h, as described above. After AhR depletion, GECs were infected with
SARS-CoV-2 pseudovirus at an MOI of 20 for additional 24 h. Infection was detected and
quantified as described in the section above.

4.5. Werstern Blot Analysis

For the Western blot experiments, 2 × 105 GECs were seeded on 6-well plates (Corning)
and incubated at 37 ◦C, 5% CO2 for 24 h to achieve around 75–80% of confluence. On day
1, cells were treated or not with CSC at different concentrations, or with TCDD for 24 h, as
indicated in the experiments. Cellular extracts were collected in lysis buffer supplemented
with complete protease inhibitor cocktail. Lysates were collected for Western blot analysis
to measure ACE2 (100 kDa), TMPRSS2 (70 kDa) or AhR (122 kDa) expression levels.

Cell lysates were collected as previously described [58]. Briefly, cell lysates were col-
lected in ice chilled lysis buffer supplemented with 1% protease inhibitor cocktail. Protein
concentration was measured using BCA assay (Thermofisher) according to manufacturer’s
instructions. Then, 20 µg of proteins in reducing sample buffer (Thermofisher) were de-
natured at 96 ◦C for 5 min and electropheretically resolved on 12% SDS-PAGE. Separated
proteins were transfered to a polyvinylidene difluoride membrane (PVDF membranes,
EMD Millipore, Darmstadt, Germany) via a wet electroblotting system (Bio-Rad, Hercules,
CA, USA). The membranes were blocked with 5% skim milk in Tween-20 TBS buffer (TBST)
and then probed with respective antibodies: Polyclonal ACE2 antibody (1:2000) with
secondary antibody Goat anti-rabbit (1:60,000) (Abcam). Monoclonal TMPRSS2 antibody
(1:1000) (Santa Cruz Biotechnology) with Secondary antibody Goat anti-mouse (1:15,000)
(Milipore). Monoclonal AhR (1:2000) with Secondary antibody Goat anti-mouse (1:15,000)
(Milipore). All primary antibodies probing was incubated overnight while secondary
antibody incubation was done at room temperature for 1h. Membranes were washed
3 times for 5 min after each antibody incubation and visualised using immobulin Forte
western HRP substrate (Millipore) and Chemidoc imaging system’s image lab software
Version 6.0.1 build 34 (Bio-Rad). Images were quantified by ImageJ analysis by measuring
band intensities. Data was normalized to control values.

4.6. AhR Immunofluorescence

GECs (1 × 104) were seeded on 18 mm coverslips in 24-well plate (Corning) to achieve
around 80% of confluence, followed by treatment with or without CSC at 1 or 10 µg/mL,
or the AhR agonist TCDD at 10 nM. Cells were incubated for 1 h at 37 ◦C, 5% CO2, and
then washed and fixed with cold methanol at room temperature 10 min. After 3 washes
with PBS, overnight incubation for permeabilization and blocking was performed with a
solution of 0.2% Triton X-100 (Sigma-Aldrich) in 5% Goat Serum (Sigma-Aldrich) and 1X
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PBS (Gibco). Subsequently, cells were probed with mouse monoclonal antibody, anti-AhR
at a concentration of 1:50 prepared in 0.05% Triton X-100 in 5% Goat Serum/PBS with
overnight incubation at 4 ◦C, in agitation. After 3 washes with PBS, Goat anti-mouse m-
IgGk Bp-PE prepared in 0.05% Triton X-100/5% goat Serum/ PBS at 1:200 was added to
the wells and incubated at room temperature for 2 h, protected from light. Cells were
washed three times, counterstained, and mounted on a slide using Vectashield® Hardset™
Antifade Mounting Medium with DAPI. Images were acquired using a Nikon Eclipse 50i
fluorescence microscope with an Infinity 3 camera and the Lumenera Infinity Analyze
6.3 software. AhR nuclear translocation was quantified using Image J software, following
the protocol by Wessel and Hanson [60]. Data was normalized to control values.

4.7. Lactate Dehydrogenase Detection Assay

To measure cell viability, LDH levels were measured spectrophotometrically using
CyQUANT LDH Cytotoxicity Assay kit (Thermofisher, Waltham, MA, USA). GECs were
seeded overnight on a 24-well plate (Corning), followed by treatments with or without
CSC at different concentrations (1, 10, 100, 250 µg/mL) for 24 h. Lysis buffer or water was
added during the last 40 min, and served as internal controls. After sample collection,
supernatants were transfered to clear flat-bottom 96-well plates (Corning), followed by
LDH substrate addition and incubation for 30 min at room temperature, profected from
light. Prior to measuring absorbance, the reaction was quenched using the Stop Solution
from the kit. Absorbance values were recorded at 490 nm and 680 nm using the Versamax
Tunable Microplate Reader (Molecular Devices, Ramsey, MN, USA). Cells treated with lysis
buffer were used as positive control and defined as 100% of cell death, cells treated with
water were used to provide spontaneous cell death, and cells with no treatment were used
as negative controls in the experiments. In order to obtain the percentage of cytotoxicity,
we subtracted the readings at 680 nm from the readings at 490 nm, and values were then
submitted to the following equation provided by the manufacturer:

%Cytotoxicity = (Compound-treated LDH activity − Spontaneous LDH activity) × 100
(Maximum LDH activity − Spontaneous LDH activity)

4.8. Statistical Analysis

Western blots and fluorescence microscopy data were quantitatively analyzed using
ImageJ software. Statistics comparing two groups were carried out using one-tailed t-test
performed using Graph Pad Prism v.5 software. Statistical differences were shown as
asterisks, where: *** p < 0.001, ** p < 0.01, * p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22147669/s1, Figure S1: Treatment with cigarette smoke condensates for 24 h does not
induce cell death of human gingival epithelial cells., Figure S2: Small interference RNA against AhR
decreases expression in human gingival epithelial cells (GECs).
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