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Coronavirus disease 2019 (COVID-19) is a systemic disease associated with injury
(thinning) of the endothelial glycocalyx (eGC), a protective layer on the vascular
endothelium. The aim of this translational study was to investigate the role of the eGC-
degrading enzyme heparanase (HPSE), which is known to play a central role in the
destruction of the eGC in bacterial sepsis. Excess activity of HPSE in plasma from COVID-
19 patients correlated with several markers of eGC damage and perfused boundary
region (PBR, an inverse estimate of glycocalyx dimensions of vessels with a diameter 4-25
µm). In a series of translational experiments, we demonstrate that the changes in eGC
thickness of cultured cells exposed to COVID-19 serum correlated closely with HPSE
activity in concordant plasma samples (R = 0.82, P = 0.003). Inhibition of HPSE by a
nonanticoagulant heparin fragment prevented eGC injury in response to COVID-19
serum, as shown by atomic force microscopy and immunofluorescence imaging. Our
results suggest that the protective effect of heparin in COVID-19 may be due to an eGC-
protective off-target effect.

Keywords: COVID-19, heparin, heparanase (HPSE), videomicroscopy, endothelial glycocalyx (EG)
INTRODUCTION

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and
endothelial injury (1–3). Using novel, quantitative sublingual video microscopy, we were able to
show that severe damage (thinning) of the endothelial glycocalyx (eGC) predicted 60-day in-
hospital mortality in our cohort of COVID-19 patients (4).

The endothelial glycocalyx (eGC) is a delicate gel-like layer coating the luminal surface of the
vascular endothelium (5, 6). It is up to 3 µm thick, largely consists of highly sulfated
glycosaminoglycans and proteoglycans, and it plays a pivotal role in the maintenance of
org June 2022 | Volume 13 | Article 9165121
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microcirculatory homeostasis (7, 8). Specifically, the eGC acts as
a negatively charged “firewall” to reduce leukocyte-endothelial-
interactions (9). Its carbohydrate-rich matrix provides resistance
to water permeability and contributes to the proportion of
albumin molecules “reflected” back into plasma by the vessel
wall (10, 11). Beyond that, the glycocalyx contributes to the
regulation of the redox state and is crucially involved in the
mediation of shear-induced nitric oxide release as well as
physiologic anticoagulation (8, 12, 13).

At least in bacterial sepsis, the final common pathway of eGC
damage appears to be remarkably consistent: the activation and
release of the heparan sulfate (HS)-degrading enzyme heparanase
(HPSE) (14, 15). Besides cleaving HS from the cell surface, HPSE
also enhances shedding of transmembrane HS proteoglycan
syndecan-1 (Syn-1) by upregulating the expression of matrix
metalloproteinase 9 (MMP9), which is a syndecan sheddase.
Therefore, HPSE (in)directly contributes to increased HS and
Syn-1 plasma levels, which are both markers of endothelial
glycocalyx degradation. The aim of this translational proof-of-
concept study was to investigate the role of HPSE in COVID-19-
induced eGC damage.

METHODS

Study Design and Study Population
Sublingual video microscopy and blood sampling were
performed in 16 adult PCR-confirmed COVID-19 patients,
prospectively enrolled from May to June 2020 at the intensive
care units (ICU) of the University Hospital Münster and three
Frontiers in Immunology | www.frontiersin.org 2
local teaching hospitals in a non-consecutive manner. Plasma
samples were obtained, centrifuged, and stored at -80°C until
analysis. Twelve apparently healthy, age-matched volunteers
served as controls (Table 1). Some of the participants were
already included in a previous study (4). The study was
performed in accordance with the Declaration of Helsinki and
approved by the Ethics Committee of the General Medical
Council Westfalen-Lippe and the WWU Münster, Germany
(file number: amendment to 2016-073-f-S). Written informed
consent to participate has been obtained from all individuals.

In Vivo Assessment of Sublingual
Glycocalyx Dimensions
Real-time intravital microscopy was performed at the bedside
with a sidestream dark field (SDF) camera (CapiScope HVCS,
KK Technology, Honiton, UK) to visualize the sublingual
microvasculature (microvessel diameter 4–25 µm) as reported
previously in detail (16, 17). In brief, the SDF camera uses green
light emitting stroboscopic diodes (540nm) to detect the
hemoglobin of passing red blood cells (RBCs). Image
acquisition and analysis was performed by GlycoCheck™

Software (Microvascular Health Solutions Inc., Salt Lake City,
UT, USA). It detects the dynamic lateral RBC movement into the
glycocalyx, which is expressed as the perfused boundary region
(PBR, in µm). An altered or degraded glycocalyx allows more
RBCs to penetrate deeply toward the endothelial surface, with a
consequent increase in the PBR. In every patient, we performed
two complete measurements which were averaged to account for
spatial heterogeneity of the sublingual microvasculature.
TABLE 1 | Baseline characteristics.

Variable Healthy Controls [in vitro subgroup] COVID-19 ICU [in vitro subgroup] P value* [subgroup]

Number of participants (n) 12 [5] 16 [6] - [-]
Female sex (n; %) 6 (50) [3 (60)] 1 (6.3) [1 (17)] 0.008 [0.14]
Age (years, median (IQR)) 53 (45-60) [57 (53-70)] 62 (56-72) [59 (55-67)] 0.06 [0.89]
BMI (kg/m2, median (IQR)) 25 (23-29) [25 (24-33)] 27 (24-32) [28 (27-33)] 0.39 [0.43]
SOFA score (pts, median (IQR)) - - 9.5 (5.3-15.8) [9.5 (4.5-15.75)] - [-]
LWMH/Heparin (n; %) - - 11 (68.75) [4 (66)] - [-]
Invasive mechanical ventilation (n; %) - - 14 (87.5) [6 (100)] - [-]
In-hospital mortality (n; %) - - 6 (37.5) [4 (67)] - [-]
Sublingual microscopy (median (IQR))
PBR4-25 (µm) 2.18 (2.1-2.23) [2.11 (2.06-2.21)] 2.39 (2.13-2.52) [2.44 (2.25-2.58)] 0.016 [0.028]

Endothelial glycocalyx markers (median (IQR))
Heparanase activity (AU) 0.92 (0.68-1.23) [0.99 (0.78-1.72)] 2.26 (1.67-2.97) [2.58 (2.05-3.77)] <0.0001 [0.015]
Heparan sulfate (AU) 11.6 (2.2-80.0) [28.4 (11.01-157.6)] 154.5 (85.3-408.8) [127.4 (62.2-258.5)] 0.0004 [0.33]
Syndecan-1 (ng/ml) 18.2 (15.1-24.91) [19.01 (15.38-52.9)] 219.8 (161.2-249.7) [248.9 (244.5-256.2)] <0.0001 [0.004]
Hyaluronic acid (ng/ml) 78.74 (75.48-85.63) [75.95 (73.08-81.91)] 240.6 (173.7-541.9) [213.5 (165.6-346.0)] <0.0001 [0.004]

Laboratory values (median (IQR))
CRP (mg/dl) <0.5 [<0.5] 14.2 (11.0-22.3) [11.1 (6.6-17.6)] <0.0001 [0.008]
IL-6 (pg/ml) <2 [<2] 79.5 (52.3-200.8) [80 (49.0-107.0)] <0.0001 [0.004]
PCT (ng/ml) <0.5 [<0.5] 1.27 (0.47-5.05) [1.7 (0.17-8.81)] 0.031 [0.68]
Angpt-2 (ng/ml) 1.04 (0.54-2.07) [1.74 (0.74-2.13)] 6.44 (4.48-6.62) [6.44 (4.83-6.44)] <0.0001 [0.004]
aPTT (s) 36 (34.5-37) [37 (34-37.5)] 42.5 (39.25-56.5) [46.5 (40.5-61.5)] <0.0001 [0.004]
D-Dimers (mg/l) <0.5 [<0.5] 4.02 (2.44-8.64) [6.7 (2.51-11.71)] <0.0001 [0.069]
June 2022 | Volum
Differences between groups were calculated by Mann-Whitney U test or Chi-square test, as appropriate.
*p value between healthy controls and COVID-19 ICU.
COVID-19, Coronavirus disease 2019; BMI, Body mass index; SOFA score, Sequential Organ Failure Assessment score; LMWH, low molecular weight heparin; IQR, interquartile range;
PBR, Perfused boundary region; MVHS, Microvascular Health Score; AU, arbitrary unit; CRP, C-reactive protein; IL-6, Interleukin-6; PCT, Procalcitonin; Angpt-2, Angiopoietin-2; aPTT,
activated partial thromboplastin time.
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HPSE Activity and HS Competition Assay
The activity of HPSE in EDTA plasma was determined by a
heparanase activity assay (Amsbio, Abingdon, UK, Cat# Ra001-
02-K) according to the manufacturer’s instructions but using an
in-house developed HPSE buffer (18). The dose dependent
inhibition of HPSE with HS isolated from bovine kidney was
assessed with an in-house developed HPSE activity assay [11].
HS in EDTA plasma samples was quantified by a previously
described HS competition assay. Importantly, this assay is
specific to HS, therefore the measurement is not affected by the
presence of heparin (18).

Quantification of eGC Components
and Angiopoietin-2
Plasma levels of Syndecan-1 (Syn-1; Diaclone, Besançon, France,
Cat# 950.640.096), hyaluronic acid (HA; Echelon Biosciences
Inc., Salt Lake City, UT, USA, Cat# K-1200-) and Angiopoietin-2
(Angpt-2; R&D Systems, Oxford, United Kingdom, Cat#
DANG20) were measured using commercially available
enzyme-linked immunosorbent assay (ELISA) kits as described
previously (17, 19).

Atomic Force Microscopy and Confocal
Immunofluorescence Microscopy
Atomic force microscopy using live-cell nano-indentation
technique (AFM; Nanoscope V Multimode AFM, Veeco,
Mannheim, Germany) and confocal immunofluorescence
microscopy (Leica DMI 6000B-CS/TCS SP8 laser confocal
microscope, Leica, Wetzlar, Germany) of HS staining were
performed on the human umbilical vein endothelial cell line
EA.hy926 essentially as described (Amsbio, Ab Heparan sulfate,
Cat# 370255-1, RRID : AB_10891554; Jackson ImmunoResearch
Labs, Alexa fluor 488 goat anti-mouse IgG antibody, Cat# 115-
545-146, RRID : AB_2307324) (20, 21). Cells were grown in
DMEM (Gibco™; Cat# 52100047) supplemented with 10% fetal
bovine serum (SigmaAldrich; Cat# S0615-100ML) and 1%
penicillin/streptomycin (Biochrom; Cat# A2212) at 37°C in a
5% CO2 enriched environment for at least 3 days until reaching
confluence. Intensity analysis was performed with ImageJ
software (version 1.51p 22, NIH) as previously described (20,
Frontiers in Immunology | www.frontiersin.org 3
21). The non-anticoagulant N-desulfated re-N-acetylated
heparin (NAH), a very potent and well characterized
heparanase inhibitor (12), was obtained from Iduron
(Cheshire, United Kingdom, Cat# DSH004/Nac).

Statistical Analysis
Values are presented as absolute values with median and inter-
quartile range (IQR). The non-parametric Mann-Whitney U test
and the Chi-Square test were used to compare parameters
between groups. In vitro data are presented as means and
standard error of the mean (SEM) unless otherwise stated.
Correlation between PBR and eGC thickness was assessed by
Spearman correlation coefficient. To account for both the
number of observations from a single experiment and the
number of experiments, differences in glycocalyx thickness
were tested with a nested analysis of variance and Tukey’s
post-hoc test. All tests used were two sided, and statistical
significance was set at p<0.05. SPSS (IBM Corporation,
Armonk, NY, USA, v.26, RRID : SCR_016479) and GraphPad
Prism (GraphPad Prism Software Inc., San Diego, CA, USA,
v.8.4.3, RRID : SCR_002798) were used for statistical analyses.
RESULTS

COVID-19 patients at the ICU had a median (IQR) Sequential
Organ Failure Assessment (SOFA) score of 9 (5 – 15), were
predominantly intubated (14/16, 88%) and showed an in-hospital
mortality of 38% (6/16). Compared to healthy subjects, COVID-19
patients showed a significantly higher HPSE activity in plasma
(Figure 1A). Accordingly, increased levels of HS (the main substrate
of HPSE), HA and Syn-1 demonstrated eGC shedding in COVID-
19 (Figure 1B,Table 1). This finding was further confirmed by high
PBR values (i.e., a thin eGC) measured in COVID-19 patients
(Figure 1C and Table 1). All markers of eGC damage correlated
with disease severity, as measured by SOFA score (HPSE: R=0.6,
P<0.001; HS: R=0.66, P<0.001; HA: R=0.8, P<0.001; Syn-1: R=0.81,
P<0.001; PBR: R=0.38, P<0.05).

To further validate our findings, we exposed endothelial cells
(ECs) to randomly selected sterile-filtered sera (5%; diluted in
A B C

FIGURE 1 | COVID-19 patients show elevated HPSE activity, and damaged eGC in vivo. (A-C) Boxplots showing (A) heparanase (HPSE) activity, (B) heparan
sulfate (HS) and (C) perfused boundary region (PBR; an inverse estimate of the sublingual endothelial glycocalyx thickness) in healthy subjects (n = 12) and COVID-
19 patients at the ICU (n = 16). Differences between groups were calculated by Mann-Whitney U test. *p < 0.05; **p < 0.001.
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buffer) from 6 COVID-19 patients and 5 healthy subjects for
60 minutes. COVID-19 serum, but not serum from healthy
subjects, caused a distinctive decrease of eGC thickness in vitro
[-7 (4-14) % vs. -24 (17-28) %, P < 0.01]. The delta changes of eGC
thickness measured by AFM in vitro strongly correlated with
concordant PBR values (R = -0.66, P = 0.03) obtained by
videomicroscopy in vivo (Figure 2A), indicating that the eGC
damage seen in COVID-19 can be quantitatively reproduced in
cultured ECs.

Delta changes of eGC thickness measured by AFM also
correlated closely with the respective plasma HPSE activity in
the samples (R = 0.82, P = 0.003) (Figure 2B). Competitive
inhibition of heparanase by the nonanticoagulant heparin
fragment NAH completely prevented the decline in eGC
thickness in response to COVID-19 serum (Figure 2C).
Similarly, immunofluorescence imaging of the eGC showed a
marked decrease in HS positivity and surface coverage in ECs
incubated with COVID-19 serum, whereas COVID-19 serum
supplemented with NAH caused only a very slight loss in
staining intensity and coverage compared to incubation with
serum from healthy controls (Figures 2D, E).

In the total cohort, HPSE correlated well with inflammatory
mediators, such as C-reactive protein (R = 0.78, P < 0.001),
Frontiers in Immunology | www.frontiersin.org 4
interleukin (IL)-6 (R = 0.63, P < 0.001), and Angpt-2 (R = 0.61,
P < 0.001) as well as the eGC marker Syn-1 (R = 0.71, P < 0.001).
Surprisingly, however, HPSE activity did not correlate with the
PBR (R = 0.11, P = 0.58) or plasma HS (R = 0.34, P = 0.08).

To understand this finding in more detail, we attempted to
roughly compensate for the presence of heparin [which dose
dependently blocks HPSE (18)] by using activated partial
thromboplastin time (aPTT) as an adjustment. The aPTT was
significantly prolonged in COVID-19 (Table 1) and correlated
positively with HPSE activity (R = 0.58, P < 0.001), suggesting
that the true HPSE activity in severely ill COVID-19 patients
could be even higher than the values actually measured.
Adjusting HPSE activity for aPTT (normalized HPSE/
normalized aPTT quotient) indeed revealed a moderate
association with the PBR (R = 0.44, P = 0.025).

Finally, we investigated the relationship between HPSE and
HS in more detail. Interestingly, separate analysis of the two
groups revealed contrasting regression slopes, suggesting that
excessive generation of HS fragments in severe COVID-19
(which was not present in controls) may have partially blocked
HPSE activity in COVID-19 patients (Figure 3A). Additional in
vitro inhibition experiments with HS isolated from bovine
kidney confirmed a dose dependent inhibition of HPSE at
A B D

E

C

FIGURE 2 | HPSE is a putative mediator of eGC damage in COVID-19. (A-C) Sera from a randomly selected subgroup of 5 healthy controls and 6 COVID-19
patients were sterile-filtered and incubated (5%) on the human umbilical vein endothelial cell line EA.hy926 for 60 min. Endothelial glycocalyx (eGC) thickness
was assessed by atomic force microscopy (AFM) using a dedicated nano-indentation protocol. Scatter dot plot showing the association between AFM-derived
eGC (in vitro) decline and corresponding (A) PBR-values (in vivo) and (B) HPSE activity for the individuals from the subgroup. Each dot represents the mean ±
SEM (standard error of mean) of two independent AFM experiments (consisting of ≥ 4 indentation curves in each of ≥ 8 different cells) for each individual serum.
Incubation without human serum served as control. Correlation was assessed by Spearman correlation coefficient. (C) Dot plots from three independent AFM
experiments (pooled serum from subgroups) showing values with mean ± SEM. Each dot represents the mean of ≥ 4 indentation curves per cell. Heparanase
was blocked by N-desulfated re-N-acetylated heparin (NAH; 150 µg). Differences between groups were calculated with nested ANOVA and Tukey’s post-hoc
test. Intensity analysis of heparan sulfate-stained EA.hy926 cells (D) and representative immunofluorescence images (E) after treatment with 5% control serum
or COVID-19 serum ± NAH (150 µg) for 60 min. Values are normalized to control serum (zero line) and differences between groups were assessed with nested
ANOVA and Tukey’s post-hoc test. Data are presented as mean ± SEM. *p < 0.05; **p < 0.001.
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concentrations between 0 and 6.25 µg/ml; nearly full inhibition
of heparanase was reached at a concentration of 6.25 µg/ml
HS (Figure 3B).
DISCUSSION

Since the beginning of the COVID-19 pandemic, evidence has
emerged that COVID-19 is a vascular rather than purely
respiratory illness (1). Here we show that HPSE, the only
enzyme in mammals that degrades HS chains from HS
proteoglycans of the glycocalyx, plays a key role in mediating
eGC damage in COVID-19.

HPSE is predominantly released by vascular endothelium,
macrophages, and platelets. Its expression is up-regulated in
endothelial cells by several factors, such as reactive oxygen
species, inflammatory cytokines, high glucose, and advanced
glycosylation products (22–25). Two previous COVID-19
studies measured HPSE antigen levels (26, 27) and two others
determined enzymatic HPSE activity (18, 28). All but one study
reported significantly elevated HPSE levels in COVID-19
patients. This finding therefore fits well with our previous data
showing that sublingual eGC thickness (PBR) appears to be an
appropriate risk marker for hospital mortality in COVID-19 (4).
The in vitro experiments in our current study show that HPSE is
a critical factor for eGC damage, as glycocalyx thinning
correlated with HPSE activity and could be completely
prevented by HPSE inhibition. The latter finding is even more
surprising because the protective effect was achieved despite the
presence of numerous cytokines and mediators in the patients’
sera (Table 1). This makes HPSE a promising target for
intervention in COVID-19.

The possible involvement of HPSE in COVID-19 pathology
was predicted already at the beginning of the pandemic long
before initial studies on the subject (22, 29). It was speculated at
the time that HPSE might contribute to the removal of HS chains
from cell surfaces, facilitating virus release from host cells - a
Frontiers in Immunology | www.frontiersin.org 5
mechanism that has been well described for herpes simplex
virus-1 (30, 31). Accordingly, enzymatic removal of HS from
the eGC by HPSE is probably not the only underlying
mechanism. For example, HPSE can induce matrix
metalloproteases, which in turn cut transmembrane heparan
sulfate proteoglycans such as syndecan-1 and thus further
enhance eGC damage (31). Consistent with this assessment,
our patients showed markedly elevated blood levels of
hyaluronan and syndecan-1. The finding that HPSE activity in
healthy individuals and COVID-19 patients was inversely
correlated with HS concentration suggests that a minimum
amount of HPSE is required before systemic eGC degradation
begins. If so, HPSE would be more likely to be a late marker of
disease severity. However, to disrupt the interaction of Sars-CoV-2
with the host cell, early blockade of HPSE could be beneficial.

In bacterial sepsis, the potential of HPSE and eGC as future
pharmacological targets has already been highlighted (14, 15,
32). In detail, prevention of eGC damage by inhibition of HPSE
significantly abolished vascular hyperpermeability and
subsequent lung injury in murine endotoxemia (12). Using
AFM we could show earlier, that unfractionated heparin
(UFH), which also saturates HPSE, completely abolished the
HPSE-induced decline of eGC thickness in freshly isolated rat
aorta (20). Furthermore, the heparin fragment NAH prevented
thinning of the eGC on human ECs induced by serum from
sepsis patients in vitro (21). Based on these data, it would be very
reasonable to assume that blocking HPSEmay also be an effective
approach to protecting eGC in COVID-19. Indeed, by western
blotting of EC lysates, Potje et al. showed that low molecular
weight heparin (LMWH) reduced the loss of glycocalyx
components induced by plasma from COVID-19 patients (26).
Our translational study comparing, for the first time, HPSE
activity with the corresponding glycocalyx dimensions in vivo
and in vitro in matched pairs strongly confirms and extends this
exciting finding.

At the clinical level, the administration of heparin and/or
LMWH has been shown to provide a significant survival benefit
A B

FIGURE 3 | HS fragments in severe COVID-19 may partially block HPSE activity. (A) Scatter dot plot showing regression slopes of HPSE activity vs. HS plasma
concentration in healthy subjects (n = 12) and COVID-19 patients (n = 16), respectively. (B) Bar charts showing percentage decrease of HPSE activity with increasing
amounts of HS (isolated from bovine kidney) in three independent experiments. For this experiment, recombinant human HPSE was used in a concentration of 150
ng/ml. Data are presented as mean ± SEM.
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in both entities (33–35). Hence, apart from the anticoagulant
effect of heparin the non-anticoagulant and, among these,
especially anti-inflammatory properties should not be
neglected and deserve closer attention (36). It is conceivable
that this protective effect could be partly due to an off-target
effect of heparin – i.e., the inhibition of HPSE. Further studies,
ideally with accompanying HPSE measurement and sublingual
video microscopy, are needed to confirm this assumption.
However, the paradoxical decrease in HPSE activity in the
COVID-19 patients with the highest HS concentrations
certainly complicates any interpretation of HPSE activity in
plasma samples. It is interesting to speculate that this could be
a feedback loop whose aim is to keep HPSE activity within a
certain range and to dampen its deleterious effects on the eGC.
However, our data emphasize the importance of analyzing the
HPSE in relation to the HS (and also to UFH/LMWH) in future
studies. Of note, the investigation of heparins or heparin
mimetics in COVID-19 appears particularly promising as these
drugs hold the potential to counteract disease onset and
progression in various ways. Not only the inhibition of
endothelial HPSE, as presented in the current study, and HPSE
of viral origin, as mentioned above, emerge as relevant target
structures for heparins. Recent studies revealed HS/heparin-
related binding sites on the SARS-CoV-2 spike protein and co-
binding of HS and angiotensin-converting enzyme 2 seems to be
necessary for docking to cellular surfaces. Heparins, on the other
hand, were capable to potently block spike protein binding,
probably due to blocking these specific binding sites (37).
Consequently, not only heparins but also heparan sulfate
mimetics – so far especially investigated in context of cancer
therapy – come to interest as potential drugs in future COVID-
19 treatment studies (38).

As our study is primarily hypothesis-generating, some
limitations should be noted. First, the sample size of this
proof-of-concept study was rather small. However, our dataset
includes a wide range of glycocalyx and inflammatory markers,
as well as a novel microscopy method to calculate the PBR in
vivo. Although the PBR is not measured directly but estimated
based on the radial displacement of red blood cells, this validated
method is highly reliable (14, 16, 17, 39). Differences in PBR
between patients and controls matched well with values obtained
by Stahl et al. in another COVID-19 ICU cohort (27). Second,
the use of aPTT as a measure of normalization of HPSE activity is
certainly subject to its own variance. It would have been better to
use either an inhibitor constant of heparin/LMWH or anti-Xa
activity for correction to derive the active HPSE level. As we do
not have citrate retain samples, a more accurate correction for
heparin/LMWH effect was not possible in this data set.
Unfortunately, the type, dose and application route of the
heparins used were very heterogeneous, so that we were unable
to convert these data into meaningful equivalent concentrations.
Third, the number of serum samples used for the in vitro studies
is limited because the AFM technique is sophisticated and
time-consuming.

In conclusion, our translational study indicates that HPSE is a
putative mediator of endothelial glycocalyx damage in COVID-
Frontiers in Immunology | www.frontiersin.org 6
19. Further studies are needed to clarify whether the benefit of
heparin administration in COVID-19 is due to an eGC-
protective off-target effect.
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