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Abstract

Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the
great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function
experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella
oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates,
alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly
different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong
biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of
hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also
likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes
or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the
previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S.
oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response
regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for
S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are
poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene
expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-
based annotation of gene function in prokaryotes.
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Introduction

Advances in sequencing technology have ushered in a new era

of bacterial genomics. At low cost, a single individual can sequence

the complete genome of a bacterial isolate in less than a week.

While this explosion in genome sequencing and gene discovery is

breathtaking, it also serves as a reminder that for most bacteria, we

do not know the function for most of the genes in the genome [1].

Even in the model bacterium Escherichia coli, which has been

extensively studied for decades, there are hundreds of genes that

are poorly annotated or entirely hypothetical [2]. Therefore, it is

critical that methods for systematically elucidating gene function in

microbial genomes are developed [3].

The current paradigm is that newly sequenced bacterial

genomes go through a computational annotation pipeline that

predicts gene structure and putative function. The latter is

predicted from sequence homology to known gene families,

protein domains, and characterized enzymes. However, given that

most experimentally characterized genes derive from a small

number of bacteria representing a tiny fraction of prokaryotic

diversity, there are a large number of gene families that have never

been experimentally characterized and hence computational

annotations are useless beyond ‘‘conserved domain’’ or ‘‘conserved

hypothetical.’’ Furthermore, due to weaker sequence conservation,

computational annotations of gene function in microbial species

get progressively less reliable the further one moves away from

well-studied model bacteria such as E. coli and Bacillus subtilis [4].

Lastly, there are classes of genes (for instance, transcription factors

[5] and transport proteins [6]) for which homology-based

annotations are either vague or unreliable. Taken together,

computational predictions alone, while a necessary first step

towards genome annotation, are not sufficient to meet the growing

challenge of assigning function to the millions of genes identified

by DNA sequencing.
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One attractive approach to characterize genes on a global scale

is via the analysis of large-scale mutant collections. Mutants

provide insight into gene function by providing a direct link

between genotype and a cellular phenotype. By correlating genes

with their phenotypes, a specific gene function can often be

inferred [7,8,9,10]. In the post-genome era, a number of

microorganisms have been subjected to large-scale mutagenesis

and phenotyping efforts. In bacteria, genome-wide mutant

collections have been constructed for several bacteria, using either

targeted methods [11,12,13] or random transposon mutagenesis

[14,15,16].

Regardless of how mutant strains are generated, a key challenge

is the quantitative analysis of the mutant collections across the

diverse range of conditions necessary to identify phenotypes for the

majority of genes in the genome [17]. The phenotypes of mutant

collections can be assayed in high-throughput either as individual

strains or in pooled, competitive fitness assays. In a recent example

of the former approach, the individual mutant strains of the E. coli

KEIO deletion collection were assayed in hundreds of growth

conditions using an agar-based colony size assay [10]. At least one

phenotype was identified for ,50% of E. coli genes using this

individual strain assay. Conversely, the use of pooled assays to

measure mutant phenotypes is best exemplified in Saccharomyces

cerevisiae. Each yeast deletion strain contains a unique DNA tag (or

barcode) sequence, that enables the pooling and competitive

fitness profiling of thousands of strains in parallel [8]. Similar to

individual strain assays, competitive pool assays provide a relative

measure of strain fitness. Nevertheless, the use of competitive

fitness assays with DNA tags has two primary advantages. The first

is that genome-wide mutant collections are pooled in a single tube,

thereby simplifying experimental setup, increasing throughput,

and reducing issues related to strain contamination. More

importantly, the tag-based pooled fitness assay provides a highly

quantitative measure of strain fitness regardless of whether a

microarray [18,19] or sequencing [20] is used to measure tag

abundance.

Shewanella oneidensis MR-1 is a Gram-negative c-proteobacter-

ium isolated from freshwater lake sediment [21]. Like most other

members of the Shewanella genus, S. oneidensis MR-1 (hereafter

abbreviated MR-1) can use a wide variety of terminal electron

acceptors, including both soluble and solid metals. As such, MR-1

has received attention for its potential roles in the bioremediation

of heavy metals and energy generation via fuel cells [22]. The

computationally annotated MR-1 genome contains 4,318 protein-

coding genes on its main chromosome and an additional 149

protein-coding genes on a single megaplasmid [23,24]. Based on

orthology relationships (bidirectional best BLAST hits), MR-1

shares 1,639 genes (37%) with the c-proteobacterium E. coli. A

total of 1,655 genes (37%) in the MR-1 genome are annotated as

hypothetical, with 83% (1,371) of these genes not having orthologs

in E. coli.

Here we describe the functional characterization of the MR-1

genome via the generation and phenotypic analysis of a large

transposon mutant collection. Using a DNA tag-based pooled

fitness assay, we assayed mutant fitness for 3,355 nonessential

genes in 121 diverse metabolic, redox, stress, survival, and motility

conditions. In addition to identifying phenotypes for over 2,000

genes, we demonstrate that mutant fitness profiles can be used to

infer specific functions for genes and operons, a subset of which we

confirm experimentally. Furthermore, we demonstrate that the

correlation between gene expression and mutant fitness is poor in

bacteria, thus underscoring the need to complement transcrip-

tomics with mutant phenotyping. Our strain collection and fitness

dataset are valuable resources for studying microbial metal

reduction and for microbiology in general, given that many

previously uncharacterized MR-1 genes have orthologs in diverse

bacteria.

Results

A S. oneidensis MR-1 fitness compendium
To provide a deep functional characterization of the MR-1

genome by analysis of mutant phenotypes, we expanded our

previously characterized transposon library [19] by mapping an

additional 17,301 mutants. The total MR-1 transposon collection

consists of 24,688 archived strains and represents mutants in 3,447

unique genes (Table S1). Genes without a transposon insertion are

potentially essential for viability. Starting from this premise, we

classified 336 MR-1 genes as ExpectedEssential because their

orthologs are essential in E. coli [25,26] and 67 NewEssential genes

that were not expected from studies of E. coli, including 12 that are

not orthologs of essential genes in any of 14 other bacteria (DEG

version 5.4) [27]. The 67 NewEssential genes include those of the

ATP synthase complex, gluconeogenesis, biotin synthesis, and

phosphate transport (see Text S1 for full analysis; Table S2 for full

essential gene list).

To enable large-scale phenotypic analysis of the MR-1 mutant

collection, we engineered our transposons to contain TagModules.

A TagModule contains two unique 20 bp DNA tags (or barcodes),

termed the uptag and downtag, each flanked by common PCR

priming sites. In a system identical to that used for the yeast

deletion collection, thousands of mutant strains, each carrying a

unique TagModule, can be pooled together and competitively

grown in a condition of interest [9,19]. We calculated the fitness of

each strain as the log2 ratio of the signal for the tag after growth in

that condition relative to the start of the experiment (Figure 1A).

Negative log2 ratios indicate that the given strain has a fitness

defect relative to the median strain; positive log2 ratios indicate a

fitness advantage. We constructed two pools, the upPool and

dnPool, for the phenotypic analysis of MR-1 mutants (Figure 1A).

These pools contain transposon mutants in 3,355 MR-1 genes

(Figure S1).

To assess the potential of mutant fitness to annotate gene

function, we assayed the fitness of the pooled strains in 195

experiments and 121 different conditions (see Table S3). These

conditions include aerobic experiments in defined minimal media

with one of 26 different sole sources of carbon, 20 for nitrogen, 8

for sulfur, and 5 for phosphorous. Given the unique activity of

Shewanella with respect to anaerobic respiration, we also profiled

the pool fitness under anaerobic conditions with different electron

acceptors including iron (III) citrate, manganese (IV) oxide,

Author Summary

Many computationally predicted gene annotations in
bacteria are incomplete or wrong. Consequently, experi-
mental methods to systematically determine gene func-
tion in bacteria are required. Here, we describe a genetic
approach to meet this challenge. We constructed a large
transposon mutant library in the metal-reducing bacterium
Shewanella oneidensis MR-1 and profiled the fitness of this
collection in more than 100 diverse experimental condi-
tions. In addition to identifying a phenotype for more than
2,000 genes, we demonstrate that mutant fitness profiles
can be used to assign ‘‘evidence-based’’ gene annotations
for enzymes, signaling proteins, transporters, and tran-
scription factors, a subset of which we verify experimen-
tally.

S. oneidensis MR-1 Fitness Analysis
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Figure 1. A S. oneidensis MR-1 mutant fitness compendium. (A) Parallel analysis of MR-1 mutant pools using TagModules. Only the uptags are
used to interrogate strain abundance in the upPool, while the downtags are used exclusively to measure strain abundance in the dnPool. The
Affymetrix TAG4 microarray illustrated here contains the complement sequences to both the uptags and downtags, therefore the abundance of all
strains across both pools is assayed in a single hybridization. In the simple example diagrammed here, strain 3 in the upPool and strain 5 in the
dnPool have fitness defects. We hybridize the tags both before (start) and after growth in selective media (condition). We calculate the fitness of a
strain as the normalized log2 ratio of tag intensity of the condition relative to start. (B) Heatmap of the entire fitness dataset. Both genes and
experiments were ordered by hierarchical clustering with Euclidean distance as the metric. A subset of the fitness heatmap for mutants in the general
secretory pathway is expanded (bottom). (C) Fitness values for dnPool strains (x-axis) and upPool strains (y-axis) on DL-lactate defined media. ‘‘Same
insertion’’ indicates identical mutant strains that are represented in both pools; ‘‘Other insertion, same gene’’ indicates independent transposon
insertions in the same gene. The dashed line shows x = y. (D) Comparison of gene fitness values for pairs of genes predicted to be in the same operon
[50]. The data plotted reflects a single fitness experiment in DL-lactate minimal media, but the color-coding is derived from the entire fitness
compendium: points in red are uncorrelated (r,0.3) across 195 fitness experiments. (E) Quality metrics for each of the 195 pool fitness experiments.
r(Same) is the fitness correlation of identical mutant strains contained in both the upPool and dnPool (see red triangles in panel C). r(Operon) is the
fitness correlation of adjacent genes predicted to the in the same operon (see panel D). (F) Comparison of DL-lactate minimal media pool fitness
values (y-axis) and individual strain growth rates (x-axis) for 48 transposon mutants. Individual strain growth rates represent the average of at least
three independent experiments. The vertical dotted line represents the growth rate of wild-type MR-1. The horizontal dotted line represents a pool
fitness value for a neutral insertion. Some strains had long lag phases and a growth rate could not be calculated (green plus symbols).
doi:10.1371/journal.pgen.1002385.g001

S. oneidensis MR-1 Fitness Analysis
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fumarate, dimethyl sulfoxide (DMSO), and nitrate. Additionally,

we profiled a number of stresses including metals, salts,

temperature, pH, stationary phase, and heat shock. Lastly, we

assayed motility using a soft agar assay. A heatmap of our entire

fitness compendium is presented in Figure 1B.

Quality assessment of fitness compendium
We used a number of tests to validate the technical and

biological consistency of our mutant fitness dataset including the

correlation of related strains or genes, the fitness of expected

auxotrophs in rich versus minimal media, the relationship between

fitness values and growth rates when grown individually, and

complementation of mutant phenotypes. First, we compared the

fitness for (1) identical mutant strains contained in both pools but

assayed with different tags (uptag for upPool and downtag for

dnPool) and (2) different transposon mutants for the same gene

(Figure 1C). For the identical mutant strains, the fitness values are

highly correlated when assayed in the upPool versus the dnPool

(r = 0.96; Pearson correlation), which confirms that a single uptag

or downtag of a TagModule is sufficient for measuring fitness. The

fitness correlation is slightly lower (r = 0.89; Pearson correlation)

for different mutants in the same gene (Figure 1C). Next, we

examined the cofitness (correlation of fitness) of operons,

cotranscribed groups of genes that are often functionally related

[28]. We defined the fitness of a gene as the average of relevant

strain fitness values (see Materials and Methods). As illustrated in

Figure 1D, our data confirms the expectation that the fitness of

genes within an operon are positively correlated in a single

condition (r = 0.73; Pearson correlation). For each of our 195 pool

fitness experiments, we used both the operon pair fitness

correlation (as in Figure 1D) and the fitness correlation of identical

strains in the upPool and dnPool (red triangles in Figure 1C) as

computational metrics of experimental quality (Figure 1E).

To validate the biological consistency of our pool fitness assay,

we compared gene fitness on DL-lactate minimal media to LB rich

media to confirm MR-1 auxotrophs predicted by TIGR roles [29]

and flux balance analysis [30]. As illustrated in Figure S2, most

predicted auxotroph genes have severe fitness defects in minimal

media and normal growth in rich media, which demonstrates that

our pooled fitness results are biologically meaningful. For example,

of 60 auxotrophs predicted by both TIGR and the flux balance

analysis, 88% have fitness of 22 or less in minimal media, versus

just 3% in LB rich media. Lastly, we compared the pooled fitness

data of MR-1 grown in minimal media to single strain growth data

of E. coli deletion strains grown in minimal media [11] to examine

the phenotypic consistency of orthologous auxotrophic genes

(Figure S3). The majority of experimentally verified MR-1

auxotrophs are also E. coli auxotrophs. However, there are a

number of disagreements due primarily to redundancy (presence

of isozymes or alternative pathways) in MR-1 but not E. coli (glnA,

metL, purA) or vice versa (panE, asnB, trxB, gltBD, argI). MR-1

auxotrophs without E. coli orthologs include diverged purC, aroQ,

and folK genes and SO_3749, a new arginine synthesis gene (see

below).

It is important to note that fitness as used in this study reflects

the abundance of tags in a pooled assay and not an absolute

growth rate for each individual strain. Hence, our pooled fitness

assay does not distinguish whether less fit strains are due to slower

doubling times or longer lag phases. To test this, we measured

growth for 48 individual mutant strains in DL-lactate minimal

media. As illustrated in Figure 1F, we observe a positive

correlation (r = 0.73; Spearman correlation) between pool relative

fitness values and single strain growth rates. This highlights the

quantitative nature of our competitive growth assay, as previously

observed in yeast [18]. Additionally, most mutants with fitness

defects in the pool assay are due to slower doubling times rather

than extended lag phases (Figure 1F).

To verify that our mutant phenotypes are caused by a single

transposon insertion, we complemented the fitness defect of 10

genes, 7 of which are annotated as hypothetical (Figure 2). In

each instance, we complemented the mutant phenotype by

introducing an intact copy of the gene on a plasmid. These results

demonstrate that poorly characterized genes have phenotypes in

a diverse range of conditions and that a single transposon

insertion was responsible for the fitness defect. Of note, SO_3257

is adjacent to a large flagellar/chemotaxis gene cluster in MR-1

and is a distant homolog of Vibrio cholerae flgO [31] (24% identity

but at a conserved location) (Figure 2A). SO_0274 (ppc) encodes

phosphoenolpyruvate carboxylase and is absolutely required for

growth on minimal media with DL-lactate as a carbon source

(Figure 2D). Interestingly, a flux balance model predicts that the

loss of ppc will lead to only a 5% reduction in growth rate [30].

This discrepancy between a model prediction and an experi-

mental result highlights the utility of fitness profiling to discover

unexpected roles for characterized enzymes. Overall, these

complementation results and the fitness agreement of indepen-

dent mutants in the same gene (Figure 1B) suggest that secondary

mutations are not a significant factor in our experiments, allowing

us to use pooled fitness results as a proxy for single mutant

phenotypes.

Lastly, we examined the potential role of polarity in our fitness

dataset. Polarity, whereby a mutation in an upstream gene in an

operon causes a loss of expression of downstream genes, is a

concern in all transposon mutant studies. To address this issue, we

looked for instances in which only the upstream or downstream

gene of an operon pair has a strong fitness defect (fitness ,22 vs.

.21). If there are strong polar effects, then we should rarely see

cases where only the downstream gene in the pair is sick, because

mutating the upstream gene should usually impair the downstream

gene, but not vice versa. Across our entire fitness compendium,

upstream-only sick occurs only about 50% more often than

downstream-only sick (3,333 vs. 2,233 cases, P,1e-15, binomial

test) suggesting that most within operon fitness correlations reflect

similar biological roles and are not simply an artifact of polarity.

To further support the notion that polarity is not a dominant

factor in our results, we successfully complemented the fitness

defects of 4 upstream genes in operons (SO_0887, SO_1333,

SO_3257, SO_4485; Figure 2 and Table 1).

Identifying a phenotype for more than 2,000 genes in S.
oneidensis MR-1

Our fitness dataset provides an opportunity to explore general

principles related to the phenotypic importance of single genes

across a large number of diverse conditions. First, we sought to

determine how many genes have at least one phenotype (positive

or negative). We used the 14 control experiments (independent

pool recovery experiments from the freezer or ‘‘start’’ in Figure 1A;

grey bar in Figure 1B, black circles in Figure 1E) to transform a

test statistic, which quantifies the consistency of the various

measurements of a gene’s fitness, to a Z score (see Materials and

Methods for details). In other words, the Z scores from the control

experiments follow the standard normal distribution and Z scores

in the other experiments indicate their level of statistical

significance. To test whether a gene’s pattern of fitness is

consistent with it having no phenotype, we used a chi-squared

test to combine the Z scores. By combining the Z scores from all

experiments, we were able to detect significant fitness patterns for

genes with mild phenotypes in many conditions. At P,0.001 (chi-

S. oneidensis MR-1 Fitness Analysis
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squared test), we find that 2,350 genes have a statistically

significant fitness pattern. Therefore, 70% of the MR-1 nones-

sential genome (2,350 genes with a phenotype out of 3,355

assayed) has a phenotypic consequence when disrupted by a

transposon.

Nevertheless, many of these fitness patterns are weak and it is

difficult to place these genes into pathways because the phenotypes

are too subtle. To identify those genes with a strong fitness pattern,

we used two approaches. First, we used an arbitrary cutoff and

selected genes within the top one-third of chi-squared values as

having strong fitness patterns. As shown in Figure 3A, these genes

with higher chi-squared values tend to show greater cofitness

(correlation of fitness) with other genes in their operons. Second, as

the chi-squared test may miss genes that have a fitness defect in

only one condition, we also considered genes with highly

significant defects in one condition (P,0.01 after Bonferonni

correction, corresponding to Z,23.88). Together, these two tests

gave us 1,230 genes with strong patterns, and the remainder of the

section will focus on these genes.

We next explored the properties of these 1,230 genes with a

strong fitness pattern. When examined in the context of COG

function codes [32], all classes of genes have significant phenotypes

(Figure 3B). However, genes in characterized COG families are

rather more likely to have a phenotype than genes with only

general predictions or unknown roles (code R or S in Figure 3B).

In addition, genes involved in ‘‘replication, recombination, and

repair’’ (code L) are also less likely to have a phenotype, which

may reflect the choice of conditions that we profiled or genetic

buffering (redundancy) in these pathways. To address redundancy

in a more systematic way across our entire dataset, we asked

whether genes that are similar to other genes in MR-1 (paralogs)

have phenotypes. We find that genes with a highly similar paralog

(over 50% amino acid identity) are slightly less likely to have a

phenotype than unique genes (Figure 3B). This suggests that

paralogs often function under specific conditions and therefore do

not always provide functional redundancy. This finding supports

recent observations that most c-type cytochromes in MR-1, despite

frequent sequence similarity to one another, have a detectable

phenotype when deleted [33]. Lastly, ‘‘core’’ hypothetical genes

(without a known family) that are conserved across diverse

Shewanella genomes are more likely to have a phenotype than

other hypotheticals (Figure 3B). This suggests that poorly

characterized core genes, which partly define what it means to

be in the Shewanella genus [34], are functionally more important

than other poorly characterized genes.

For the 1,230 genes with a strong fitness pattern, we determined

how many experiments resulted in a significant phenotype. We

find that most of these genes have a clear phenotype in a small

number of experiments (Figure 3C). The median of these genes

has a fitness defect in 9 experiments and positive fitness in 1

experiment. By contrast, some genes have strong fitness patterns in

a large number of experiments. One example is the genes of the

general secretory pathway, as illustrated in Figure 1B. The

individual general secretory pathway genes have a complex, highly

correlated fitness pattern and their absence leads to strong fitness

defects or positive fitness in the majority of tested conditions.

Figure 2. Validation of mutant phenotypes by genetic complementation. (A) Three conserved hypothetical genes are required for motility
in an LB soft agar assay. MUT is a transposon mutant; MUT + empty is a transposon mutant carrying an empty plasmid, MUT + comp is a transposon
mutant with a plasmid carrying an intact copy of the mutated gene. SO_2650 has no known domains. SO_3273 (protein of unknown function
DUF115) contains a tetratricopeptide-like helical domain (IPR011990), a common structural motif. SO_3257 is discussed in the main text. (B) SO_1071
is a predicted membrane protein from an uncharacterized protein family (UPF0016). It is required for growth in minimal media with DL-lactate as a
carbon source. (C) Same as (B) for SO_4544, a hypothetical protein with no known domains. (D) Same as (B) for SO_0274 (ppc) encoding
phosphoenolpyruvate carboxylase. (E) SO_1916, a transcriptional regulator, is required for maximal anaerobic growth with DL-lactate as a carbon
source and DMSO as an electron acceptor (also see Figure S4). (F) SO_0887, annotated as agmatine deiminase, is required for maximal growth on
minimal media with gelatin as a carbon source. (G) SO_1371 is a conserved hypothetical gene, contains an RDD domain (one arginine and two
aspartates), and is a predicted membrane protein. It is required for maximal growth on minimal media with acetate as a carbon source. (H) Same as
(G) for SO_1333, a conserved hypothetical gene. SO_1333 is a distant homolog of the sulfoacetate transporter TauE [79].
doi:10.1371/journal.pgen.1002385.g002

S. oneidensis MR-1 Fitness Analysis

PLoS Genetics | www.plosgenetics.org 5 November 2011 | Volume 7 | Issue 11 | e1002385



Table 1. New, expanded, and confirmed S. oneidensis MR-1 gene annotations.

Name VIMSS New Annotation1 Class Evidence2

SO_0002 199199 Glutathione uptake transporter New Multiple mutants

SO_0444 199636 Copper/zinc efflux protein New Complementation

SO_0455:0456 199647-8 Alpha-ketoglutarate transporter New Multiple mutants

SO_0625 199813 Cytochrome c oxidase regulatory protein New

SO_0888 200074 N-carbamoyl-putrescine amidase New Complementation;
Multiple mutants

SO_1033:1034 200216-7 Vitamin B12 transporter components Confirmed Multiple mutants

SO_1115 200295 Glycine-aspartate dipeptidase Expanded Multiple mutants

SO_1267 200445 Gamma-glutamyl-aminobutyrate hydrolase Confirmed

SO_1268 200446 Gamma-glutamyl-putrescine synthetase Confirmed

SO_1270:1273 200448-51 Broad range amino acid transporter Expanded Multiple mutants

SO_1427:1432 200602-7 DMSO or manganese oxide reductase Expanded Multiple mutants

SO_1521 200692 D-lactate:flavin oxidoreductase New

SO_1670 200835 Fumarylacetoacetate hydrolase Confirmed Complementation

SO_1677 200842 Acetyl-CoA/2-methyl-acetyl-CoA acetyltranferase Expanded Multiple mutants

SO_1679 200844 Methylbutyrl-CoA oxidoreductase Confirmed Multiple mutants

SO_1683 200848 Putative 2-methyl-3-hydroxybutyryl-CoA dehydrogenase New

SO_1854 201016 Outer membrane protein required for motility and nitrate resistance New Multiple mutants

SO_1913 201074 Chaperone for general secretion pathway New Multiple mutants

SO_1916 201077 DMSO-specific transcriptional activator of SO_1917 New Complementation;
Gene expression

SO_1971 201132 Butyryl-CoA synthase New Multiple mutants

SO_2357 201501 Cytochrome c oxidase maturation protein New Multiple mutants

SO_2395 201539 Butyryl-CoA dehydrogenase New Multiple mutants

SO_2593 201733 NAD amino acid dehydrogenase Expanded Multiple mutants

SO_2638 201776 Branched-chain amino acid dehydrogenase Confirmed Multiple mutants

SO_2648 201786 Response regulator and transcriptional activator of Acetyl-CoA synthase New Gene expression

SO_2742 201880 Histidine kinase targeting SO_2648 New Gene expression

SO_2846 201972 Glycine transport protein New Multiple mutants

SO_2879 202005 N-acetylglucosamine and uracil permease New

SO_3102:3103 202218-9 Thiophosphate efflux pump components New Multiple mutants

SO_3175 202285 Cell wall component synthesis enzyme New

SO_3259:3260 202367-8 Flagellar modification gene cluster New Multiple mutants

SO_3262 202370 Polysaccharide synthesis gene New Multiple mutants

SO_3496 202599 Succinate-semialdehyde:NAD dehydrogenase Confirmed Multiple mutants

SO_3635 202731 Cell wall phosphotransferase required for survival in late stationary phase New Multiple mutants

SO_3749 202842 N-acetyl-L-ornithine deacetylase New Complementation,
Multiple mutants

SO_4008 203092 Recombination regulatory protein New

SO_4198 203280 Formiminoglutaminase Confirmed Complementation

SO_4339 203417 Hypotaurine transporter New Multiple mutants

SO_4485 203560 Diheme cytochrome c for energy production New Complementation

SO_4565 203636 L-leucine transporter New Multiple mutants

1See Text S2 for details.
2Complementation indicates that a plasmid-carried, intact copy of the mutated gene rescued the relevant mutant phenotype. Multiple mutants mean that, for the
indicated gene or operon, our fitness dataset contains data for two or more independent mutant strains. Gene expression indicates that microarray gene expression of
the mutant strain was used to validate the prediction.

doi:10.1371/journal.pgen.1002385.t001

S. oneidensis MR-1 Fitness Analysis
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Evidence-based annotation of gene function using
fitness profiles

One of the main aims of this study was to use mutant fitness to

annotate gene function. Using the approaches described below, we

predicted specific functional annotations for 40 genes/operons

with either poor or incomplete annotations including 17 enzymes,

10 transporters/efflux pumps, 4 transcriptional regulators/signal-

ing proteins, 4 electron transport proteins, and 5 other proteins

(Table 1 for list; Text S2 for detailed rationale). Even in retrospect,

few of these annotations could have been made by homology

alone. First, we identified those genes with a strong fitness defect in

only one or a few conditions, as an annotation of a specific

function in these instances is often easier than if a gene has

pleiotropic effects. Second, we identified groups of genes with high

cofitness across the entire compendium. These genes are more

likely to be functionally related and allow for functional annotation

if one or more of the genes in the cofitness cluster are

characterized [7]. Given these genes and their phenotypes, we

used comparative genomics and prior experimental data from

MR-1 and other bacteria to predict specific functions. We split our

evidence-based annotations into three categories, ‘‘new’’, ‘‘ex-

panded’’, and ‘‘confirmed’’, to reflect prior knowledge and genes

that have multiple functions. Selected examples of evidence-based

annotations and their experimental validation are described

below.

Some of our gene annotations reflect specific new functions for

hypothetical genes. For example, the MR-1 genome does not have

an annotated enzyme for synthesizing ornithine from N-acetyl-

ornithine, a necessary step in arginine biosynthesis. Given that

MR-1 is capable of synthesizing arginine, we sought to identify the

missing enzyme. The N-acetyl-ornithine to ornithine reaction is

encoded in E. coli by argE, an N-acetyl-ornithine deacetylase, and

in B. subtilis by argJ, an ornithine acetyltransferase. Given that

MR-1 does not have homologs to either argE or argJ, we examined

our fitness data for uncharacterized genes with high cofitness with

known arginine biosynthesis genes to identify the missing enzyme.

Figure 3. A phenotype for more than 2,000 genes in S.
oneidensis MR-1. (A) Genes with more significant fitness patterns
(higher chi-squared) tend to have stronger correlations with other
genes in the same operon. We divided the genes into 20 bins by the
significance (chi-squared) of their fitness patterns and for each bin we
show a box plot of the correlations of those genes with adjacent genes
that are predicted to be co-transcribed. The box shows the median and
the interquartile range; the whiskers show the extreme values; and the

indentations show the 90% confidence interval of the median. Red and
green bins have statistically significant chi-squared scores (P,0.001).
Dashed lines are at 0 (random) and 0.4 (highly significant cofitness;
P,1e-8). (B) The proportion of different kinds of genes that have strong
fitness patterns (N = 1,230; see main text). The single letter codes are
COG function codes: C (Energy production and conversion), D (Cell
cycle control, cell division, chromosome partitioning), E (Amino acid
transport and metabolism), F (Nucleotide transport and metabolism), G
(Carbohydrate transport and metabolism), H (Coenzyme transport and
metabolism), I (Lipid transport and metabolism), J (Translation,
ribosomal structure and biogenesis), K (Transcription), L (Replication,
recombination and repair), M (Cell wall/membrane/envelope biogene-
sis), N (Cell motility), O (Posttranslational modification, protein turnover,
chaperones), P (Inorganic ion transport and metabolism), Q (Secondary
metabolites biosynthesis, transport and catabolism), R (General function
prediction only), S (Function unknown), T (Signal transduction
mechanisms), U (Intracellular trafficking, secretion, and vesicular
transport), and V (Defense mechanisms). Unique genes (top of panel)
are those without a homolog in the MR-1 genome at greater than 30%
amino acid identity. The error bars are 90% confidence intervals. (C) The
cumulative proportion of all genes with strong fitness patterns
(N = 1,230) versus the number of experiments with a significant change.
Here we define a significant change as |Fitness|.1 and |Z|.2.5. Four
classes of significant change are plotted; fitness defects of varying
severity or positive fitness. For example, ,40% of the 1,230 genes do
not have a severe fitness defect (Fitness,23) in any of the 195
conditions despite having a strong fitness pattern and 80% of genes
with a severe fitness defect (Fitness,23) have that phenotype in 10
experiments or less.
doi:10.1371/journal.pgen.1002385.g003
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Using this approach, we identified high cofitness between mutants

in the hypothetical gene SO_3749 and mutants in other arginine

biosynthesis genes (Figure 4A). The outlier in Figure 4A, argD,

participates in other metabolic processes including lysine biosyn-

thesis that may contribute to its complicated fitness pattern.

SO_3749 contains a hydrolase domain, so we predict that its

activity resembles that of ArgE rather than the transacetylase ArgJ.

To verify that SO_3749 encodes the missing step in arginine

biosynthesis, we performed cross-species complementation assays.

First, we complemented the minimal media growth deficiency of a

MR-1 SO_3749 transposon mutant with the E. coli argE gene

(Figure 4B). In addition, we complemented the growth defect of an

E. coli argE deletion strain with a plasmid expressing the SO_3749

gene (Figure 4C). Despite lacking any detectable homology to E.

coli argE, our results demonstrate that the hypothetical gene

SO_3749 encodes a functional N-acetyl-ornithine deacetylase (or

ornithine acetyltransferase).

We next used our fitness compendium to uncover new two-

component signal transduction pathways. In MR-1, as in many

bacteria, the majority of histidine kinases (HK) and their cognate

response regulators (RR) are cotranscribed in operons [35].

However, there are often instances of ‘‘orphan’’ HKs and RRs

in the genome for which the cognate partners are unknown. Using

cofitness as a metric for functional interactions, we find that two

orphan HK-RR pairs have highly correlated fitness. In the first

example, hybrid HK SO_3457 and RR SO_1860 have high

cofitness (r = 0.83; Pearson correlation) and are required for

motility, growth in high and low pH, and growth on a large

number of carbon and nitrogen substrates. The E. coli orthologs of

these genes, barA and uvrY, form a two-component system that

ultimately regulates the global regulator CsrA [36]. Gene

expression experiments with SO_1860 and SO_3457 mutant

strains suggest that CsrA is not a target of this two-component

system in Shewanella (data not shown) demonstrating that this

system may regulate different genes. There inferences were

confirmed by a very recent report on barA and uvrY in MR-1

[37]. In a second example, we find that HK SO_2742 and RR

SO_2648 have high cofitness (r = 0.85; Pearson correlation) and

are required for optimal growth in minimal media with acetate,

propionate, or butyrate as carbon sources (Figure 5A). To further

demonstrate a functional relationship between SO_2742 and

SO_2648 and to look for target genes of the RR, we assayed

transcript levels in mutants of both the HK and RR after transfer

to minimal media with acetate as a carbon source. We found that

the expression of genes in these mutants is highly correlated

further suggesting a direct biochemical interaction between the

HK and RR (Figure 5B). Lastly, we identify acs (SO_2743;

encoding acetyl-coA synthetase), which is divergently transcribed

from the adjacent SO_2742, as significantly downregulated in

both mutants (Figure 5C). In E. coli, acs activates acetate to acetyl-

CoA and an acs mutant grows poorly in acetate containing media

[38]. Based on this data, we propose that the MR-1 two-

component system SO_2742 and SO_2648 senses carboxylates

and that one of its primary targets is acs.

A combination of mutant fitness profiles and comparative

genomics is a powerful method for predicting gene function. For

instance, mutants in the hypothetical gene SO_1913 have high co-

fitness with mutants in the general secretory pathway (Figure 1B).

To infer the potential role of SO_1913 in the general secretory

pathway, we looked for previous experimental evidence from

homologs in other species. Using this approach, we identified a

positional ortholog in Shewanella benthica KT99 (KT99_05357) that

is similar to the type III secretion chaperone yscW (PF09619) [39].

Additionally, we found that some homologs of SO_1913 in other

species are fused with an uncharacterized meta/hslJ domain (for

example, Lferr_0115 from Acidithiobacillus ferrooxidans ATCC

53993) that is predicted to be associated with heat shock (and

hence chaperone) proteins. Based on our mutant fitness data and

the comparative analysis, we propose that SO_1913 is a

chaperone for the general secretory pathway. In a second

example, we identified two conserved hypothetical genes

(SO_3259-SO_3260) that are required for motility. These genes

are located adjacent to a large flagellar/chemotaxis gene cluster

suggesting that SO_3259-SO_3260 may play a direct role in

motility. To identity a putative function for SO_3259-SO_3260,

we analyzed homologs with experimental evidence in other

species. We find that SO_3259 is similar to the flagellar

modification genes pseD and pseE from Campylobacter jejuni, that

are involved in decorating the flagellum with sugars and are

required for full motility [40]. Therefore, we propose that the

SO_3259 and SO_3260 participate in the modification of the

flagellum by some sugar and that this modification is required for

motility. In a final example, we find that the previously

hypothetical gene SO_0444 is required for growth in ZnSO4 or

CuCl2 stress conditions. SO_0444 is in an operon with and

predicted to be regulated by SO_0443 [41], a putative ortholog of

Figure 4. SO_3749 encodes a functional N-acetyl-ornithine deacetylase. (A) Fitness heatmap for genes of the arginine biosynthesis pathway
and SO_3749, annotated as a hypothetical protein. (B) Growth of wild-type MR-1 and a SO_3749 transposon mutant on minimal media with DL-
lactate as a carbon source. The auxotrophy of the SO_3749 mutant is complemented by the E. coli argE gene (bottom right). (C) Same as (B) for wild-
type E. coli and an argE deletion mutant. The auxotrophy of the E. coli argE mutant is complemented by MR-1 SO_3749 (bottom right).
doi:10.1371/journal.pgen.1002385.g004
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the E. coli zinc-responsive transcriptional regulator ZntR [42].

Given that SO_0444 is predicted to be a membrane protein, we

propose that this previously hypothetical gene encodes a copper/

zinc efflux protein.

In addition to new annotations, analysis of mutant fitness

profiles can directly confirm previous predictions of gene function

and also expand our current understanding of a single gene’s

activity. The operon SO_1427-SO_1432 encodes a DMSO

reductase that functions under anaerobic conditions [43]. In

addition to its essential role in DMSO reduction, we find that

mutants in SO_1427-SO_1432 are also impaired in their ability to

use manganese oxide as a terminal electron acceptor, thus

expanding the known substrate range of this reductase. Given

that MR-1 was isolated under manganese reducing conditions

[21], the finding that a DMSO reductase plays a role in

manganese oxide reduction is particularly interesting.

Mutant fitness and gene expression are poorly correlated
Whole-genome gene expression profiling using microarrays is

standard practice in microbiology. Typically, these studies are

designed to detect differential expression between two conditions

(i.e., treatment versus control or mutant versus wild-type) in an

effort to identify those genes whose expression is under regulation

(for example, see [44]). The expectation in these experiments is

often that genes with differential expression are more likely to be

functionally important (and hence have a fitness consequence

when mutated). However, the extent to which this is true, that is

the correlation between differential gene expression and mutant

fitness, has to our knowledge not been systematically investigated

in bacteria.

To address this issue we assayed transcript levels for wild-type

MR-1 grown in rich media (LB) and in minimal media with DL-

lactate, acetate, or N-acetyl-glucosamine (NAG) as carbon sources

and compared differential expression to differential fitness values

obtained from identical growth conditions. The genome-wide

correlation between mutant fitness and gene expression, while

statistically significant, is weak (Figure 6). The only genes that

‘‘make sense’’, which we define as those that are upregulated in

condition A relative to condition B and also important for fitness in

condition A relative to condition B, are a few key genes that

directly contribute to the utilization of the carbon substrate. For

instance, genes of the NAG utilization operon are important for

fitness and are upregulated in NAG-containing media (Figure 6B).

However, in every comparison, there are genes with fitness defects

when mutated in a single condition whose expression is not

differentially regulated under the same condition. Conversely, in

all comparisons there are many genes that are differentially

expressed but have no fitness consequence. Our findings are

similar to those in yeast where the correlation between mutant

fitness and gene expression is also weak [8,45]. Therefore, the lack

of correlation between gene expression and mutant fitness is a

general trend. Theories that might explain the lack of correlation

include standby expression [46], anticipatory control [47,48],

suboptimal control of recently acquired genes [49], or post-

transcriptional control.

Comparison of information content of mutant fitness
and gene expression

Given the extensive use of gene expression profiling in bacteria

and the relative lack of large-scale mutant fitness studies, it is

Figure 5. SO_2648 and SO_2742 activate acs. (A) Fitness pattern of histidine kinase SO_2742, response regulator SO_2648, and acetyl-coA
synthetase (acs). SO_2742 and SO_2648 have highly correlated fitness patterns over the entire compendium. The color code for experiments is
identical to that in Figure 1B. (B) Comparison of genome-wide expression in mutants of SO_2648 and SO_2742. RNA samples for both mutants and
wild-type were collected one hour after transfer to a minimal media with acetate as the carbon source. The expression of both mutants is plotted as
the log2 ratio of mutant versus wild-type. The expression of acs is marked with an X. (C) Relative expression of acs in different transcription factor
mutants and conditions. For each mutant, the expression level is relative to wild-type MR-1 grown in the identical condition. Lactate/DMSO is one
hour after transfer to anaerobic minimal media with DL-lactate as a carbon source and DMSO as an electron acceptor, acetate/O2 is one hour after
transfer to aerobic minimal media with acetate as a carbon source, and lactate/O2 is aerobic exponential growth in DL-lactate minimal media.
doi:10.1371/journal.pgen.1002385.g005
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important to examine the information content of both assays. In

particular, for a single organism, we compared the ability of large

expression and mutant fitness datasets to predict gene function and

gene regulation. For the mutant fitness dataset, we used the data

from the 195 experiments described in this paper. For gene

expression, we used the data from 371 experiments contained in

the MicrobesOnline website [50]. These gene expression exper-

iments are derived from this study and others (for example;

[51,52]) and represent a diverse range of conditions comparable to

what we describe here for mutant fitness.

For gene function predictions, we tested the ability of the large-

scale expression and/or mutant fitness datasets to place genes into

pathways. Of 3,247 genes that were in both datasets, the

TIGRFam database assigned 618 genes to 79 different ‘‘subroles’’

such as ‘‘Amino acid synthesis: Aspartate family’’ by homology

[29]. To classify the genes into subroles from the data, we used a

standard machine learning technique called random forests that is

resistant to overfitting and that estimates the confidence of its

predictions. We trained the classifier using the 618 genes that have

assigned subroles, and then predicted the TIGR subroles for all

3,247 genes given the data (We used 10-fold operon-wise cross-

validation to avoid overfitting the genes with known subroles, see

Materials and Methods). For the 618 genes with known subroles,

most of the predicted subroles did not match TIGRFam

annotations, but predictions with confidence values above 50%

were likely to be correct (Figure 7). We find that gene expression

gives more correct gene function predictions than mutant fitness

but fitness gives more high-confidence predictions (Figure 7A and

7B). Furthermore, combining the fitness and expression datasets

together did not increase the confidence of the predictions based

on mutant fitness alone (Figure 7C). The higher confidence of

mutant fitness-based predictions confirms our intuition that

mutant phentotypes give more direct information about gene

function than gene expression patterns do.

To determine the ability of gene expression and mutant fitness

to predict gene regulation, we examined the expression and fitness

correlation of MR-1 transcription factor-target gene pairs from the

RegPrecise database [41]. We find that transcription factor-target

gene pairs tend to have higher coexpression than cofitness

correlations, relative to shuffled gene pairs (Figure 8). Interestingly,

pairs with high correlation in one dataset tend not be highly

correlated in the other (Pearson correlation r = 0.09; even this

correlation disappears if co-transcribed transcription factor-gene

pairs are excluded from the analysis). Thus, the two datatypes,

expression and fitness, should be complementary for analyzing

gene regulation. To illustrate this point, we examined our fitness

dataset and identified strong cofitness (r = 0.56; Pearson correla-

tion) between the uncharacterized transcription factor SO_1916

and its divergently transcribed neighbor gene SO_1917, a putative

efflux pump. Conversely, the expression correlation between

SO_1916 and SO_1917 is weak (r = 0.13; Pearson correlation).

SO_1916 and SO_1917 are required for optimal growth under

certain anaerobic conditions with DMSO as an electron acceptor

(Figure 2E). To demonstrate that SO_1916 regulates SO_1917,

we performed gene expression experiments on SO_1916 mutants

after transfer to anaerobic conditions with DMSO as an electron

acceptor (Figure S4). Relative to wild-type, we found a DMSO-

specific down regulation of SO_1917 in two independent

SO_1916 mutant strains (Figure S4). These data suggest that

SO_1916 is a neighbor regulator that activates SO_1917

expression and that the activity of the efflux pump encoded by

SO_1917 is necessary when DMSO is an electron acceptor.

Overall, we conclude that large-scale gene expression and

mutant fitness datasets provide complementary information.

Figure 6. Gene expression and mutant fitness are poorly correlated. (A) Comparison of gene expression and mutant fitness in LB (rich
media) versus minimal media with DL-lactate as a carbon source. Relative expression is a comparison of gene expression for wild-type MR-1 in
exponential growth in the two conditions. Relative fitness is the difference of pooled fitness values for the two conditions. Both relative fitness and
expression values are log2 ratios. For example, genes on the bottom right of the plot are up-regulated in expression in DL-lactate minimal media
relative to LB and are more important for fitness in DL-lactate minimal media than in LB. Therefore, a correlation of -1 would be a perfect correlation
between mutant fitness and gene expression. FBA auxotrophs are predicted from flux balance analysis [30]; TIGR auxotrophs are predicted from TIGR
functional roles [29]. (B) Same as (A) for minimal media with DL-lactate and N-acetyl-glucosamine (NAG) as carbon sources. Gene codes correspond to
edd (SO_2487; phosphogluconate dehydratase), zwf (SO_2489; glucose-6-phosphate 1-dehydrogenase), and nag (nagP (SO_3503), nagA (SO_3505),
nagB-II (SO_3506), nagK-I (SO_3507), and nagR (SO_3516)). The NAG genes were annotated by Osterman and colleagues [80]. Sick on LB or edge
indicates if a gene is sick on LB (which means that the gene is likely sick in many conditions) or insertions for that gene are only on the edge (not
within the central 5–80% portion of the protein). (C) Same as (A) for minimal media with DL-lactate and acetate as carbon sources. Gene codes
correspond to L-lactate dehydrogenase (SO_1518:SO_1519), pyruvate dehydrogenase (SO_0424:SO_0425), ccm – cytochrome c maturation
(SO_0259:SO_0268), cytochrome c electron transport genes (SO_2357:SO_2364; SO_0608:SO_0610), and TCA cycle and related genes (SO_0770,
SO_1483:SO_1484, SO_2339:SO_2341, SO_3855).
doi:10.1371/journal.pgen.1002385.g006
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Mutant fitness gives higher confidence predictions of gene function

and is better suited to annotating the function of genes with a low

false-positive rate (Figure 7). Conversely, the analysis of expression

datasets is a better methodology for elucidating gene regulation

(Figure 8). However, it is important to note that fitness and

expression datasets are not limited to gene function annotation

and gene regulation, respectively. Gene expression is an

established method for predicting gene function [53] albeit at

lower confidence than mutant fitness (Figure 7B). Conversely, as

described above for SO_1916, mutant fitness can lead to

regulatory insights that may be missed by expression profiling

alone.

Discussion

Evidence-based annotation of gene function using
mutant fitness

The systematic determination of gene function across the

diversity of bacteria is a major challenge in microbiology. Previous

studies have demonstrated the utility of high-throughput muta-

genesis and phenotyping strategies to annotate bacterial gene

function [10,54]. Nevertheless, these studies were only able to

assign specific functions to a small number of genes. To

demonstrate the utility of mutant fitness for annotating gene

function on a larger scale in a non-model bacterium, we described

Figure 8. Expression and fitness are both informative about gene regulation. (A) Coexpression of transcription factors and their predicted
target genes. All transcription factor-target gene pairs are derived from the manually curated RegPrecise database [41]. We excluded autoregulatory
pairs from both the RegPrecise gene pairs and the shuffled controls. The same 371 expression experiments described in Figure 7B are used. (B) Same
as A, using cofitness rather than coexpression. For fitness correlations, the entire fitness compendium of 195 experiments was used.
doi:10.1371/journal.pgen.1002385.g008

Figure 7. Mutant fitness gives confident predictions of gene function. (A) We used 195 fitness experiments to predict TIGR functional
groups or subroles. We show the distribution of confidence values for correct and incorrect predictions for the 618 genes with subroles assigned by
TIGR and also the distribution of confidence values for the 2,629 genes that were not assigned subroles by TIGR (in green; marked as unknown). The
confidence of correct predictions is significantly better than for the incorrect predictions (Kolmogorov-Smirnov test; D = 0.50, P-value,1e215). (B)
Same as (A) but using 371 microarray gene expression experiments. (C) Same as (A) but using both 195 pooled fitness experiments and 371 gene
expression experiments.
doi:10.1371/journal.pgen.1002385.g007
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the construction of a near-complete set of archived mutants in

Shewanella oneidensis MR-1 and the fitness profiling of this collection

in over 100 diverse conditions. The entire fitness dataset is

available on the MicrobesOnline website [50] and for download

(http://genomics.lbl.gov/supplemental/MR1fitness2011/). In ad-

dition to identifying a strong phenotype pattern for 1,230 genes, of

which 627 (51%) lack an E. coli ortholog and 282 (23%) are

annotated as hypothetical, we used gene fitness profiles to derive

‘evidence-based’ gene annotations for 40 genes/operons and we

verified some of these functions experimentally. On average, each

reannotated gene has a tree-ortholog in 97 (5%) of 1,828 other

bacterial genomes in MicrobesOnline [50]. Indeed, most bacterial

genomes (73%) contain at least one tree-ortholog of these genes,

which illustrates that our mutant fitness data and the evidence-

based annotations are relevant to most bacteria.

Techniques for large-scale bacterial mutant fitness
profiling

The approach presented here for MR-1 uses artificial DNA tags

engineered into transposons and a pooled growth assay in order to

determine relative fitness of each mutant strain. DNA tags, as best

exemplified in yeast and in this study, are a powerful method for

generating quantitative fitness data using a simple experimental

assay and sample-processing step [55]. Nevertheless, the approach

presented here requires archived strains and the mutant pool size

is limited to the number of unique TagModules that are available.

Archiving the mutant strains is beneficial for follow-up studies, in

particular when an efficient system for constructing targeted

mutations, such as recombineering in E. coli [56], is not available.

Archived strains also enable additional unpooled assays, for

example studies of protein localization [57] or metabolomics [58].

However, given the number of poorly characterized microbial

species and the continuing drop in sequencing costs, it is likely that

future fitness datasets will be generated using pool-based

approaches that do not require strain archiving such as HITS

[59], TraDIS [60], Tn-seq [61,62], and TRMR [63].

In addition to pool-based approaches described above, the high-

throughput imaging of clonal mutants has also been used to

generate a large-scale gene-phenotype map in bacteria, as recently

demonstrated in E. coli [10]. To compare the two methodologies,

we examined the operon fitness correlations from our tag-based

MR-1 dataset and the colony size-based E. coli dataset. We find

that the operon fitness correlations are significantly better for the

MR-1 compared to the E. coli dataset, even for matched conditions

(Figure S5). Given that polar effects should be similar in both

assays (a dominant drug marker marks both the targeted E. coli

deletions and the MR-1 transposon insertions), we conclude that

the DNA tag-based assay is more quantitative and better suited for

identifying small fitness defects. However, we found that some

MR-1 pool experiments (for example, succinate as a carbon

source) consistently gave low-quality fitness data by our metrics,

presumably because a handful of strains take over the population

and skew the relative fitness values (data not shown). A similar

phenomenon has been observed in pooled transposon mutant

studies in E. coli [64], suggesting that certain conditions are best

assayed as single mutants rather than pool-based assays.

Towards a phenotype for every gene in a bacterial
genome

Regardless of which method is used to generate large gene-

phenotype maps in bacteria, the challenges associated with this

data are common. Foremost, most genes in the genome either

have a weak phenotype or no phenotype at all and therefore

predicting functions using mutant fitness patterns is not possible.

Given that strong phenotypes are easier to assay and interpret, one

pressing question is what is necessary to identify strong phenotypes

for all genes in a bacterial genome? One option is to profile the

single gene mutation collection under a more diverse set of

laboratory conditions, including a large number of chemical

inhibitors with different modes of action, as in yeast [17] and E. coli

[10]. An alternative is to assay the mutant collection in more

ecologically relevant conditions under the hypothesis that some

genes may perform environment-specific functions (for instance,

cell-cell communication with a different species) that are difficult to

recapitulate in the laboratory. To lend credence to this hypothesis,

a study looking at the survival of MR-1 mutants in sediment

identified phenotypes for some genes that we failed to find a

phenotype for using our more standard laboratory assays [65]. A

third option is to systematically construct double mutations, similar

to that described in E. coli [66,67], under the hypothesis that

bacterial species have functionally redundant genes and pathways.

Each of the above approaches assumes that each gene actually has

a functional consequence to the cell. However, a microbial

genome is a snapshot in evolutionary time and some genes are

under weak selection and are in the process of being lost [68]. It is

unlikely that a strong phenotype, if any at all, will be found for all

of these genes.

Future directions for evidence-based annotation of
bacteria

Studies such as ours are part of a systematic effort to move from

sequencing bacterial genomes to understanding the function of all

genes. However, mutant fitness as described in this study is only

one piece of experimental evidence for predicting gene function.

Furthermore, proving mutant fitness-based annotations requires

additional investigation including metabolite and enzymatic assays

at the level of single genes. To improve and extend gene

annotations to a greater percentage of the genome, it is clear

that additional pieces of evidence such as protein-protein

interactions [69,70], biochemical activity, and metabolomics [71]

will be necessary to supplement the existing large-scale mutant

fitness and gene expression datasets, which are currently easier to

generate and are sure to proliferate in the near future. The

integration of diverse data types for a single bacterium should

provide insight into the function for many uncharacterized

bacterial genes for which we have strong phenotypes but no

functional predictions. Ultimately, the functional annotation of a

greater number of sequenced microbial genes promises to aid

future efforts in drug discovery, bioengineering, and biotechnol-

ogy.

Materials and Methods

Strains and media
S. oneidensis MR-1 was purchased from ATCC (catalog number

700550). E. coli conjugation donor strain WM3064 was a gift of

William Metcalf (U. of Illinois). The E. coli DargE strain was

obtained from the KEIO collection [11]. See Table S4 for the

strains used in this study. All strains were commonly cultured in

Luria-Bertani broth (LB) with appropriate antibiotic selection;

kanamycin (50 mg/ml) for MR-1 transposon mutants and for the

E. coli DargE strain, and gentamicin (15 mg/ml) for complemen-

tation strains containing plasmid pBBR1-MCS5. To grow the

diaminopimelic acid (dap) auxotroph WM3064, dap was added to

the media at a final concentration of 300 mM. Our standard MR-1

minimal media contained salts (per liter: 1.5 g NH4Cl, 0.1 g KCl,

1.75 g NaCl, 0.61 g MgCl2-6H20, 0.6 g NaH2PO4), 30 mM
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PIPES buffer, 20 mM DL-lactate, Wolfe’s vitamins, and Wolfe’s

minerals. For anaerobic minimal media, we added one of the

following electron acceptors: fumarate (30 mM), dimethyl sulfox-

ide (20 mM), iron (III) citrate (10 mM), manganese (IV) oxide

(30 mM), trimethylamine N-oxide (10 mM), nitrate (5 mM), or

cobalt (III)-EDTA (5 mM). For anaerobic experiments, manga-

nese oxide [72] and cobalt (III)-EDTA [73] were prepared as

described. For pool experiments with alternative nutrient sources,

we replaced the DL-lactate with a different carbon source, the

NH4Cl with a different nitrogen source, both with a single

carbon/nitrogen source, or the NaH2PO4 with an alternative

phosphorous source. For alternative sulfur sources, we replaced all

sulfate containing minerals in the Wolfe’s mineral mixture with

non-sulfur containing versions such that the added sulfur source

served as the sole source. MR-1 was typically grown at 30uC; E.

coli was grown at 37uC.

Transposon mutagenesis
We previously reported the generation and preliminary analysis

of a library of 7,387 transposon insertion mutants in MR-1 [19].

To achieve greater coverage of the genome, we mapped an

additional 17,301 mutants using a two-step arbitrary PCR and

sequencing protocol, as described [19]. Briefly, each TagModule

contains two unique 20 bp DNA sequences, the uptag and

downtag, each flanked by common PCR priming sites. The

TagModules are cloned into a Gateway entry vector and can be

readily transferred to any Gateway compatible destination vector

via the LR clonase reaction (Invitrogen). We transferred the

TagModules into two different transposon vectors that are active

in MR-1, the Tn5-based pRL27 [74] and mariner-based pMiniHi-

mar_RB1 [75]. The tagged transposons were introduced into MR-

1 by conjugation with an E. coli WM3064 donor strain carrying

the appropriate suicide vector. We used a two-step arbitrary PCR

and sequencing protocol to simultaneously map the transposon

insertion location and identify the TagModule. All mutants were

stored as glycerol stocks in either 96-well or 384-well plates.

Overall, we observe transposon insertion biases both on the main

5 MB chromosome and on the 161 kB megaplasmid (Figure S6).

Analysis of the insertion preferences for Tn5 and mariner indicates

that their insertion biases are not equal (Figure S7), thus

illustrating the benefit of using multiple transposons to achieve

maximal coverage. Additionally, we observed a greater than 4-fold

increase in mapped megaplasmid insertions relative to the

expectation (based on size). Given that the megaplasmid appears

to be equal in copy number to the main chromosome (data not

shown), we speculate that the megaplasmid is more accessible to

transposon mutagenesis. The total MR-1 transposon collection

consists of 24,688 archived strains and represents mutants in 3,447

unique genes (Table S1 for full list).

Pool fitness assays
We constructed two mutant pools, the upPool and dnPool, by

mixing equal volumes of overnight LB cultures for each strain.

These pools were designed such that each strain’s TagModule is

unique within that pool and to achieve maximal coverage of the

genome. The upPool contains 4,058 strains whose tags are

detected at a threshold ,56 over background in representative

start hybridizations. Conversely, the dnPool has 3,977 strains that

meet the same detection criteria. A total of 165 strains across both

pools (,2% of the overall number of strains that we attempted to

pool) were not detected at 56over background and fitness values

were not calculated for these strains. The 2% undetected strains

are primarily due to sample tracking errors, slow growth of the

mutant strain during the process of pool construction, and

mutations in the TagModule (data not shown). Taking into

account only those strains that are detectable, our two pools

contain 5,680 unique transposon mutants (2,420 mutant strains

are in both pools) and represent transposon insertions in 3,345

unique protein-coding genes. For 1,675 genes, two or more

independent mutants are contained in the pools (Figure S1). For

most pooled fitness experiments, we performed a single experi-

ment on each of the upPool and dnPool.

Individual aliquots of each pool were frozen at 280uC in

glycerol (10% v/v). Prior to initiating a pool experiment, a single

freezer aliquot of each pool was grown in LB aerobically at 30uC
to mid log phase (OD600 = ,2.0). At this point, we collected a

sample (,16109 cells) that we term the ‘‘start’’. The start sample

represents the time 0 of the experiment and is the control

experiment that we compare all of our growth conditions to. The

same recovered cells were typically used to inoculate the

‘‘condition’’ media at a starting OD600 of 0.01 or 0.02. For

standard liquid media conditions, we typically collected condition

samples after the cultures reached saturated growth, representing

between 3 and 9 population doublings. Some conditions, such as

LB, reach a high density and have more population doublings

than certain minimal media conditions, such as butyrate as the

sole source of carbon.

Liquid growth pool experiments were done in a number of

formats. Aerobic minimal media experiments were done in 10 mL

volumes with shaking at 200 rpm. Anaerobic experiments were

conducted in hungate tubes with shaking at 200 rpm. Anaerobic

experiments were set up in an anaerobic chamber (Coy) with a gas

mix of 5% H2, 10% CO2, and 85% N2. Certain stress experiments

in LB were performed in 1 mL volumes in the wells of a 24-well

microplate. For these experiments, the microplate was grown in a

Tecan Infinite F200 reader to measure the amount of growth

inhibition caused by the stress. Our target stress concentration

resulted in a ,50% reduction of the growth rate.

For swimming motility experiments, we pipetted ,16108 cells

from the start culture into the matrix of an LB soft agar plate

(0.25% w/v agar) and incubated the plate at 30uC. After 1 or 2

days, we removed cells from the outer ring (i.e. the motile cells)

using a sterile razor.

For heat shock survival experiments, we incubated the aliquots

of the start cells in a 42uC water bath for different amounts of time.

After incubation, we used some of the cells for measuring viability

by serial dilution and plating on LB. The remainder of the cells

was used to inoculate a fresh tube of LB that was grown overnight

(to avoid the possibility of detecting tags from dead cells). The tags

from the overnight sample were hybridized and used as a measure

of cell survival after heat shock. For cold survival experiments, we

used the same method as for heat shock except we incubated the

cells at 4uC rather than 42uC. We followed a similar method for

stationary phase survival. However, in this instance, we left the

pools in LB at 30uC for days after the cultures reached saturation.

Again, we used some of the cells for determining viability by

plating on LB plates; additional cells were used to inoculate fresh

LB media. The overnight growth of these fresh cultures was used

for tag array hybridization and serve as a measure of mutant

survival in stationary phase. Further details on the media used and

the growth conditions for each of the 195 pool experiments are

contained in Table S3. Plots showing the survival of MR-1 cells

after heat shock, cold incubation, and stationary phase are

contained in Figure S8.

Pool sample processing and tag microarray hybridization
Genomic DNA was isolated from each sample using either the

DNeasy blood tissue kit with optional RNase treatment (Qiagen)

S. oneidensis MR-1 Fitness Analysis

PLoS Genetics | www.plosgenetics.org 13 November 2011 | Volume 7 | Issue 11 | e1002385



or with a QIAxtractor genomic DNA robot (Qiagen). Approxi-

mately 100 ng of genomic DNA was used as a template to amplify

the uptags from the upPool samples and the downtags from the

dnPool samples using previously described primers and PCR

conditions [55]. We combined uptag and downtag PCR products

(10 mL of each) and hybridized to a single GenFlex 16K_v2

microarray (Affymetrix) that contains the tag complement

sequences. Microarrays were hybridized, washed, labeled, and

scanned as described [55].

Tag array data analysis
Using Affymetrix .CEL files as a starting point, we first averaged

the log2 intensities across the 5 replicate probes for each tag to

obtain values for each uptag and downtag. We computed the

difference (the log ratio) between these values for the condition

array and the start array, to give a fitness value for each strain.

Sometimes we used an average of start arrays from other

experiments instead of hybridizing a start array from that actual

experiment; log-levels in these independent start experiments were

highly correlated (r. = 0.95). We removed strains with the lowest

2% of levels in this average start array from the analysis. We

normalized the fitness values for the strains so that the median

fitness for each pool and for each chromosome (the main

chromosome and the megaplasmid) was zero. After this normal-

ization, some of our experiments showed significant effects based

on which 96-well plate the strain had been grown in while we were

preparing our pools. So, for all experiments, we also set the

median fitness of each of these groups of 96 strains to zero. See

Table S5 for all strain fitness data. We computed fitness values for

each gene by averaging the fitness values for all of the insertions in

that gene. If a gene had one or more ‘‘good’’ insertions (an

insertion within the central 5–80% portion of the gene), then we

used only those good insertions to compute the average. See Table

S6 for all gene fitness data.

To estimate the reliability of each fitness value, we took

advantage of our 14 control experiments (measurements of the

start pools after independent recoveries from the freezer) and the

fact that we have more than one fitness measurement for most

genes (i.e., more than one strain, or the single strain for the gene is

in both pools). We used an approach similar to that of Efron et al.

[76]. We first computed a t-like test statistic, which was:

t~m=
ffiffiffiffiffiffiffiffiffi
V=n

p

V~fy2z
X

(x{m)2g=n

where x are the measurement(s) for the gene, m is their average, n

is the number of measurements, and Y= median(STD(x)), that is,

the median across all genes with more than one measurement of

the standard deviation of that gene’s measurements. We

transformed our test statistic into Z scores that follow a normal

distribution in the absence of biological signal by using the control

experiments; we transformed the distribution separately for genes

with 1, 2, 3, or . = 4 measurements. We used conditions that we

had repeated to verify that these Z scores were appropriate (i.e.,

the rate of discordant outliers with high |Z| values was about the

same as expected by chance; data not shown). See Table S7 for Z

score data.

Individual strain growth assays
Aerobic single strain growth assays were performed in 96-well

microplates in a Tecan Sunrise plate reader at 30uC with readings

every 15 minutes. Anaerobic single strain growth assays were

performed in a DTX880 plate reader (Beckman) housed in an

anaerobic chamber (Coy) at 30uC with readings every 30 minutes.

All microplate growth assays contained 150 mL per well at a

starting OD600 of 0.02. Before all single strain growth assays, we

isolated a single colony of the mutant strain and confirmed the

expected location of the transposon insertion by PCR with a

transposon specific primer and a genome primer. We calculated

doubling times for growth curves using a logistic algorithm

implemented in R. To calculate the relative growth rate for

transposon mutants in Figure 1C, we divided the doubling time of

the transposon mutant by the doubling time of wild-type MR-1.

All single strain growth assays were performed a minimum of three

times.

Gene expression studies
We measured gene expression in wild-type MR-1 and in single

transposon mutant strains. Cells were harvested after RNAprotect

treatment (Qiagen) in either early exponential growth or one hour

after transfer to an experimental media. For the transfer

experiments, all cultures were initially cultured in DL-lactate

minimal media to early exponential phase prior to transfer to the

experimental media. For all experiments, we collected ,26109

cells, isolated total RNA with a RNeasy mini kit (Qiagen), and

synthesized Alexa Fluor 555 labeled cDNA with the SuperScript

Plus Indirect cDNA Labeling Module (Invitrogen).

Labeled cDNA was hybridized to custom Nimblegen oligonu-

cleotide microarrays according to the manufacturer’s instructions.

We used two gene expression microarray designs, a 4-plex

microarray that allows hybridizing 4 samples to different regions

of a single slide, and also a 12-plex microarray. The 4-plex

microarray had 66,228 probes, which reduced to 61,178 after

removing potential cross-hybridizing probes with BLAT, or

roughly 15 probes per gene. The 12-plex microarray had 42,598

probes, which reduced to 40,881 after removal of cross-

hybridizing probes. After removing potential cross-hybridizing

probes, we made the distribution of the condition match that of

the control (i.e., using quantile normalization), used local

regression (lowess) to eliminate any bias in the log2 ratio by probe

intensity, and set the median normalized log2 levels of the probes

to zero (separately for each scaffold). The final log2 ratio for each

gene was the average of these normalized values for its probes; we

removed values for genes with less than 4 measurements. These

data are available on MicrobesOnline. To verify the quality of

each experiment, we checked the correlation of log ratios between

adjacent genes that are predicted to be in the same operon and the

average absolute difference within these pairs. Most comparisons

had operon correlations above 0.8; some experiments had lower

correlations but also had low average differences, indicating that

the correlation was low because there was less biological signal to

detect.

Complementation studies
To complement the mutant phenotypes of single transposon

mutant strains, we introduced an intact copy of the mutated gene

on the broad-range plasmid pBBR1MCS5, which contains a

gentamicin resistance marker [77]. If possible, we used the native

promoter of the gene to drive expression. Otherwise, we relied on

the activity of the pBBR1MCS5 lac promoter to express the

complementation gene. The complementation plasmids were

constructed with circular polymerase extension cloning (CPEC)

[78] using primers 59-GCTCTAGAACTAGTGGATCCCCC(N)

and 59- GATATCGAATTCCTGCAGCCC(N) where (N) repre-

sents genome-specific primer sequences used to amplify the gene
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from genomic DNA. The underlined regions represent sequences

homologous to the pBBR1MCS5 backbone. To prepare the vector

for CPEC, we amplified pBBR1MCS5 with primers 59-GG-

GCTGCAGGAATTCGATATC and 59- GGGGGATCCAC-

TAGTTCTAGAGC. Following amplification, the template

vector was digested with DpnI. All PCR and CPEC reactions

were performed with Phusion high fidelity DNA polymerase (New

England Biolabs). Both the vector and insert were gel purified with

the Zymoclean Gel Recovery Kit (Zymo Research). The CPEC

reaction consisted of 50 ng of linearized pBBR1MCS5, 25 ng of

the complementation gene PCR product, and was cycled with the

following protocol: initial denaturation for 15 seconds at 98uC, 4

cycles of 98uC for 30 seconds, 55uC for 30 seconds, and 72uC for

3.5 minutes, and a final extension at 72uC for 3 minutes. The

CPEC reaction was transformed into chemically competent

TOP10 cells (Invitrogen) and plated on LB with gentamicin.

Complementation constructs were sequence-verified with primers

comp_for_seq, comp_rev_seq, and in some instances, additional

internal gene primers (see Table S8 for full list of primer sequences

used in this study). Complementation plasmids were transformed

into E. coli donor strain WM3064 and delivered into MR-1 via

conjugation. Single MR-1 colonies carrying the complementation

plasmids were selected on LB plates with gentamicin and assayed

for growth in a microplate format as described above. See Table

S9 for full list of complementation plasmids used in this study.

Predicting TIGR subroles
TIGR roles and subroles are associated with some gene families

in the TIGRFam database [29]. We obtained TIGRFam

assignments from MicrobesOnline along with their associated

roles and subroles. To exclude functional assignments that were

not specific, we removed assignments without a subrole or that

matched the strings ‘‘unknown’’ or ‘‘other’’. This left us with 978

assignments. To predict the functional classification of genes from

fitness and/or expression data, we used a standard implementation

of random forests (randomForest 4.5–36 in R-2.11) and default

settings. A random forest is a collection of decision trees, each of

which makes their own predictions. The random forest’s

prediction is that predicted by the largest number of decision

trees, and the confidence of the prediction is the proportion of

trees in the forest that make that prediction. Before applying the

random forest, we subtracted the mean from each experiment and

replaced missing values with zeroes. To assess the predictions

without being biased by the training data, we used 10-fold cross-

validation: we trained the classifier on 90% of the genes with

known subroles and then made predictions for the remaining 10%

of the genes. We repeated this 10 times so that we had predictions

for every gene. Because genes in the same operon tend to be

functionally related, we ensured that genes in the training set (the

90%) were not in the same operons as the genes we made

predictions for.

Supporting Information

Figure S1 Coverage in MR-1 mutant pools. Coverage of

protein-coding genes by the 5,680 unique strains in the two pools

(upPool and dnPool). Most of the genes absent from our data (cut

out portion of the pie chart) are short (,250 bp), non-unique

genes such as native transposons in which insertions are difficult to

map, or essential.

(PDF)

Figure S2 Fitness profiling confirms expected S. oneidensis MR-1

auxotrophs. Comparison of gene fitness values in DL-lactate

minimal media (y-axis) and rich media (x-axis). FBA auxotrophs

are predicted from flux balance analysis [30]; TIGR auxotrophs

are predicted from TIGR functional roles [29]. The dashed line

shows x = y.

(PDF)

Figure S3 Conservation of auxotrophs in S. oneidensis MR-1 and

E. coli. We compared minimal media fitness for E. coli and MR-1.

The E. coli data is from single mutant growth assays of the KEIO

deletion collection in glucose minimal media [11]. The MR-1 data

is from a pooled fitness assay in minimal media with DL-lactate as

the carbon source. FBA auxotrophs are predicted from a flux

balance analysis model for MR-1 [30]. The data are plotted for

1,086 orthologous genes for which we have data from both

organisms. There is a positive fitness correlation between MR-1

and E. coli orthologs on minimal media (r = 0.257; Spearman

correlation).

(PDF)

Figure S4 SO_1916 is a putative neighbor regulator of

SO_1917. (A) Comparison of genome-wide expression in two

independent mutants of SO_1916. RNA samples for both

SO_1916 mutants and wild-type were collected one hour after

transfer to anaerobic DL-lactate minimal media with DMSO as an

electron acceptor. The expression of both mutants is plotted as the

log2 ratio of mutant versus wild-type. The expression of SO_1917

is marked. (B) Expression of SO_1917 in different mutants and

growth conditions. All expression values are log2 ratios of the

mutant compared to the wild-type grown in the same condition.

DMSO is one hour after transfer to anaerobic minimal media with

DL-lactate as a carbon source and DMSO as an electron acceptor,

acetate is one hour after transfer to aerobic minimal media with

acetate as a carbon source, and DL-lactate is aerobic exponential

growth in DL-lactate minimal media. We measured gene

expression in two independent SO_1916 transposon mutants.

The number/plate well listed for each gene refers to the specific

transposon mutant in our collection (see Table S1).

(PDF)

Figure S5 Comparison of E. coli to MR-1 fitness data.

Comparison of matched condition mutant fitness values for S.

oneidensis MR-1 and E. coli grown in LB with either NaCl (panel A),

CuCl2 (B), NiCl2 (C), or nalidixic acid (D) stress. The E. coli data,

based on a colony size assay, is previously described [10]. For

visualization, we plotted very negative values of E. coli fitness at

24. The plotted MR-1 stress fitness data is relative to the gene’s

fitness in a no stress LB culture. Points in grey have a fitness effect

in LB alone (.0.5 or ,20.5, average of 5 experiments). The

values are plotted for E. coli/MR-1 orthologs. For each condition,

we note the operon correlation (opcor) for the E. coli and MR-1

datasets and the correlation (Spearman) for the fitness comparison.

Only nalidixic acid has a statistically significant correlation across

organisms (P = 0.00051).

(PDF)

Figure S6 S. oneidensis MR-1 transposon distribution. (A)

Location of 21,385 transposon insertions on the main chromo-

some. (B) Location of 3,303 transposon insertions on the

megaplasmid. (C) Increase in genes mutated as the number of

mapped transposon insertions increases. All genes (n = 4,632)

include all predicted protein-coding and RNA genes. Hittable

genes (n = 3,820) are the subset of all genes that are unique, of

sufficient length (.250 bp), and nonessential. Our final gene

coverage (n = 3,447) includes 90% of the hittable genome.

(PDF)

Figure S7 Transposon insertion biases in S. oneidensis MR-1. (A)

Distribution of insertion locations for 11,118 Tn5 transposon
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mutants on the main chromosome. (B) Same as (A) for 10,267

mariner transposon mutants.

(PDF)

Figure S8 Survival of S. oneidensis MR-1 after heat shock, cold

adaptation, and stationary phase. Survival of MR-1 after heat shock

at 42uC for different lengths of time. The survival plots of the upPool

and dnPool are plotted separately. Cells were plated on LB plates

and counted after 2 days of growth. (B) Same as (A) for cold survival

at 4uC. (C) Same as (A) for stationary phase survival in LB at 30uC.

(PDF)

Table S1 List of S. oneidensis MR-1 transposon mutants.

(XLS)

Table S2 S. oneidensis MR-1 essential gene classification.

(XLS)

Table S3 List of conditions for pooled fitness experiments.

(XLS)

Table S4 List of strains used in this study.

(XLS)

Table S5 Strain fitness values 195 MR-1 fitness experiments.

(TXT)

Table S6 Gene fitness values for 195 MR-1 fitness experiments.

(XLSX)

Table S7 Z scores for 195 MR-1 fitness experiments.

(XLS)

Table S8 List of primers used in this study.

(XLS)

Table S9 List of plasmids used in this study.

(XLS)

Text S1 Shewanella oneidensis MR-1 essential gene analysis.

(PDF)

Text S2 Rationale for new gene annotations.

(PDF)
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