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Summary

Steroid hormones modulate development, reproduc-
tion and communication in eukaryotes. The wide-
spread occurrence and persistence of steroid
hormones have attracted public attention due to their
endocrine-disrupting effects on both wildlife and
human beings. Bacteria are responsible for mineraliz-
ing steroids from the biosphere. Aerobic degradation
of steroid hormones relies on O2 as a co-substrate of
oxygenases to activate and to cleave the recalcitrant
steroidal core ring. To date, two oxygen-dependent
degradation pathways – the 9,10-seco pathway for
androgens and the 4,5-seco pathways for oestrogens
– have been characterized. Under anaerobic condi-
tions, denitrifying bacteria adopt the 2,3-seco path-
way to degrade different steroid structures. Recent
meta-omics revealed that microorganisms able to
degrade steroids are highly diverse and ubiquitous in
different ecosystems. This review also summarizes
culture-independent approaches using the character-
istic metabolites and catabolic genes to monitor ster-
oid biodegradation in various ecosystems.

Introduction

Thus far, more than 1000 different steroids are found to
naturally occur (Haubrick and Assmann, 2006; Hannich
et al., 2011; Valitova et al., 2016; Zubair et al., 2016;
Staley et al., 2017; Stonik and Stonik, 2018), including
commonly distributed sterols (e.g. cholesterol, phytos-
terols and ergosterol), steroid hormones (e.g. 17b-
oestradiol, progesterone and testosterone) and bile acids
(e.g. cholic acid) (see Fig. 1 for the common steroid
structures). A remarkable characteristic of steroids is
their extremely low aqueous solubility; that is, cholesterol
has a maximum solubility of 4.7 lM (= 1.8 mg l�1) in
aqueous solutions (Haberland and Reynolds, 1973). The
aqueous solubility of steroid hormones is also extremely
low; for example, in neutral aqueous solutions, the solu-
bility of natural oestrogens [e.g. oestrone (E1) and 17b-
oestradiol (E2)] is approximately 1.5 mg l�1 at room tem-
perature (Shareef et al., 2006), whereas the experimen-
tal aqueous solubility of testosterone can reach
23 mg l�1 at 25°C (Barry and El Eini, 1976). Similarly,
the synthetic 17a-ethynyloestradiol (EE2) also has a low
solubility in water (4.8 mg l�1 at 20°C) (Aris et al., 2014).
In animals, cholesterol is the precursor of all classes

of steroid hormones, namely glucocorticoids, mineralo-
corticoids and sex hormones (androgens, oestrogens
and progestogens). The biosynthesis of steroid hor-
mones involves the elimination of the cholesterol side
chain and hydroxylation of the steroid nucleus (Ghayee
and Auchus, 2007). All these hydroxylation reactions
require NADPH and molecular oxygen; thus, steroid
biosynthesis only occurs in the aerobic biosphere.
Among sex steroids, progestogens (such as protes-
terone) function in preparing the lining of the uterus for
implantation of an ovum and are also essential for main-
taining pregnancy. The biotransformation of proges-
terone into androgens includes a hydroxylation at C-17
and the subsequent cleavage of the side chain. Andro-
gens regulate the development and maintenance of male
characteristics in vertebrates, and the major androgens
naturally produced in males are testosterone, dihy-
drotestosterone and androstenedione (also named
androst-4-en-3,17-dione, AD) (see Fig. 1 for structures)
(O’Connor et al., 2011). Oestrogens are responsible for
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developing and regulating the reproductive system and
secondary sex characteristics of female vertebrates.
Major endogenous oestrogens in females include E1, E2
and estriol (E3) (see Fig. 1 for structures). Oestrogens
are synthesized from androgens by the loss of the C-19
angular methyl group and the formation of an aromatic
A-ring. The aromatization proceeds with three consecu-
tive oxidative steps (Miyairi and Fishman, 1985). Aro-
matase (namely P450arom or CYP19) catalyses the
sequential hydroxylations of a C19 substrate using three
molecules of NADPH and three molecules of molecular
oxygen to produce one molecule of oestrogen (Praporski
et al., 2009).
Numerous steroids are used for medical purposes,

such as in treatments for cancer, arthritis and allergies,
as well as birth control (Woutersz, 1991; Peter et al.,
1994; Merz et al., 2010; Dokras, 2016). A variety of syn-
thetic hormones are commonly used as medications for
humans as well as livestock and aquaculture. Synthetic
androgens (anabolic steroids) are ester derivatives of
androgens known as 19-nortestosterone or nandrolone
(see Fig. 1 for structures) are often used to treat

anemias, cachexia, osteoporosis and breast cancer.
EE2 is a synthetic oestrogen widely used in oral contra-
ceptives in combination with progestin, a synthetic pro-
gestogen (Wise et al., 2011). EE2 is also used to
improve productivity by promoting growth and preventing
and treating reproductive disorders in livestock (Liu
et al., 2014; Xu et al., 2018). In aquaculture, EE2 is
often used to develop single-sex populations of fishes to
optimize growth (Aris et al., 2014).

The impact, occurrence and fates of steroid sex
hormones in environments

Steroid sex hormones are pheromones and endocrine
disruptors

Some steroid hormones are noted as pheromones in
animals, including fish, amphibians and mammals (Doyle
and Meeks, 2018). Studies on fish olfactory systems
indicated that most fishes use steroids for chemical com-
munication (Moore and Scott, 1991; Baza´es and Sch-
machtenberg, 2012). Sulphated steroids (e.g. 17b-
oestradiol disulphate) are potent olfactory chemosignals

Fig. 1. The chemical structures of prevalent natural and synthetic steroid hormones. The ring identification (A-D) and carbon numbering (1-27)
systems for steroids are shown on cholesterol. Underlined compounds are synthetic steroids.

ª 2019 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology., Microbial
Biotechnology, 13, 926–949

Microbial catabolism of steorid hormones 927



in larval amphibians (Houck, 2009). Androstenone, 17b-
oestradiol disulphate, estratetraenol and testosterone
sulphate are considered sex pheromones in some mam-
mals, such as mice and pigs (Doyle and Meeks, 2018).
As pheromones, steroids can affect fish behaviour in a
variety of ways, even at extremely low concentrations
(Adams et al., 1987; Kolodziej et al., 2003; Kolodziej
et al., 2004; Serrano et al., 2008).
The potential for sex hormones to disrupt endocrine

functions in various organisms via direct or indirect expo-
sure has been extensively investigated (Aris et al.,
2014). Several studies showed that oestrogens cause
endocrine disruption in fishes (Jobling et al., 2006;
Morthorst et al., 2014), frogs (Lambert et al., 2015; Reg-
nault et al., 2018) and invertebrates (Oetken et al.,
2004). Notably, both natural and synthetic oestrogens
displayed endocrine-disrupting activities at concentra-
tions as low as nanograms per litre (Robinson and Hel-
lou, 2009). The potencies of these oestrogens are
measured in relation to E2 (set at 100) – EE2: 246; E1:
2.54; and E3: 17.6 (Pillon et al., 2005). On the other
hand, some studies have reported that exposure to
androgens in polluted rivers leads to the masculinization
of freshwater wildlife (Howell et al., 1980; Bortone et al.,
1989; Parks et al., 2001; Orlando et al., 2004). In addi-
tion, the endocrine-disrupting effects of synthetic pro-
gestogens on aquatic species have been documented
(Zeilinger et al., 2009; Cardoso et al., 2017).

Potential sources of steroid hormones in environments

Steroid sex hormones may originate from agriculture,
industry, humans, household products and other phar-
maceuticals (Wise et al., 2011). Human excreta have
been considered a major source of steroid hormones
in aquatic environments (Johnson et al., 2000; Chang
et al., 2011). Livestock also excrete large amounts of
sex steroids into the environment (Maier et al., 2000;
Lange et al., 2002). Manure used as fertilizers has also
been a major source of steroid hormones released into
the environment (Hanselman et al., 2003; Kjaer et al.,
2007). Steroid hormones can also end up in aquatic
ecosystems via rainfalls and leaching from livestock
wastes (Hanselman et al., 2003; Kolodziej et al.,
2004). In addition, steroid hormones can be discharged
into environments through agricultural applications of
municipal sewage biosolids as fertilizers (Lorenzen
et al., 2004; Hamid and Eskicioglu, 2012). Moreover,
steroid hormones in the environment may partially be
the result of microbial activities (Mendelski et al.,
2019). For example, phytosterols in pulp and paper mill
effluents can be transformed into androgens by
microorganisms in river sediments (Jenkins et al.,
2003; Orrego et al., 2009).

Environmental levels of steroid sex hormones

Global urbanization has led to the widespread occurrence
of steroid hormones becoming a concern worldwide. Both
biogenic (natural) and anthropogenic steroid hormones
are frequently detected in soils and aquatic environments
in the United Kingdom, United States, Japan, Korea, Den-
mark, Spain, Taiwan, France, China, Swaziland, Czech
Republic and Slovak Republic (Belfroid et al., 1999; Ter-
nes et al., 1999; Baronti et al., 2000; Hashimoto et al.,
2000; Huang and Sedlak, 2001; Kolodziej et al., 2003;
Shore and Shemesh, 2003; Labadie and Budzinski, 2005;
Bjerregaard et al., 2006; Chen et al., 2007; , 2007; Fan
et al., 2011; Vajda et al., 2008; Li et al., 2009; Wise et al.,
2011; Orlando and Ellestad, 2014; Gorga et al., 2015;
Shih et al., 2017; �Sauer et al., 2018; Shen et al., 2018;
Zhang et al., 2018; Zhang and Fent, 2018). In surface
water, the concentration of steroid hormones ranges from
nanograms to micrograms per litre (Ternes et al., 1999;
Baronti et al., 2000; Kolodziej et al., 2003; Labadie and
Budzinski, 2005; Yamamoto et al., 2006; Chen et al.,
2010; Chang et al., 2011; Fan et al., 2011; �Sauer et al.,
2018; Shen et al., 2018; Zhang et al., 2018; Zhang and
Fent, 2018). For example, oestrogens, androgens, pro-
gestogens, glucocorticoids and mineralocorticoids were
detected in the surface water of urban rivers in Beijing
(China), with androgens (0.48–1.9 µg l�1) being the most
abundant (Chang et al., 2009). In addition, concentrations
of natural oestrogens (E1, E2 and E3) in the Wulo Creek
of southern Taiwan were as high as 1.3 µg l�1 due to the
livestock feedlot nearby (Chen et al., 2010). The content
of steroid hormones in river and marine sediments is often
detected at ng g�1 levels (Huang et al., 2013; Gorga
et al., 2015; Praveena et al., 2016; Tiwari et al., 2016).

Fate of steroid sex hormones in engineered and natural
ecosystems

Sex hormones can be removed or transformed by engi-
neered ecosystems such as activated sludge in wastew-
ater treatment plants (Andersen et al., 2003; Chang
et al., 2009; Yu and Chu, 2009; Chang et al., 2011; Fan
et al., 2011), constructed wetlands (Song et al., 2009),
microalgae systems (Lai et al., 2002; Sol�e and Mata-
moros, 2016), sludge-amended soils (Albero et al.,
2013), swine manure, poultry litter, dairy waste disposal
systems and compost (Hutchins et al., 2007; Liu et al.,
2012; Lin et al., 2015). Wastewater treatment plants are
crucial for removing steroid hormones via physical
adsorption and biodegradation, although the latter is con-
sidered the major mechanism (Joss et al., 2004; Yu
et al., 2013). Chang et al. (2011) investigated the
removal of androgens, oestrogens and progestogens in
seven wastewater treatment plants. Their study indicated
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a high removal efficiency (91–100%) for androgens and
progestogens; however, the removal efficiency for
oestrogens was relatively lower (67–80%).
The removal of steroid hormones through microbial

activities is also observed in natural ecosystems such as
soils (Fan et al., 2007; Mashtare et al., 2013), river water
(J€urgens et al., 2002), sandy aquifers (Ying et al., 2003),
as well as seawater and marine sediments (Homklin
et al., 2011; Gorga et al., 2015; Liu et al., 2015a). In gen-
eral, microorganisms degrade steroids slowly under oxy-
gen-limited or oxygen-fluctuating conditions. Thus,
anaerobic environments such as river and marine sedi-
ments are reservoirs for steroids (Mackenzie et al., 1982;
Hanselman et al., 2003; Czajka and Londry, 2006).

Microorganisms involved in the degradation of
steroid sex hormones

Steroids are carbon-rich and highly reduced compounds
that are abundant and ubiquitous in the environment;
thus, they are attractive carbon and energy sources for
microorganisms. Certain microorganisms, including bac-
teria (Fernandes et al., 2003; Donova and Egorova,
2012), yeasts (Liu et al., 2017), fungi (Kristan and
Ri�zner, 2012) and microalgae (Pollio et al., 1994), are
able to transform steroids, but the ability to mineralize
steroids (complete degradation of steroids to CO2) has
only been identified in certain bacteria (Bergstrand et al.,
2016; Yang et al., 2016; Holert et al., 2018). The major
focus of recent research has been elucidating the diver-
sity of steroid degraders and their degradation mecha-
nisms. Several studies have used culture-dependent
approaches to isolate steroid hormone-degrading bacte-
ria from different engineered and natural ecosystems,
and diverse degraders classified as actinobacteria and
proteobacteria have been reported (Bergstrand et al.,
2016). The significance of investigating steroid-microor-
ganism interactions has increased for four main reasons.
First, microbial degradation is crucial for removing ster-
oid sex hormones from polluted ecosystems. Second,
microbial transformation of steroids has been exploited
in the pharmaceutical industry to produce high-value
steroid drugs through biotechnology processes. Third,
steroid degradation is important for the virulence of some
bacterial pathogens. Fourth, recent studies suggest that
steroid hormones mediate bidirectional interactions
between bacteria and their eukaryotic hosts (vom Steeg
and Klein, 2017). In this review, we summarize the
important steroid hormone-degrading bacteria.

Aerobic steroid hormone-degrading bacteria

Talalay et al. (1952) were the first to isolate an unidenti-
fied Gram-negative bacterium from soils capable of

growing on an agar plate containing testosterone as the
sole carbon source. This bacterium – reclassified as
Comamonas testosteroni DSM 50244 (Betaproteobacte-
ria) (Tamaoka et al., 1987) – was able to degrade
testosterone completely, according to a stoichiometry
ratio of testosterone, O2 and CO2. Later, another
betaproteobacterium isolated from soils, Alcaligenes sp.
strain M21, was shown to be capable of growing on
testosterone or E2 as its sole carbon source (Payne and
Talalay, 1985). Thus far, C. testosteroni strains ATCC
11996 and TA441 have been the model microorganism
for studying the testosterone catabolic pathway (Zhang
et al., 2011; Horinouchi et al., 2012). Interestingly, some
testosterone-degrading proteobacterial isolates origi-
nated from marine environments (Zhang et al., 2011;
Sang et al., 2012); for example, Endozoicomonas mon-
tiporae BCRC 17933, a gammaproteobacterium isolated
from the encrusting pore coral Montipora aequitubercu-
lata (Yang et al., 2010), is capable of using testosterone
as sole carbon source (Ding et al., 2016). In addition to
the proteobacteria (Horinouchi et al., 2012), most other
testosterone-degrading bacteria belong to the phylum
Actinobacteria (Bergstrand et al., 2016). Among them, R.
ruber DSM 43338, R. aetherivorans DSM 44752 and R.
rhodochrous DSM 43269 can only grow on a single type
of steroid hormone (testosterone), whereas R. ruber
strain Chol-4 (= DSM 45280) displayed a broad range of
catabolic capacities for cholesterol, testosterone and pro-
gesterone (Fern�andez de las Heras et al., 2009). This
strain and R. rhodochrous DSM 43269 have been used
to identify degradation genes responsible for different
steroid substrates in actinobacteria (Petrusma et al.,
2009, 2011, 2014; Fern�andez de las Heras et al., 2012;
Fern�andez de Las Heras et al., 2013; Guevara et al.,
2017). On the other hand, information on progesterone
degraders is relatively scant. Apart from the above-men-
tioned R. ruber strain Chol-4, only a few studies have
reported transformation of progesterone via certain kinds
of bacteria (Donova, 2007; Donova and Egorova, 2012).
The complete microbial degradation of oestrogens

was first described by Coombe et al. (1966) in the acti-
nobacterium Nocardia sp. E 110, isolated from soil.
Some Rhodococcus isolates from soil or activated
sludge (e.g. R. equi and R. zopfii) were capable of
degrading oestrogens completely (Yoshimoto et al.,
2004; Kurisu et al., 2010). On the other hand, the oestro-
gen-degrading alphaproteobacterial Novosphingobium
tardaugens NBRC 16725 (Fujii et al., 2003) and Sphin-
gomonas spp. (Ke et al., 2007; Yu et al., 2007) were iso-
lated and characterized, and the mechanisms involved in
the oestrogen catabolism have been identified recently
(Chen et al., 2017; Wu et al., 2019). A list of the bacte-
rial strains capable of aerobic steroid degradation is
given in Table 1. To our knowledge, no microorganisms
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are able to utilize the synthetic oestrogen EE2 as sole
carbon and energy source. However, strains R. equi
ATCC 13557 and R. erythropolis ATCC 4277 displayed
partial EE2 degradation activity when co-incubated with
glucose and adipic acid, respectively (O’Grady et al.,
2009).

Anaerobic steroid hormone-degrading bacteria

The aerobic steroid degraders have been extensively iso-
lated; by contrast, the number of anaerobic steroid-degrad-
ing bacterial isolates is relatively limited. The complete
degradation (mineralization) of steroids in sediments under
denitrifying conditions was first reported by Taylor et al
(1981). To date, only a few anaerobic steroid-degrading
bacteria have been isolated and characterized (Harder and
Probian, 1997; Fahrbach et al., 2008). Sterolibacterium
denitrificans strain Chol-1S (= DSM 13999), isolated from
denitrifying sludge in a wastewater treatment plant (Tarlera
and Denner, 2003), is able to grow with various sterols
(Warnke et al., 2017) and androgens (Wang et al., 2014),

with nitrate as the terminal electron acceptor. A denitrifying
betaproteobacterium, Denitratisoma oestradiolicum strain
AcBE2-1 (= DSM 16959), is able to degrade natural oestro-
gens (E1 and E2) but not cholesterol or androgens (Fahr-
bach et al., 2006). However, a closely related strain,
Denitratisoma sp. DHT3, isolated from denitrifying sludge
in a wastewater treatment plant, had the capacity to
degrade E1, E2 and testosterone (Wang et al., 2019).
Based on the stoichiometric analysis, the above-mentioned
bacterial isolates were shown to completely degrade speci-
fic steroids. Interestingly, these steroid hormone-degrading
anaerobes share common physiological traits. First, colony
growth on an agar plate was very marginal or not observed;
thus, their isolation and purification were conducted via
repeating serial dilution. Second, all strains utilized an
extremely narrow spectrum of substrates. Third, they are
able to use either oxygen or nitrate as the electron accep-
tor, but D. oestradiolicum AcBE2-1 cannot degrade E2 with
oxygen as the electron acceptor (Fahrbach et al., 2006).
The betaproteobacterium Thauera terpenica strain 58Eu
(= DSM 12139), isolated from a ditch (Foss and Harder,

Table 1. Selection of the bacterial strains capable of aerobic degradation of steroid hormones.

Phylum/class Strain Origin

Genome information

Steroid substrates

Growth
on agar
plate

G + C content
(mol%) Accession number

Actinobacteria Rhodococcus ruber M1,
N361 (DSM 43338)

Activated
sludge

70.5 GCF_001646835.1 AD, cholesterol,
testosterone

Yes

Rhodococcus
aetherivorans 10BC-312
(DSM 44752)

Activated
sludge

NA NA AD, ADD, testosterone Yes

Rhodococcus ruber Chol-4 Activated
sludge

70.6 GCF_000347955.2 AD, ADD, cholesterol,
17b-Oestradiol,
testosterone,
progesterone

Yes

Amycolatopsis sp. 75iv2
(ATCC 39116)

Soil 69.1 AFWY00000000 Cholesterol, testosterone Yes

Rhodococcus equi ATCC
13557

NA NA NA 17a-Ethinyloestradiol
(partial degradation)

Yes

Rhodococcus erythropolis
ATCC 4277

Soil 67.0 NA 17a-Ethinyloestradiol
(partial degradation)

Yes

Alphaproteobacteria Novosphingobium
tardaugens ARI-1
(NBRC 16725)

Activated
sludge

61.2 CP034719 17b-Oestradiol, oestrone,
estriol

Yes

Sphingomonas sp. KC8 Activated
sludge

63.7 CP016306 17b-Oestradiol, oestrone,
testosterone

Yes

Sphingomonas wittchii
RW1

River 68.4 CP000699 Testosterone Yes

Betaproteobacteria Comamonas testosterone
(ATCC 11996, DSM
50244)

Soil 61.5 AHIL00000000.1 Testosterone Yes

Cupriavidus necator H16
(ATCC17699)

Activated
sludge

66.5 NC_008313 Testosterone No
66.7 NC_008314

Gammaproteobacteria Endozoicomona
montiporae CL-33
(BCRC 17933)

Coral 48.4 CP013251 Testosterone Yes

Pseudomonas
resinovorans CA10
(NBRC 106553)

Activated
sludge

65.6 AP013068 Testosterone NA

AD, androst-4-en-3,17-dione; ADD, androsta-1,4-diene-3,17-dione; NA, not available.
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1998), is able to degrade testosterone, but the presence of
the co-substrate (acetate) in denitrifying medium is essen-
tial (Yang et al., 2016). Recently, Azoarcus sp. strain Aa7
capable of degrading ADD under denitrifying conditions
has been isolated from soil (Y€ucel et al., 2019). The bacte-
rial strains capable of anaerobic steroid degradation are
shown in Table 2. Notably, all these denitrifiers are faculta-
tive anaerobes and can be handled easily under aerobic
conditions. Moreover, the genomes of most of these strains
are available.

Bacterial degradation pathways of steroid sex
hormones

Aerobic biodegradation of androgens through the 9,10-
seco pathway

The aerobic catabolic pathways for major classes of ster-
oids – including sterols, androgens, oestrogens, progesto-
gens and bile acids – have been elucidated in various
bacteria. The cholesterol degradation pathway in acti-
nobacteria has been studied in some details, partially
resulting from the biotechnological applications of acti-
nobacteria in steroid drug production (Fernandes et al.,
2003; Donova and Egorova, 2012). Moreover, cholesterol
catabolism plays a critical role in mycobacterial pathogenic-
ity (Pandey and Sassetti, 2008; VanderVen et al., 2015;
Crowe et al., 2017; 2018). Kieslich (1985) was the first to

propose a general scheme of aerobic cholesterol degrada-
tion, with some common androgens – including AD and
androsta-1,4-diene-3,17-dione (ADD) – as key intermedi-
ates in this pathway. The degradation involved a series of
enzymes that have been mainly investigated by Dr. Lindsay
D. Eltis’ team. The genomic analysis revealed that, in
Mycobacterium tuberculosis strain H37Rv, a gene cluster
with over 80 catabolic genes is responsible for the choles-
terol catabolic pathway (van der Geize et al., 2007; Crowe
et al., 2015). Moreover, the key enzymes involved in this
pathway, including the oxygenases for the degradation of
cholesterol side chain (Rosłoniec et al., 2009; Ouellet et al.,
2010) and oxygenolytic cleavage of the A/B-rings (Yam
et al., 2009; Capyk et al., 2011), as well as the hydrolases
for the C/D-rings degradation (Crowe et al., 2017), have
been characterized. This aerobic pathway is widely dis-
tributed in actinobacteria (Bergstrand et al., 2016), suggest-
ing that aerobic steroid degradation is crucial for their
survival in environments. Some actinobacteria can also uti-
lize androgens; one may thus envisage that actinobacteria
use homologous enzymes to aerobically degrade andro-
gens through a highly similar pathway (Donova, 2007;
Bergstrand et al., 2016).
Aerobic androgen degradation has been mainly stud-

ied using Comamonas testosteroni (a betaproteobac-
terium) as the model organism. The studies on aerobic
testosterone catabolism were initiated in the 1960s by

Table 2. Characterized bacterial strains that are capable of degrading steroid hormones under anaerobic conditions.

Class Strain Origin

Genome information

Steroid substrates

Electron accep-
tors (growth
with steroids)

Growth
on agar
plate

G + C
content
(mol%)

Accession
number

Betaproteobacteria Azoarcus sp. Aa7
(DSM 16959)

Soil 66.1 QVLR00000000 ADD, cholate,
deoxycholate

Nitrate Yes

Denitratisoma
oestradiolicum
AcBE2-1 (DSM
16959)

Activated
sludge

61.4 NCXS00000000 E1, E2 Nitrate Marginal

Denitratisoma sp.
DHT3

Activated
sludge

64.9 CP020914 E1, E2,
testosterone

Nitrate No

Sterolibacterium
denitrificans Chol-1S
(DSM 13999)

Activated
sludge

65.3 LT837804 AD, cholesterol,
testosterone

Nitrate, oxygen No

Sterolibacterium sp.
72Chol (DSM
12783)

Ditch NA NA Cholesterol Nitrate, oxygen Nob

Thauera terpenica
58Eu (DSM 12139)

Ditch 64.2 ATJV01000070 Testosteronea Nitrate Yes

Thauera terpenica
GDN1

Estuarine sediment NA NA

Testosteronea Nitrate Yes
Gammaproteobacteria Steroidobacter

denitrificans FS
(DSM 18526)

Activated
sludge

61.7 CP011971 AD, E1, E2,
testosterone

Nitrate, oxygen No

AD, androst-4-en-3,17-dione; ADD, androsta-1,4-diene-3,17-dione; NA, not available.
aA co-substrate such as acetate is essential (Yang et al., 2016; Shih et al., 2017).
bThe strain formed tiny colony on nutrient agar plate but unable to grow after 2–6 times of sub-culturing.
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Sih et al. (1966), and 30 years later, Horinouchi et al.
(2001, 2003 Horinouchi et al., 2004) used a gene disrup-
tion technique to identify the degradation genes as well
as catabolic intermediates accumulated in C. testos-
teroni mutants. The aerobic degradation pathway of
androgens was established based on these molecular
studies (Horinouchi et al., 2012; Horinouchi et al., 2018).
Under aerobic conditions, C. testosteroni tends to oxi-
dize the 17-hydroxyl group of testosterone into a car-
bonyl group. However, this dehydrogenation reaction is
not a prerequisite for core ring cleavage. In contrast, oxi-
dation of the A-ring is thought to initiate the core ring
degradation. The process includes two reactions: oxida-
tion of the 3-hydroxyl moiety and oxidation of C-1/C-2 of
androgens (Fig. 2). 3a- or 3b-hydroxysteroid dehydroge-
nases, members of short-chain dehydrogenase/reduc-
tase family, are involved in the oxidation of 3-
hydroxyandrogens such as epiandrosterone, whereas 3-
ketosteroid-Δ1-dehydrogenase (TesH) is responsible for
the introduction of a double bond between C-1 and C-2
of AD. The formation of the 3-oxo-1,4-diene structure at
an early stage is critical since it enables cleavage of the
core ring. The subsequent step is the hydroxylation at C-
9 in the B-ring by a monooxygenase, 3-ketosteroid 9a-
hydroxylase (encoding by orf17). The resulting structure,
9a-hydroxy-androsta-1,4-diene-3,17-dione, is very unsta-
ble and undergoes an abiotic cleavage between C-9 and
C-10 in the B-ring and the simultaneous aromatization of
the A-ring, producing a secosteroid, 3-hydroxy-9,10-sec-
onandrosta-1,3,5(10)-triene-9,17-dione (3-HSA). This
9,10-secosteroid is the key intermediate in this aerobic
pathway, named the 9,10-seco pathway by Philipp
(2011). After the production of 3,4-dihydroxy-9,10-seco-
nandrost-1,3,5(10)-triene-9,17-dione (3,4-DHSA) through
the 4-hydroxylation reaction by another monooxygenase
– TesA1/A2 – the catecholic A-ring is subject to meta-
cleavage by an extradiol dioxygenase, TesB. Subse-
quently, the hydrolase TesD mediates the hydrolytic
cleavage between the C-5 and C-10 of 4,5-9,10-diseco-
3-hydroxy-5,9,17-trioxoandrosta-1(10),2-diene-4-oic acid
(4,9-DSHA), producing 3aa-H-4a(3’-propanoate)-7ab-
methylhexahydro-1,5-indanedione (HIP). Overall, the aer-
obic degradation of the A/B-rings of androgens requires
at least two monooxygenases and an extradiol dioxyge-
nase, with molecular oxygen as a co-substrate (Fig. 2).
One the other hand, the regulation of the androgen

degradation genes has been reported. In C. testosteroni,
the gene product of teiR (a testosterone-inducible regula-
tor) positively regulates the transcription of genes involved
in the initial steps of steroid degradation (Horinouchi et al.,
2004). Pruneda-Paz et al (2004) further demonstrated that
the teiR-disrupted mutant strain lost the ability to use
testosterone as its sole carbon source. By contrast, the
repressor protein TetR may be specifically responsible for

the expression of the 3b,17b-hydroxysteroid dehydroge-
nase gene (Pan et al., 2015; Wu et al., 2015).
Thus far, bacterial steroid uptake is poorly understood.

Actinobacteria transport cholesterol via the ATP-depen-
dent MCE4 protein, a member of the Mammalian Cell
Entry (MCE) superfamily that locates in cytoplasmic mem-
brane (Casali and Riley, 2007; Mohn et al., 2008). In
Gram-negative proteobacteria, the outer membrane and
periplasmic space complicate steroid uptake and catabo-
lism. Furthermore, the lipopolysaccharide leaflet on the
outer surface of the outer membrane impedes steroids
from passive diffusion through the membrane bilayer
(Pl�esiat and Nikaido, 1992). The ATP-dependent MCE
proteins are ubiquitous among proteobacteria (Casali and
Riley, 2007). These proteins form a conserved hexameric
ring module spanning the periplasmic space to transport
phospholipids and other hydrophobic molecules (Malin-
verni and Silhavy, 2009; Ekiert et al., 2017). Thus, the
possibility that MCE-like transporter might play a role in
steroid uptake in proteobacteria cannot be excluded.
Literature on aerobic biodegradation of progestogen is

relatively limited. Liu et al. (2013) identified some andro-
gens (e.g. AD and ADD) as intermediates of aerobic pro-
gesterone degradation. Moreover, Horinouchi et al. (2012)
suggested that C. testosteroni degrades progesterone
through the 9,10-seco pathway. The 9,10-seco pathway is
also responsible for the bile acid degradation in Pseu-
domonas sp. strain Chol1 (Philipp, 2011). Interestingly, the
strain Chol1 accumulated extracellular androgenic interme-
diates such as ADD during the degradation of bile acids
(Holert et al., 2014). The unusual release of the androgens
by the bile acid-degrading bacteria into the environment
may have hormonal effects on the coexisting fauna (Men-
delski et al., 2019). In summary, the aerobic catabolic path-
ways of sterols, bile acid, androgens and progestogens
proceed through the oxygen-dependent 9,10-seco path-
way, with 9,10-secosteroids (e.g. 3-HSA and its 17-hy-
droxyl structure) as characteristic intermediates.

Aerobic degradation of oestrogens through the 4,5-seco
pathway

Oestrogens are the most concerning endocrine disrup-
tors (Ghayee and Auchus, 2007) and are also potential
carcinogens (Yager and Davidson, 2006). A complete
aerobic pathway of oestrogen degradation was recently
proposed in the alphaproteobacterium Sphingomonas
sp. strain KC8 (Wu et al., 2019), and several gene clus-
ters involved in this aerobic pathway have also been
identified (Chen et al., 2017; Wu et al., 2019). Compared
to the aerobic 9,10-seco degradation pathway, the
oestrogen degradation pathway is different in several
aspects: (i) the core ring cleavage occurs between C-4
and C-5 in the A-ring; thus, the pathway is named the
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4,5-seco pathway; (ii) the A/B-rings degradation contains
a series of coenzyme A (CoA)-esters; and (iii) this path-
way produces oestrogen-derived dead-end-products:
pyridinestrone acid (PEA) and 4-norestrogenic acid
(Fig. 3).
Under aerobic conditions, E2 is first oxidized to E1 by

17b-oestradiol dehydrogenase (OecA). The C-4 of E1 is
then hydroxylated by a monooxygenase oestrone 4-hy-
droxylase (OecB), and the resulting catecholic A-ring is
opened through meta-cleavage by an extradiol dioxyge-
nase, 4-hydroxyestrone 4,5-dioxygenase (OecC) (Fig. 3).

The meta-cleavage product of 4-hydroxyestrone is
unstable, and in the presence of ammonium may
undergo an abiotic recyclization to produce a nitrogen-
containing compound pyridinestrone acid. It is known
that meta- cleavage metabolites produced in bacterial
cultures are often abiotically recyclized with ammonium
to generate picolinic acid (pyridine 2-carboxylic acid)
products (Dagley et al., 1960; Mycroft et al., 2015). The
production of steroid metabolites through non-enzymatic
reactions has also been demonstrated in the 9,10-seco
pathway (Kieslich, 1985). The addition of a hydroxyl

Fig. 2. The aerobic 9,10-seco pathway for bacterial degradation of androgens. Characterized or annotated enzymes from proteobacteria are
marked in blue, and those from actinobacteria are marked in red. Protein nomenclature is based on that of Comamonas testosteroni strain
TA441, Mycobacterium tuberculosis strain H37Rv, and Rhodococcus jostii strain RHA1. The structure in the bracket (9a-hydroxy-androsta-1,4-
diene-3,17-dione) is very unstable and has never been detected. Highly similar pathways were proposed for the aerobic degradation of cholic
acid (Holert et al., 2014) and cholesterol (Bergstrand et al., 2016).
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group at C-9 of ADD results in the formation of an unsta-
ble 9a-hydroxylated intermediate, which undergoes a
spontaneous split of the B-ring and then generates the
3-HSA for further A-ring degradation. By contrast, once
pyridinestrone acid is produced in bacterial cells, it is not
able to be further degraded and is excreted into the

extracellular environment. Pyridinestrone acid is thus a
dead-end-product of the 4,5-seco pathway.
Only a minor part (approximately 2% in the oestrogen-

grown strain KC8 cultures) of the meta-cleavage product
is abiotically transformed into pyridinestrone acid, and
the majority (> 95%) of the meta-cleavage molecules is

Fig. 3. The aerobic 4,5-seco pathway for bacterial degradation of natural oestrogens. Characterized or annotated enzymes from proteobacteria
are marked in blue. Protein nomenclature is based on that of Sphingomonas sp. strain KC8. *, the deconjugated structure, 4-norestrogenic acid,
is often detected in extracellular environments.
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further degraded by the strain KC8. A member of the
indolepyruvate ferredoxin oxidoreductase family, 2-oxoa-
cid oxidoreductase (OAOR), removes the C-4 and adds
a CoA to the carboxylic C-3 of the meta-cleavage pro-
duct, producing 4-norestrogen-5(10)-en-3-oyl-CoA
through oxidative decarboxylation (Fig. 3). This CoA-
ester has been identified using mass spectrometry and
its non-CoA moiety – 4-norestrogenic acid – has been
structurally determined through NMR spectroscopic anal-
yses (Wu et al., 2019). The deconjugated structure, 4-
norestrogenic acid, is often detected in the extracellular
environment. Subsequently, the C-2 and C-3 are
removed through a cycle of thiolytic b-oxidation, and the
B-ring is opened through hydrolysis (Fig. 3). A similar
hydrolytic ring cleavage mechanism has been demon-
strated in the degradation of cyclohexanecarboxylic acid
by the alphaproteobacterium Rhodopseudomonas palus-
tris (Pelletier and Harwood, 1998; 2000). Subsequently,
the removal of C-1 and C-10 through aldolytic cleavage
results in the production of HIP. Except for 4-norestro-
gen-5(10)-en-3-oyl-CoA, no other CoA esters proposed
in this aerobic pathway have been detected; however, at
least five deconjugated (non-CoA) metabolites corre-
sponding to these hypothetical CoA esters have been
detected in the bacterial cultures (Wu et al., 2019). The
dead-end-products pyridinestrone acid and 4-norestro-
genic acid are less biodegradable and tend to accumu-
late in bacterial cultures (Wu et al., 2019) or
environmental samples (Chen et al., 2017, 2018); thus,
these compounds may serve as biomarkers for investi-
gating environmental aerobic oestrogen biodegradation.
In addition to strain KC8, most metabolites involved in the

4,5-seco pathway were also identified in another oestrogen
degrader, Novosphingobium sp. strain SLCC (Chen et al.,
2018; Wu et al., 2019). Initial metabolites, such as 4-hydrox-
yestrone and the meta-cleavage product, were also identi-
fied in Sphingomonas sp. strain ED8 (Kurisu et al., 2010)
and an actinobacterium Nocardia sp. strain E110 (Coombe
et al., 1966). Accordingly, it is speculated that these aerobes
may adopt the 4,5-seco pathway for oestrogen degradation.
Although the gene cluster for the oestrogen A/B-rings degra-
dation has been identified, only three catabolic genes –

oecA, oecB and oecC – have been functionally character-
ized (Chen et al., 2017). The actual role of other genes, 2-
oxoacid oxidoreductase (OAOR), for example, remains to
be validated.

Anaerobic degradation of steroids through the 2,3-seco
pathway

Compared to the extensive study (more than 50 years)
of the aerobic 9,10-seco pathway, investigations of
anaerobic androgen degradation are relatively recent
and limited. The anaerobic 2,3-seco pathway was first

proposed in the testosterone-degrading gammapro-
teobacterium S. denitrificans DSM 18526 after the dis-
covery of the ring-cleavage product 17-hydroxy-1-oxo-
2,3-secoandrostan-3-oic acid (2,3-SAOA) (Wang et al.,
2013), although some metabolites (1-dehydrotestos-
terone, 1-testosterone, AD, ADD and 1-hydroxysteroids)
involved in the initial steps of testosterone transformation
were identified prior to this study (Chiang et al., 2010;
Leu et al., 2011). This 2,3-secosteroid, along with other
initial metabolites, was also identified in the denitrifying
betaproteobacterium S. denitrificans DSM 13999 culti-
vated with testosterone (Wang et al., 2014).
Thus far, only a few enzymes involved in the 2,3-seco

pathway have been characterized from the strains DSM
13999 and DSM 18526. Some redox enzymes, such as
17b-hydroxysteroid dehydrogenase and 3-ketosteroid
D1-dehydrogenase (AcmB), catalyse the transformation
of testosterone into 1-dehydrotestosterone, AD and ADD
(Chiang et al., 2008a; Chiang et al., 2008b; Lin et al.,
2015). The same sets of enzymes are also responsible
for the redox reactions of androgens under aerobic con-
ditions (Yang et al., 2016). The molybdoenzyme 1-
testosterone hydratase/dehydrogenase (AtcABC) medi-
ates the hydration reaction at the C-1 of 3-oxo-1-en
structures – which includes 1-testosterone – as well as
the subsequent oxidation of the 1-hydroxyl group (Yang
et al., 2016). A phylogenetic analysis of AtcABC
sequences suggested that this heterotrimeric protein
belongs to the xanthine oxidase family containing molyb-
dopterin, FAD and iron–sulphur clusters. The formation
of the 1,3-dioxo structure in the A-ring is critical since it
enables cleavage of the steroidal core ring (Fig. 4). The
hydrolase responsible for the A-ring cleavage has not
been characterized, partially due to the lack of a com-
mercially available substrate (17b-hydroxy-androstan-
1,3-dione or androstan-1,3,17-trione). Subsequently, the
C-3 and C-4 of the cleaved A-ring are then removed
from the secosteroids through a putative aldolytic cleav-
age (Wang et al., 2014), producing 17b-hydroxy-2,5-
seco-3,4-dinorandrost-1,5-dione (2,5-SDAD) (Fig. 4). The
following B-ring degradation remains completely unclear;
however, the downstream metabolites HIP and HIP-CoA
have been identified as intermediates in the anaerobic
androgen degradation pathway (Warnke et al., 2017).
The mechanisms and enzymes involved in anaerobic

oestrogen degradation remain poorly studied, although
some anaerobic proteobacterial degraders have been iso-
lated. It is very likely that anaerobic bacteria must adopt
an oxygen-independent pathway different from the 4,5-
seco pathway to degrade phenolic A-ring of oestrogen.
Recently, a comparative genomic analysis indicated that
certain gene homologues shared in the genomes of S.
denitrificans DSM 18526 and two Denitratisoma strains
might play a role in anaerobic oestrogen degradation
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(Chen et al., 2019). Wang et al. (2019) used the Denitrati-
soma sp. DHT3 as a model organism to identify initial
steps of the anaerobic degradation pathway for E2. Their
study suggested that denitrifying degraders utilize a con-
vergent catabolic pathway – the 2,3-seco pathway – to
catabolize different steroid structures.

The HIP degradation pathway, a common central
pathway for bacterial degradation of the steroid C,D-

rings. It is interesting that HIP – a C13 metabolite with
the remaining steroid C/D-rings – is a common
intermediate identified in all bacterial steroid catabolic
pathways (the aerobic 9,10-seco and the 4,5-seco
pathways, as well as the anaerobic 2,3-seco pathway).
The HIP degradation pathway has been mainly
established in aerobic actinobacteria, activated by a
specific acyl-CoA synthetase FadD3 (Casabon et al.,
2013), although this activation enzyme was also

Fig. 4. The anaerobic pathways for bacterial degradation of androgens and oestrogens. Protein nomenclature is based on that of Sterolibac-
terium denitrficans DSM 13999, Steroidobacter denitrificans DSM 18526 and Denitratisoma sp. strain DHT3. AdoHcy, S-adenosylhomocysteine;
SAM, S-Adenosylmethionine.
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characterized in anaerobic S. denitrificans DSM 13999
(Warnke et al., 2018). The remaining carbons of the
steroid B-ring are then removed through a cycle of
thiolytic b-oxidation. Subsequently, the hydrolytic
cleavage of the steroid D-ring is mediated by an enoyl-
CoA hydratase (EchA20), whereas the C-ring cleavage
is mediated by another hydrolase IpdAB (Crowe et al.,
2017; 2018) (Fig. 5A). Surprisingly, the homologues of
these ring-cleavage enzymes were identified in the
genomes of aerobic C. testosteroni (Horinouchi et al.,
2012; Crowe et al., 2017) and Sphingomonas sp. KC8
(Chen et al., 2017), as well as anaerobic S. denitrificans
DSM 13999 (Warnke et al., 2017), Sdo denitficians, and
T. terpenica (Yang et al., 2016) (Table 3). Further gene
mining showed that most experimentally verified steroid-
degrading bacteria contain gene clusters involved in the
HIP degradation pathway (Fig. 5B). These data thus
indicate that bacteria adopt divergent pathways to
degrade the steroidal A/B-rings, depending on oxygen
conditions and steroid structures. However, all these
steroid catabolic pathways then converge at the HIP,
and bacteria use the same set of enzymes to degrade
the remaining steroid C/D-rings.

Culture-independent approaches expand insight into
the diversity of sex hormone degraders and
ecological significance

Early microcosm and mesocosm studies suggested that
oestrogens and testosterone can be biodegraded to CO2

in river sediments (J€urgens et al., 2002), marine sedi-
ments (Ying et al., 2003), agricultural soils (Fan et al.,
2007) and activated sludges (Andersen et al., 2003) under
aerobic or anaerobic conditions. Czajka and Londry
(2006) investigated the anaerobic degradation of natural
and synthetic oestrogens in lake sediments under metha-
nogenic as well as sulphate-, iron- and nitrate-reducing
conditions, showing that natural oestrogens were
degraded under all tested conditions, whereas synthetic
EE2 was not apparently degraded by microorganisms. In
addition, anaerobic biotransformation of testosterone into
oestrogens, including E1 and E2, in testosterone-spiked
estuarine sediment samples under fermentative condition
was observed (Shih et al., 2017). These reports sug-
gested that various anaerobes might play a role in steroid
hormone degradation in oxygen-limited environments.

However, microbial profiles and functional genes involved
in these bioprocesses were lacking. Due to the certain
extent of genes and metabolites involved in microbial cat-
abolism of testosterone and oestrogens (Tables 3–5),
recent culture-independent studies have focused on using
this information to discover the signatures of microbial
degraders and their degradation activities regarding these
sex hormones in different environments.
The microautoradiography–fluorescence in situ

hybridization (MAR-FISH) technique was applied to iden-
tify active oestrone-assimilating bacteria in activated
sludge using [2,4,6,7-3H(N)]oestrone as a tracer. Some
studies have revealed that several active proteobacterial
taxa incorporated trace oestrone (submicrogram per litter
concentrations) in activated sludges, indicating that the
main degraders of oestrogen in wastewater treatment
plants are different from those reported in culture-depen-
dent studies (Zang et al., 2008; Thayanukul et al., 2010;
Kurisu et al., 2015). However, this technique has several
disadvantages. First, oestrogens are highly hydrophobic;
thus, these steroid compounds may easily attach to cell
membranes (Lin et al., 2015) or passively transport into
cell via the outer membrane transporter (Wiener and
Horanyi, 2011; Lin et al., 2015; Wei et al., 2018). There-
fore, distinguishing between types of metabolic activities
– passive diffusion or active uptake, and redox transfor-
mation or complete degradation – of radiolabelled bacte-
rial cells is difficult. Taxonomic identification of labelled
cells also relies on oligo probes targeting specific bacte-
rial taxa used in each study, resulting in an incomplete
profile of oestrogen-incorporated bacteria.
Integrated multi-omics approaches, including (meta)

genomic analysis and metabolite profiling, have been
applied to identify steroid hormone degraders and their
catabolic pathways in environments. Chen et al. (2016)
revealed that C. testosteroni spp. play a major role in
aerobic androgen degradation in activated sludge based
on the detection of the signature metabolite and key
gene in the 9,10-seco pathway, 3-HSA and tesB. A simi-
lar strategy was used to interrogate anaerobic androgen
degraders in denitrifying sludge and anoxic estuary sedi-
ments. In both ecosystems, the signature metabolite 2,3-
SAOA and degradation key gene atcA were identified,
indicating that these microbial communities degrade
androgen through the 2,3-seco pathway. However, the
main degraders were Thauera spp. (phylogenetically

Fig. 5. The HIP degradation pathway shared by all of the studied steroid-degrading bacteria. (A) The proposed HIP degradation pathway. Char-
acterized or annotated enzymes from proteobacteria are marked in blue, and those from actinobacteria are marked in red. (B) The gene cluster
for HIP degradation is widely present in steroid-degrading actinobacteria and proteobacteria. The evolutionary history was inferred from 16S
rRNA gene sequences using the maximum-likelihood method in MEGA 7 (Kumar et al., 2016). Bootstrap values were calculated from 1,000 re-
samplings. Bacterial strains marked in black indicate that the aerobic steroid degradation capabilities were physiologically confirmed. Bacterial
strains in red are steroid-degrading denitrifiers. The steroid degradation capabilities of bacteria marked in grey remain to be experimentally con-
firmed. Gene nomenclature is based on that of Comamonas testosteroni strain TA441 (ORF1 ~ 33) and Mycobacterium tuberculosis strain
H37Rv. Orthologous genes are marked with the same colours.
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close to T. terpenica 58Eu) instead of the model organ-
ism S. denitrificans DSM 18526 (Yang et al., 2016; Shih
et al., 2017). Another example of interrogating environ-
mental hormone degradation is using the 13C-metabolo-
mic approach to identify major oestrogen degradation
pathways in river waters. The occurrence of 13C-labelled
pyridinestrone acid – the dead-end-product of the 4,5-
seco pathway – in [3,4C-13C]oestrone-treated water
samples indicated that river microorganisms degrade
natural oestrogens via the 4,5-seco pathway. These
characteristic metabolites or dead-end-products were
identified using ultra-performance liquid chromatogra-
phy–high-resolution mass spectrometry (UPLC─HRMS).
The characteristic metabolites and dead-end-products of
each pathway and their UPLC─HRMS behaviours are
shown in Fig. 6 and Table 5 respectively.
Some genome-based studies have also broadened

the diversity of aerobic androgen degraders. Horinouchi
et al. (2012) used homology to search for gene clusters
related to testosterone degradation in bacterial genomes.
The result showed that C. testosteroni KF1, Cupriavidu
necator JMP134, Cup. taiwanensis LMG 19424, Ralsto-
nia eutropha H16, Burkholderia cenocepacia J2315l,
Burkholderia sp. 383, Shewanella pealeana
ATCC700345, S. halifaxensis HAW-EB4 and Pseudoal-
teromonas haloplanktis TAC125 are putative androgen
degraders due to the high amino acid sequence identity
of enzymes involved in the degradation of the testos-
terone core ring. Recently, a large scale of genomic
study using a hidden Markov models (HMMs) search
revealed that of the over 8,000 published bacterial gen-
omes, only 256 actinobacterial and proteobacterial gen-
omes harbour the genes involved in the 9,10-seco
pathway. For further validation, nine predicted steroid-

degrading strains were selected for growth experiments
and metabolite identification. Among them, only three
proteobacterial strains – Pseudomonas resinovorans
NBRC106553, Cupriavidus necator ATCC17699 and
Sphingomonas wittchii RW1 – and one actinobacterial
strain – Amycolatopsis sp. ATCC39166 – are able to
degrade testosterone completely (Bergstrand et al.,
2016).
Although most steroid hormone degraders were iso-

lated from sludge communities in wastewater treatment
plants, it is interesting that some degraders and cata-
bolic activities were identified in soils, coral, or river and
marine sediments, as mentioned above. A metagenome
analysis further revealed that the genes involved in the
aerobic 9,10-seco pathway (degradation pathway for
androgens, bile acids and sterols) are ubiquitous in dif-
ferent natural ecosystems – soils, deep sea, eukaryotic
hosts, and even in the Antarctica Dry Valleys – indicat-
ing the ecological significance of steroid degraders (Hol-
ert et al., 2018). For example, the fact that steroid-
degrading gammaproteobacteria isolated from sponges
and corals suggests that microbial steroid metabolism
plays a role in symbiosis relationships (mutualism) with
their animal hosts (Ding et al., 2016; Holert et al., 2018).
Despite this, the actual roles of these degraders in nat-
ure ecosystems remain elusive because the hormone
degradation activities are mostly identified in chemically
defined media or mesocosms supplied with large amount
of hormones (micro- to milli-molar), which is much higher
(1000- to 10 000-fold) than those detected in environ-
ments (Yang et al., 2016; Chen et al., 2016; Shih et al.,
2017; Chen et al., 2018). It has been speculated that
steroid hormone degraders in environments might be
members of rare biosphere due to the low content of

Table 3. Homologues involved in HIP degradation in steroid-degrading bacteria.

Steroid hormone degraders Enoyl-CoA hydratase (Ech A20)

Hydrolase
a subunit
(IdpA)

Hydrolase
b subunit
(IdpB)

Aerobic actinobacteria
R. jostii RHA1 WP_007300903.1 WP_011597005.1 WP_011597004.1
M. tuberculosis H37Rv NP_218067.1 NP_218068.1 NP_218069.1
M. smegmatis Mc2-155 YP_890227.1 YP_890228.1 YP_890229.1

Aerobic alphaproteobacteria
Sphingomonas sp. KC8 ARS25885.1 ARS25890.1 ARS25889.1
N. tardaugens NBRC 16725 WP_021688816.1 WP_021688820.1 WP_021688819.1
Altererythrobacter sp. MH-B5 WP_067540119.1 WP_067540155.1 WP_067540130.1

Aerobic betaproteobacteria
C. testosterone ATCC 11996 WP_003078394.1 WP_003078407.1 WP_003078404.1
C. testosteroni CNB-2 ACY32026.1 ACY32022.1 ACY32023.1

Denitrifying betaproteobacteria
S. denitrificans DSM 13999 SMB21421.1 SMB21413.1 SMB21414.1
D. oestradiolicum DSM 16959 TWO82302.1 TWO81338.1 TWO80907.1
Denitratisoma sp. DHT3 QDX80568.1 QDX82838.1 QDX80569.1
T. trepenica 58Eu WP_021250107.1 WP_021250110.1 WP_021250109.1

Denitrifying gammaproteobacteria
S. denitrificans DSM18526 WP_066917844.1 WP_016491273.1 WP_066917840.1
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hormone substrates (Wei et al., 2018). Under a substrate
concentration (3.7 nM of oestrone as the sole carbon
source) close to environmental levels, pyridinestrone
acid – the dead-end-product of the 4,5-seco pathway –

was detected in bacterial cultures, indicating that the
oestrogen degradation ability of Novosphingobium sp.
SLCC remained active (Chen et al., 2018). Moreover,

the FISH-MAR study (Thayanukul et al., 2010) indicated
that bacteria are able to assimilate trace oestrogens
(submicrogram per litter concentrations). Accordingly,
in situ studies of mesocosms periodically amended with
a low concentration (nM) of steroid substrate may be
essential to elucidate the ecological roles of these rare
biospheres in their habitats.

Table 5. UPLC-HRMS information of characteristic metabolites involved in bacterial degradation of steroid hormones.

Compound ID
Chemical
structure

UPLC
behaviour
(RT, min)

Molecular formula/
(predicted molecu-
lar mass)c Dominant ion peaks

Identification of
product ions Mode observed

Aerobic 9,10-seco pathway
3,17-Dihydroxy-
9,10-

seconandrosta-
1,3,5(10)-triene-9-
one (3,17-DHSA)

5.53a C19H26O3

302.1881
267.1740
285.1844
303.1946
325.1766

[M-2H2O + H]+

[M-H2O + H]+

[M + H]+

[M + Na]+

ESI and APCI
ESI and APCI
ESI and APCI
ESI

3-Hydroxy-9,10-
seconandrosta-
1,3,5(10)-triene-
9,17-dione (3-
HSA)

5.35a C19H24O3

300.1725
283.1667
301.1801
323.1625

[M-H2O + H]+

[M + H]+

[M + Na]+

ESI and APCI
ESI and APCI
ESI

Aerobic 4,5-seco pathway
Pyridinestrone acid
(PEA)

4.02b C18H21O3N
299.1521

282.17
300.16
322.15

[M-H2O + H]+

[M + H]+

[M + Na]+

ESI
ESI and APCI
ESI

4-Norestrogenic
acid

5.92b C17H24O4

292.1675
257.15
275.16
293.17
315.16

[M-2H2O + H]+

[M-H2O + H]+

[M + H]+

[M + Na]+

ESI
ESI and APCI
ESI and APCI
ESI

Anaerobic 2,3-seco pathway
17-Hydroxy-1-oxo-
2,3-
secoandrostan-3-
oic acid (2,3-
SAOA)

5.08a C19H30O4

322.2144
305.21
323.22
345.20

[M-H2O + H]+

[M + H]+

[M + Na]+

ESI and APCI
ESI and APCI
ESI

1,17-Dioxo-2,3-
secoandrostan-3-
oic acid (DSAO)

5.00a C19H28O4

320.1988
303.20
321.21
343.19

[M-H2O + H]+

[M + H]+

[M + Na]+

ESI and APCI
ESI and APCI
ESI

The central HIP degradation pathway
3aa-H-4a(3'-
propanoate)-7ab-
methylhexahydro-
1,5-indanedione
(HIP)

2.39a

3.78b
C17H26O4

294.1831
259.17
277.18
317.17

[M-2H2O + H]+

[M-H2O + H]+

[M + Na]+

ESI and APCI
ESI and APCI
ESI

RT, retention time.
The UPLC separation was achieved on a reversed-phase C18 column (Acquity UPLC� BEH C18; 1.7 lm; 100 9 2.1 mm; Waters) with a flow
rate of 0.4 ml min�1 at 35°C (column oven temperature). The mobile phase comprised a mixture of two solvents: solvent A [2% (vol/vol) ace-
tonitrile containing 0.1% (vol/vol) formic acid] and solvent B [methanol containing 0.1% (vol/vol) formic acid]. Condition 1: separation was
achieved using a linear gradient of solvent B from 10% to 99% across 8 min. Condition 2: separation was achieved using a linear gradient of
solvent B from 5% to 99% across 12 min.
aCondition 1 for the UPLC separation.
bCondition 2 for the UPLC separation.
cThe predicated molecular mass was calculated using the atom mass of 12C (12.0000), 16O (15.9949) and 1H (1.0078).
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Challenges and future perspectives

Steroid hormone contamination appears to be wide-
spread in various ecosystems, and its long-term impact
on wildlife has been studied in some detail. Elucidating
the physiology of microbial degraders and biochemical
mechanisms involved in steroid hormone degradation
may offer a solution to improve biodegradation effi-
ciency in engineered ecosystems. Although

conventional culture-dependent and molecular
approaches have provided insights into each biodegra-
dation step, investigation of steroid hormone biodegra-
dation remains challenging. For example, the fact that
most steroid-degrading anaerobes cannot grow on solid
media (e.g. agar plate) makes many molecular biologi-
cal approaches difficult. Although the oestrogen-degrad-
ing alphaproteobacteria (e.g. Sphingomonas spp. and
Novosphingobium spp.) are able to form colonies on

Fig. 6. Characteristic metabolites involved in bacterial steroid degradation pathways. 4-Norestrogenic acid is the deconjugated structure of a
critical CoA-ester intermediate in the aerobic 4,5-seco pathway. R at the C17 position represents a keto or hydroxyl or group. *, the correspond-
ing 17-hydroxyl structures. Abbreviations: ADD, androsta-1,4-diene-3,17-dione; DSAO, 1,17-dioxo-2,3-secoandrostan-3-oic acid; DT, 1-dehy-
drotestosterone; HIP, 3aa-H-4a(3'-propanoate)-7ab-methylhexahydro-1,5-indanedione; 3-HSA, 3-hydroxy-9,10-seconandrosta-1,3,5(10)-triene-
9,17-dione; 3,17-DHSA, 3,17-dihydroxy-9,10-seconandrosta-1,3,5(10)-triene-9-one; PEA, pyridinestrone acid; 2,3-SAOA, 17-hydroxy-1-oxo-2,3-
secoandrostan-3-oic acid.
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agar plates, the presence of glycosphingolipids on their
cell wall and the lack of suitable gene transfer vectors
increase the difficulties in genetic manipulation (Saito
et al., 2006). Fortunately, the combination of transcrip-
tomic analysis and metabolite profiling provides an alter-
native to determining the steps in the 2,3-seco and 4,5-
seco pathways. Nevertheless, the information regarding
the steroid B-ring degradation in anaerobic proteobacte-
rial degraders, steroid hormone chemosensory and ster-
oid transport systems remains unclear. Thus, the
isolation of suitable bacterial strains for molecular bio-
logical approaches is crucial for future studies on ster-
oid biodegradation.
The ecological role of steroid hormone degraders in

environments remains uncertain. Metagenomics is a
conventional approach to address ecological relevance
of microbial hormone degradation, but challenges remain
because sequences of degradation genes usually com-
prise low coverage within metagenome data set (Holert
et al., 2018). This might be due to the low abundance of
microbial degraders in ecosystems where the hormone
input is low (Wei et al., 2018). As a result, interrogation
on ecosystems with long-term hormone contamination
may expand new insights into diversity of hormone
degraders and catabolic genes. Moreover, recent discov-
eries of steroid degraders in eukaryotic hosts (Ding
et al., 2016; Holert et al., 2018) suggest a bidirectional
interaction between steroid degraders and their eukary-
otic hosts. The discovery of cobalamin auxotrophy in
many steroid-degrading anaerobes (Wei et al., 2018;
Wang et al., 2019) indicates cobalamin cross-feedings
within microbial communities. These findings may also
offer another avenue for future studies.
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