
INTRODUCTION

Astrocytes are the most abundant population of non-neuronal 
cells in the brain. It is well known that they provide structural and 
metabolic support for neuronal networks, but a growing body of 
evidence indicates that they also play an active role in modulating 
neuronal activity. Astrocytes make close contact with perisynaptic 
regions, forming a functional structure called the “tripartite 
synapse,” together with presynaptic and postsynaptic nerve 
terminals [1-3]. Indeed, one astrocyte in the hippocampus makes 
contact with tens of thousands of synapses [4].

It is well established that astrocytes clear away excessive 

neurotransmitters and ions released from synaptic clefts through 
uptake via specific transporters and channels. For example, 
astrocytes remove excess extracellular glutamate using sodium-
dependent glutamate transporters, such as the glutamate aspartate 
transporter and glutamate type 1 transporter [5-9]. Excessive 
glutamate is cytotoxic to neurons, causing an influx of calcium 
that far exceeds physiological levels and triggering the activation 
of enzymes and signaling proteins that are detrimental to neurons 
[10-12].

Evidence from a number of studies indicates that astrocytes 
release signaling molecules, the so-called “gliotransmitters,” such as 
glutamate, GABA, D-serine, and ATP, into the extracellular milieu 
in response to extracellular stimuli (Fig. 1) [13-18]. Gliotransmitter 
release often results from the activation of G protein-coupled 
receptors (GPCRs) that trigger downstream signaling cascades 
in astrocytes, including phospholipase C, adenylate cyclase, 
inositol 1,4,5-trisphosphate (IP3), and cause an intracellular 
calcium increase [19-21]. Gliotransmitters facilitate or inhibit the 
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excitability and synaptic transmission of neighboring neurons, 
and the outcome of their release is dependent on the site of action 
and types of activated receptors [3, 13, 14, 22-24]. Through the 
use of volume-sensitive organic anion channels, gap junction 
hemichannels, P2X7, Bestrophin-1, and reverse-orientation 
plasma membrane glutamate transporters, diverse mechanisms 
for gliotransmitter release have been identified in astrocytes, 
including calcium-dependent exocytotic vesicular release as well 
as non-exocytotic mechanisms [25-39]. Although accumulating 
evidence suggests a coupling between various intracellular 
changes in astrocytes, such as intracellular calcium increase and 
gliotransmitter release, there is also evidence against this view; thus, 
the mechanisms underlying astrocyte-neuronal communication 
are still debated [40-45]. In this review, we present recent studies 
that have using optogenetic and chemogenetic approaches to 

explore the function of astrocytes and gliotransmitters.

OPTOGENETICS AND CHEMOGENETICS

Optogenetics is a novel biological technique based on a variety 
of light-sensitive proteins called opsins, which include microbial 
ion channels and ion pumps as well as engineered GPCRs (Fig. 
1) [46, 47]. Following absorption of a specific wavelength of light, 
an opsin undergoes a conformational change that triggers diverse 
cellular changes in opsin-expressing cells. Some of the opsins 
induce the translocation of ions, and others activate intracellular 
signaling cascades, such as G protein-mediated signaling. 
Since most of these opsins do not exist in experimental-model 
organisms, and photostimulation itself has a negligible effect on 
cells and tissues, optogenetics has instead been used as a powerful 

Fig. 1. Optogenetic and chemogenetic stimulation of astrocytes. A variety of genetically encoded effector molecules for optogenetics (left) and 
chemogenetics (right) have been employed to manipulate intracellular ionic concentrations (H+, Na+, Ca2+, K+) and signaling cascades (Gq, Gs, DAG, 
IP3, cAMP) in astrocytes. Intracellular changes such as cytosolic calcium increase and acidification, in turn, evoke release of signaling molecules, so-
called gliotransmitters (glutamate, ATP, L-lactate), from astrocytes, which modulate excitability as well as synaptic transmission of neighboring neurons. 
Optogenetic effectors can be activated by specific wavelengths of photostimulation, and chemogenetic effectors can be activated by synthetic ligands, 
such as CNO. ChR2, channelrhodopsin-2; CatCh, calcium translocating channelrhodopsin; LiGluR, light-gated ionotropic glutamate receptor 6; 
ArchT, archaerhodopsin; OptoXRs, light-driven chimeric G protein-coupled receptors; NMDAR, N-methyl-D-aspartate receptor; AMPAR, α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; Gi-DREADD, Gi-coupled designer receptors exclusively activated by designer drugs; Gq-
DREADD, Gq-coupled DREADD; Gs-DREADD, Gs-coupled DREADD; CNO, clozapine-N-oxide; ATP, adenosine triphosphate; IP3, inositol 
1,4,5-trisphosphate; DAG, diacylglycerol; cAMP, cyclic adenosine monophosphate.
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experimental tool to manipulate specific populations of cells 
both in vitro  and in vivo by means of a combinatorial approach 
of cell type-specific promoters and additional genetic tricks. 
This technique has also enabled the manipulation of cellular 
activity with millisecond-scale temporal precision [46]. The time-
resolved stimulation has made possible the revelation of causal 
relationships between manipulated cellular activity and functional 
outcomes, particularly in the study of neuronal circuits mediating 
specific behaviors.

Opsins have been modified to generate mutants and chimeric 
proteins with diverse features, including their intracellular 
effects, optimal wavelengths of light for activation, and temporal 
dynamics in activation and inactivation; thus, they offer great 
flexibility in designing experiments and conducting more refined 
manipulations [47, 48].

Channelrhodopsin-2 (ChR2), originally identified in green algae, 
is a cation channel that becomes permeable to positively charged 
ions such as proton and sodium when it is stimulated with blue 
light [49-51]. When it is expressed in neurons, photostimulation 
elicits an influx of cations, which causes depolarization and 
the firing of action potentials in the stimulated cells [46]. An 
influx of protons though ChR2 can also acidify the cytosolic 
compartment of photostimulated cells [51, 52]. In the study of 
neurons, the frequency and duration of neuronal spiking can be 
easily controlled using variants of ChR2, such as ChR2(H134R), 
ChR2(C128S), ChETA, and step function opsin (SFO) [53-57]. 
For example, ChETA can drive ultrafast spiking up to 200 Hz, and 
SFO can elicit prolonged, bi-stable, sub-threshold depolarization 
of membranes [55, 56]. Some light-gated cation channels, such as 
calcium-translocating channelrhodopsin (CatCh) and LiGluR, 
are more permeable to calcium than ChR2, and therefore they 
have been preferentially used in studies exploring the role of 
intracellular calcium [58-61]. LiGluR is a mutated ionotropic 
glutamate receptor 6 containing its ligand attached to an optically 
switchable tether called maleimide-azobenzene-glutamate [61, 
62]. 

Halorhodopsin is an opsin identified from Archaea which, 
when stimulated with yellow light, pumps chloride ions into 
cells [63-69]. When halorhodopsin is expressed in neurons, 
photostimulation promotes an influx of chloride ions that results 
in hyperpolarization and the inhibition of the firing of action 
potentials in the stimulated cells. Archaerhodopsins, such as Arch 
and ArchT, are light-driven outward proton pumps that inhibit 
the firing of action potentials during photostimulation when 
they are expressed in neurons; the efflux of protons can also 
cause alkalization of the cytosol [70-72]. Finally, optoXRs, such 
as optoα1AR and optoβ2AR, are chimeric GPCRs in which the 

intracellular loops of rhodopsin are replaced with those of other 
GPCRs, such as adrenergic receptors and dopamine receptors [73, 
74]. Photostimulation can initiate diverse intracellular signaling 
cascades in target cells, depending on the type of G protein 
replacing the intracellular loops of rhodopsin. Thus, these opsins 
enable the acute activation of different GPCR signaling pathways 
in cultured cells and animals.

Chemogenetics is based on engineered proteins, such as GPCRs 
and ligand-gated ion channels, that are no longer responsive or 
only very weakly responsive to their endogenous ligands but 
strongly respond to synthetic chemical ligands that are otherwise 
biologically inert [75-77]. For example, hM3Dq, one of the designer 
receptors exclusively activated by designer drugs (DREADDs), 
is generated by multiple cycles of randomized mutagenesis of 
the human M3 muscarinic receptor, which is linked to the Gq 
protein [78]. It is neither sensitive to the endogenous muscarinic 
acetylcholine receptor ligand acetylcholine nor is it constitutively 
active, but it is strongly activated in response to a synthetic ligand, 
clozapine-N-oxide (CNO), with nanomolar potency [75, 76]. 
In response to CNO, hM3Dq can induce an enhancement of 
neuronal excitability that can lead to burst-like firing [79-83]. 
Thus, it is one of the most frequently used chemogenetic tools to 
activate neurons. 

Another DREADD molecule, hM4Di, is a mutant of the Gi-
coupled human M4 muscarinic receptor that responds to CNO 
[75, 80, 84]. Upon an application of the chemical agonist, hM4Di 
activates the Gβγ subunit of the Gi protein, which then stimulates 
G protein inwardly rectifying potassium channels (GIRK), causing 
an efflux of potassium and a resulting robust hyperpolarization 
when it is expressed in neurons [85, 86]. Thus, hM4Di has been 
used to silence spontaneous and depolarization-evoked neuronal 
firing [75].

Optogenetics and chemogenetics require the expression of 
genetically encoded effectors in target cells. This goal is often 
attained by injecting a virus (e.g., adeno-associated virus (AAV) 
or lentivirus) that encodes an effector into a target region in the 
brain or other tissue. Alternatively, the effector can be expressed 
as a transgene in a genetically engineered mouse line. By using 
cell type-specific promoters, such as the astrocyte-specific glial 
fibrillary acid protein (GFAP) promoter, the effector’s expression 
can be restricted to a specific population (or more than one 
population) of cells [87-89]. An intersectional strategy based on a 
combination of specific promoters and genetic tools, such as Cre- 
and flippase-mediated recombination, can further restrict the 
effector expression to specific subpopulations [90, 91]. In addition, 
other genetic tricks, such as the use of tetracycline-dependent 
transcriptional regulation, have been used to achieve temporal 
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control as well as amplification of effector expression [42, 92, 93]. 
Optogenetics and chemogenetics have different features that 

make them well suited for different applications. Optogenetics can 
deliver photostimulation directly to target cells and manipulate 
cellular activity acutely and reversibly. In contrast, chemogenetics 
is ideal for a prolonged manipulation of cellular activity in the 
range of minutes to days, depending on the route of ligand 
delivery and the pharmacokinetic properties of the synthetic 
ligand(s) used. Optogenetics is excellent in generating spiking 
patterns that mimic the endogenous firing responses of neurons 
by using a pulse generator that produces lights with different 
frequencies and pulse durations. In addition, photostimulation 
can be delivered to different subcellular locations such as the soma 
and nerve terminals, a useful feature for studying neuronal circuits 
in the brain [47]. On the other hand, chemogenetics is less invasive 
in experimental animals and hampers animal behaviors only 
marginally, if at all, because it requires neither the installation of 
a fiber-optic cable within the brain nor a connection of the cable 
to a light source, such as a laser or a light-emitting diode (LED). 
Furthermore, some synthetic ligands for chemogenetics, such as 
CNO, can be delivered via the animal’s water and/or food as well 
as by systemic injection, permitting the delivery of the ligand with 
minimal disturbance of the animals, particularly in the case of 
chronic manipulation [94-96]. This minimal invasiveness can be a 
strong advantage in the clinical application of chemogenetics.

Optogenetic and chemogenetic techniques have been most 
frequently used to investigate neuronal circuits, but they also have 
been used to study non-neuronal cells in the brain and peripheral 
tissues. In the following section, we will summarize the approaches 
and findings of recent studies that have employed these techniques 
to reveal the function of astrocytes (Table 1 and 2).

OPTOGENETIC STIMULATION OF CULTURED ASTROCyTES

Studies using primary astrocytes and immortal astrocyte cell 
lines have shown that optogenetic stimulation can elicit an 
elevation of intracellular calcium and subsequent release of 
gliotransmitters that can activate adjacent astrocytes as well as 
neurons. For example, Berlinguer-Palamini et al. have reported 
that photostimulation of ChR2-expressing primary astrocytes 
using a LED can elicit an intracellular calcium increase and 
electrophysiological responses not only in the stimulated cells 
but also in co-cultured astrocytes and neurons that do not 
express ChR2 [97]. The calcium response in ChR2-negative cells 
is suppressed by the application of antagonists of N-methyl-
D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors in the bath solution, 

suggesting that the response in ChR2-negative cells is mediated by 
glutamate released from ChR2-expressing astrocytes. 

Similar results have been obtained in another study, in which 
the coupling has been demonstrated between an intracellular 
calcium increase in astrocytes and glutamate release [98]. Li et al. 
have performed fluorescent calcium imaging in primary cultures 
of mouse cortical astrocytes and shown that photostimulation 
of astrocytes expressing LiGluR can elicit calcium transients not 
only in stimulated LiGluR-expressing cells but also in neighboring 
astrocytes that do not express the opsin. The calcium response in 
LiGluR-negative astrocytes is affected by antagonists of glutamate 
receptors, but not by a gap junction blocker or an antagonist 
of extracellular ATP signaling, suggesting the involvement of 
glutamate in the communication between astrocytes. Further 
experiments have shown that the calcium transients in LiGluR-
negative astrocytes are inhibited by an anion channel blocker 
but are unaffected by an inhibitor of V-ATPase, which blocks 
exocytosis, suggesting that LiGluR-evoked glutamate release is 
mediated by anion channels [42, 99-105]. 

In an attempt to investigate whether intracellular ionic alteration 
in astrocytes triggers gliotransmitter release, Ono and coworkers 
have co-cultured an astrocytic cell line and a neuronal cell line; 
in response to photostimulation, the ChR2-expressing astrocytes 
exhibited diverse cellular changes, including an increase in 
intracellular sodium and calcium, intracellular acidification, 
glutamate release, and inhibition of proliferation [106]. A short 
period of photostimulation (for minutes) elicited calcium 
transients in the co-cultured ChR2-negative neurons, whereas a 
long period of stimulation for several days resulted in apoptotic 
responses in the neurons. Both responses were blocked by an 
AMPA receptor antagonist. Thus, this study has demonstrated that 
activation of astrocytes releases glutamate which, in turn, provokes 
an intracellular calcium increase and cytotoxic cell death.

To mimic GPCR-mediated signaling events occurring in 
astrocytes in response to extracellular neurotransmitters and 
neuromodulators, Figueiredo et al. have expressed GPCR-
based opsins, such as optoα1AR and optoβ2AR, in astrocytes to 
activate Gq- and Gs-mediated signaling cascades, respectively 
[107]. Photostimulation elicited an intracellular calcium increase 
in astrocytes expressing either opsin, which was blocked by 
apyrase, an enzyme hydrolyzing extracellular ATP, as well as by 
pharmacological blockers for the corresponding intracellular 
signaling cascade, such as inhibitors of phospholipase C and 
adenylate cyclase; these data indicate that a large portion of the 
calcium rise that was evoked by the activation of either opsin was a 
result of the autocrine action of extracellular ATP [108]. This study 
has demonstrated that GPCR-based opsins can be effectively used 
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in the study of astrocytic GPCR-mediated signaling. 

OPTOGENETIC STIMULATION OF ASTROCyTES USING 
TRANSGENIC MICE

Tetracycline-dependent expression, using the so-called Tet-
Off system, has been employed in several studies to generate 
transgenic mouse models expressing an opsin. In the Tet-Off 
system, the tetracycline-controlled transcriptional activator 
(tTA) binds to a tTA-responsive promoter sequence (tetO) to 
induce the expression of a downstream gene [109]. When bound 
to the tetracycline derivative doxycycline, tTA undergoes a 
conformational change that prevents tTA from binding to tetO, 
inhibiting the transcription of a target gene. Thus, this system 
enables a reversible control of gene expression produced by 
treatment with doxycycline. Tanaka and coworkers have generated 
a mouse line by knocking in a transgene cassette encoding tetO-
driven ChR2(C128S) downstream of a housekeeping gene, 
β-actin, to obtain a high level expression [110]. The knockin mice 
have been crossed to tTA driver lines in which tTA is driven by cell 
type-specific promoters, the Mlc1, PLP, and Iba-1 promoters, to 
induce ChR2(C128S) expression in astrocytes, oligodendrocytes, 
and microglia, respectively. 

The double-transgenic mice containing Mlc1-driven tTA and 
tetO-driven ChR2(C128S) have been used to reveal the role of 
Bergman glia (BG), a specialized subtype of astrocytes in the 
cerebellum, in modulating the activity of Purkinje neurons. 
First, photostimulation of acute brain slices prepared from the 
transgenic mice was found to elicit current responses from ChR2-
expressing BG, suggesting that ChR2 is expressed in glial cells to 
a level sufficient for electrophysiological responses [70, 110, 111]. 
Second, photostimulation of the cerebellum using a fiber-optic 
cable installed above the skull, to avoid the generation of injury-
induced reactive gliosis, was found to be sufficient to evoke an 
induction of a surrogate marker for cellular activation, c-fos, in 
ChR2-expressing BG [110]. Third, photostimulation of ChR2-
expressing BG in acute cerebellar slices was shown to be sufficient 
to trigger glutamate release and firing of nearby Purkinje cells 
(PCs), resulting in long-term plasticity between parallel fibers 
and PCs [111]. Finally, in vivo photostimulation of glia cells using 
fiber-optic cable inserted into the cerebellar flocculus was found to 
cause pupil dilation as well as perturbation of smooth eye pursuit 
of visual stimuli in head-fixed mice [111]. 

Beppu et al. have recently demonstrated using the same mouse 
line that neuronal damage in the mouse model of ischemia can be 
exacerbated by optogenetically induced acidosis and attenuated 
by alkalization of the cytosolic compartment of astrocytes [11, 

70]. Under ischemic conditions, such as deprivation of oxygen 
and glucose, cerebellar BG exhibited intracellular acidosis and 
glutamate release, followed by an inward excitatory current in 
the surrounding PCs. The response in PCs was inhibited by a 
cocktail of glutamate receptor and transporter blockers, suggesting 
the involvement of glutamate in the interaction between BG 
and PCs. Acidosis induced in BG by optogenetic stimulation 
of ChR2(C128S) was sufficient to evoke an inward excitatory 
current in the adjacent PCs. The response in PCs was inhibited 
by a non-competitive AMPA and kainate receptor antagonist, 
confirming the involvement of  glutamate in the signaling 
between BG and PC. In contrast, an efflux of proton from BG 
produced by optogenetic stimulation of a light-gated outward 
proton pump, ArchT, led to a reduction in the inward currents 
in the PCs elicited by the deprivation of oxygen and glucose. 
Furthermore, in vivo  photostimulation of ArchT-expressing BG 
caused a substantial reduction in cerebellar infarction following 
a local thrombosis-caused ischemic stroke, whereas control mice 
without ArchT activation exhibited severe neuronal death under 
the same conditions. Taken together, the results of this study have 
demonstrated that ischemic injury causes glial acidosis, which, 
in turn, releases glutamate into the extracellular space and causes 
ischemic neuronal death. However, the mechanism underlying the 
glutamate release remains to be determined.

Using the same mouse line, Masamoto et al. have demonstrated 
that in vivo  optogenetic stimulation of cortical astrocytes elicits 
a rapid, robust, and widespread increase in cerebral blood flow 
(CBF) [112]. The increased CBF was abolished by an application 
of the inward rectifier potassium channel blocker, BaCl2, on the 
exposed cortex, indicating the importance of potassium signaling 
in astrocytic modulation of CBF [113-115]. In contrast, the study 
found that neither astrocytic intracellular calcium signaling nor 
glutamate release was involved in the increase in CBF. 

OPTOGENETIC STIMULATION OF ASTROCyTES ExPRESSING 
vIRALLy DELIvERED OPSINS

A number of studies have employed virally mediated expression 
of opsins to manipulate astrocytes, despite the possibility of 
inducing reactive gliosis as a result of viral infection [116]. This 
approach appears to be as successful as using transgenic mouse 
lines. For example, an AAV encoding GFAP promoter-driven 
ChR2 has been used to reveal a causal relationship between 
the activity of astrocytes and visual processing in the primary 
visual cortex (V1) [117]. Although a previous study had shown 
that astrocytes in the visual cortex respond to visual sensory 
stimuli, their roles had not been clearly determined because of 
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the difficulty in selectively manipulating astrocytes among the 
heterogeneous populations of cells in the region. Perea et al. 
reported that in vivo optogenetic stimulation of astrocytes in the 
V1 enhanced the spontaneous firing of a population of inhibitory 
neurons expressing parvalbumin, and this firing was suppressed 
by treatment with an antagonist of type 1a metabotropic glutamate 
receptors, suggesting the involvement of glutamate in astrocyte-
mediated visual processing. In contrast, optical stimulation of 
astrocytes had mixed effects in terms of activation and inhibition 
on excitatory neurons and another population of inhibitory 
neurons expressing somatostatin. Finally, in vivo  optogenetic 
stimulation of astrocytes in the V1 strongly affected the responses 
of neuronal populations to visual stimuli.

Optogenetic manipulations have revealed the involvement 
of other signaling molecules released by astrocytes, such as 
extracellular ATP and L-lactate, in modulating the activity of 
neurons in the brainstem. Gourine et al. have reported that 
astrocytes in the ventral surface of the medulla oblongata (VS) 
are exquisitely pH-sensitive [16]. In response to a decrease in pH 
in anesthetized rats, astrocytes residing near the VS exhibited 
an intracellular calcium increase. Furthermore, a decrease in 
pH in brainstem slices elicited a sustained ATP release in the VS 
region, as well as extracellular ATP-dependent calcium responses 
in VS astrocytes. To mimic pH-elicited calcium excitation in 
astrocytes, an AAV encoding enhanced GFAP promoter-driven 
ChR2(H134R) was injected into the brainstem. In organotypic 
brainstem slices, photostimulation elicited not only calcium 
transients in ChR2-expressing astrocytes but also long-lasting 
depolarization in adjacent chemo-sensitive neurons in the 
retrotrapezoid nucleus (RTN). RTN neurons have been found 
to play an important role in monitoring glucose concentrations, 
pH, and partial pressure of CO2 [118, 119]. Either apyrase or an 
antagonist of extracellular ATP receptor blocked the response 
of the RTN neurons, suggesting that extracellular ATP mediates 
the interaction between astrocytes and adjacent neurons. Finally, 
in vivo  unilateral optogenetic stimulation of astrocytes in 
anesthetized, vagotomized, and artificially ventilated rats elicited 
a robust respiratory activity from hypocapnic apnea and an 
increase in phrenic nerve amplitude, which was suppressed by an 
antagonist of the extracellular ATP receptor; these results indicate 
that astrocytes are critical components of the central respiratory 
and chemosensory functions, and extracellular ATP is a key 
molecule in the signaling between astrocytes and neighboring 
neurons in the RTN. 

The same group of researchers has investigated the astrocytic 
modulation of  norepinephrine (NE) release in the locus 
coeruleus (LC) using an AAV encoding GFAP promoter-driven 

ChR2(H134R) [120]. Evidence existed to suggest that L-lactate 
is involved in the process, but the exact mechanism was unclear 
[121-123]. Photostimulation of ChR2-expressing astrocytes in 
organotypic cultured brain slices elicited delayed depolarization 
and increased firing rates in norepinephrine (NE)-ergic neurons. 
Pharmacological interventions that reduce the level of L-lactate 
suppressed light-induced depolarization of NEergic neurons, 
suggesting that astrocytes activate NEergic neurons via L-lactate. 
Indeed, the application of L-lactate to brain slices provoked 
similar electrophysiological responses in NEergic neurons and 
caused NE release from the activated neurons. Finally, optogenetic 
activation of astrocytes using either optoβ2AR or ChR2(H134R) 
was sufficient to trigger NE release. Thus, this study clearly 
demonstrated that activated astrocytes in the LC release L-lactate, 
which then triggers NE release from NEergic neurons.

A similar viral approach was used by Gradinaru et al. to examine 
whether local astrocytes contribute to the therapeutic effect 
of deep-brain stimulation (DBS) delivered to the subthalamic 
nucleus (STN) to relieve tremor in Parkinson’s disease [124]. To 
deliver photostimulation and measure neuronal activity from a 
parkinsonian rodent model, optrode recordings were performed 
in anesthetized rats, in which 6-hydroxydopamine (6-OHDA) had 
been unilaterally injected into the right medial forebrain bundle 
to cause a loss of nigral dopaminergic cells. 6-OHDA-treated 
animals displayed rotations ipsilateral to the lesion as a result of 
specific deficits in contralateral limb function, which became more 
obvious when amphetamine was administered to the subjects to 
increase locomotion. This study revealed that photostimulation 
of ChR2-expressing astrocytes in the STN can reversibly inhibit 
firing of STN neurons in 6-OHDA-treated animals; this treatment, 
however, failed to cause any changes in pathological motor 
behavior in parkinsonian rats, suggesting that astrocytes are 
unlikely to be critical players in the DBS-elicited effects.

Optogenetic manipulation has been used in two recent studies to 
examine the role of astrocytes in sleep. Pelluru et al. have reported 
that optogenetic activation of the posterior hypothalamus using 
ChR2(H134R) promotes both rapid and non-rapid eye movement 
sleep [125]. On the other hand, Yamashita et al. have reported that 
in vivo  optogenetic stimulation of ChR2-expressing astrocytes 
in the anterior cingulate cortex results in a significant increase in 
wakefulness as well as disturbance of non-rapid eye movement 
sleep [126].

In a very recent study reported by Poskanzer and Yuste, the role 
of neocortical astrocytes in the control of cortical circuit functions 
was examined using in vivo two-photon calcium imaging based 
on the genetic calcium indicator GCaMP6s, together with 
electrophysiological recording from cortical neurons [127]. To 



213www.enjournal.orghttps://doi.org/10.5607/en.2016.25.5.205

Optogenetic and Chemogenetic Manipulations of Astrocytes

examine the causal relationship between the calcium signaling 
in astrocytes and neuronal activity in the V1, an AAV encoding 
Cre-dependent Arch was injected into the V1 of transgenic 
mice expressing GFAP promoter-driven Cre, which resulted in 
astrocyte-specific expression of the opsin. When expressed in 
neurons, Arch hyperpolarizes membrane potentials and inhibits 
neuronal firing by pumping protons out of neurons in response 
to yellow-light photostimulation. Surprisingly, photostimulation 
of Arch in the astrocytes triggered calcium transients that were 
specifically localized to the processes of astrocytes and largely 
undetected in the soma. In contrast, neighboring Arch-negative 
cells failed to exhibit a calcium response during photostimulation. 
The exact mechanism governing the Arch-mediated calcium 
increase is unknown. A previous study has reported that Arch-
mediated stimulation of cerebellar BG increases the intracellular 
pH as the result of an efflux of protons out of cells under oxygen-
glucose-deprived conditions. In contrast, Poskanzer and Yuste 
found no significant changes in pH in stimulated astrocytes as 
well as in surrounding cells in the V1. It is not clear whether this 
discrepancy is a byproduct of cell-type specificity. Finally, local 
field potential recordings have revealed that in vivo  optogenetic 
stimulation of astrocytes in the V1 results in calcium transients, 
followed by a brief increase in extracellular glutamate and a shift 
in neuronal firing patterns in V1 from a desynchronized state to 
the synchronized slow oscillation-dominated state.

CHEMOGENETIC STIMULATION OF ASTROCyTES IN 
TRANSGENIC MICE

Among diverse chemogenetic effectors, DREADDs, such as 
hM3Dq, have been used most frequently in studies focusing 
on astrocytes. As in optogenetic approaches, astrocyte-specific 
expression of chemogenetic proteins has been achieved by using 
viral and transgenic delivery in combination with astrocyte-
specific promoters such as the GFAP and Mlc1 promoters.

To manipulate Gq-coupled receptor signaling in astrocytes, 
Fiacco et al. generated a bi-transgenic mouse line encoding GFAP 
promoter-driven tTA and tetO promoter-driven Mas-related 
G protein-coupled receptor A1 (MrgprA1) to express GPCR 
selectively in astrocytes [42, 128]. MrgprA1 can be activated by 
RF amides, such as a peptide Phe-Leu-Arg-Phe amide (FLRFα) 
[129]. Since endogenous MrgprA1 is specifically expressed in 
dorsal root ganglion neurons but not in the brain, this protein 
is a useful molecular tool for manipulating neurons and glia 
in the brain when it is exogenously expressed in these cells. 
An infusion of FLRFα into acute hippocampal slices prepared 
from the transgenic mice elicited a robust calcium increase in 

widespread astrocytes, suggesting that MrgprA1 is able to activate 
the Gq-coupled intracellular signaling pathway. It is particularly 
interesting that such a widespread calcium rise in astrocytes 
failed to affect neuronal activity in the same slices. This finding 
is at odds with other studies, questioning the hypothesis that an 
astrocytic calcium increase causes the release of gliotransmitters 
which, in turn, activate nearby neurons [20, 130-136]. In a follow-
up study using MargprA1 mice together with mice lacking inositol 
1,4,5-trisphosphate receptor 2 (IP3 R2), the astrocyte-specific IP3 
receptor isoform, the same group of researchers further confirmed 
that activation of Gq protein-coupled signaling affects neither 
spontaneous excitatory postsynaptic currents nor the induction 
and maintenance of long-term potentiation in CA1 hippocampal 
neurons [40, 137]. In another study performed by the same group 
of researchers, Bonder and McCarthy reported that hM3Dq 
can be selectively expressed in astrocytes by injecting AAV 
incorporating Cre-dependent hM3Dq into the visual cortex of 
transgenic mice encoding GFAP promoter-driven Cre, and they 
have used this system to investigate whether the astrocytic calcium 
elevation triggers vasodilation and a change in local blood flow in 
the cortex [41]. Activation of hM3Dq with CNO was sufficient to 
increase the intracellular calcium level in astrocytes but not to alter 
the basal blood flow in the visual cortex. The study also reported 
the absence of a temporal correlation between the astrocytic 
calcium increase and the change in cortical blood flow following 
either visual stimulation or a startle-evoking air puff. Furthermore, 
genetic deletion of IP3 R2 did not affect neurovascular coupling, 
suggesting that Gq signaling and IP3-dependent calcium elevation 
in astrocytes do not mediate vasodilation in the visual cortex. 

The GFAP-driven MrgprA1 mouse line was used in a more 
recent study of Cao and coworkers to investigate the role of 
astrocytic ATP release in depression-like behaviors [138]. 
Application of the MrgprA1 agonist FLRFα elicited not only a 
robust increase in intracellular calcium in MrgprA1-expressing 
primary astrocytes but also a 2.5-fold increase in the ATP 
concentration in the culture medium. Furthermore, MrgprA1 
mice infused with FLRFα into the cerebral ventricle exhibited 
a substantial reduction in depression-like behavior elicited in 
the murine paradigm of chronic social-defeat stress. Together 
with other results reported in the study, these findings suggest 
that endogenous ATP released from astrocytes can induce 
antidepressant-like behavior. Whether intracellular calcium 
increases in astrocytes can affect the activity of neighboring 
neurons was untested in the study. 

Several other transgenic mouse lines expressing DREADDs 
have been reported. For instance, Sweger et al. developed a mouse 
line expressing an engineered k-opioid receptor (Ro1) in GFAP-
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expressing astrocytes by crossing transgenic mice encoding GFAP 
promoter-driven tTA mice with another line encoding tetO 
promoter-driven Ro1 on the background of a genetic deletion 
of the endogenous k-opioid receptor (KOR) [139]. Ro1 is a Gi-
coupled GPCR that is insensitive to endogenous ligands of KOR, 
such as dynorphin, but highly sensitive to a synthetic ligand of 
the k-opioid receptor, spiradoline [140, 141]. Ro1-expressing 
transgenic mice developed hydrocephalus and accumulation of 
cerebrospinal fluid in the ventricular system, even in the absence 
of a synthetic ligand, suggesting that Ro1 is constitutively active in 
this mouse model; unfortunately, this constitutive activity negates 
one of main features of chemogenetics, its temporal controllability, 
and limits the use of this model.

The same group of researchers has described another transgenic 
mouse line expressing GFAP promoter-driven hM3Dq [142]. 
Systemic treatment of these mice with CNO elicited a number 
of physiological changes that are controlled by the autonomic 
nervous system, including cardiovascular function, saliva 
formation, and homeostasis of body temperature. Furthermore, 
hM3Dq-expressing mice receiving CNO exhibited substantial 
changes in activity-related behaviors and motor coordination. 
Thus, these findings indicate the critical role of astrocytes in a 
broad range of basic physiological functions. Interestingly, the 
physiological and behavioral changes were unaffected by genetic 
deletion of IP3 R2, suggesting that astrocytic IP3-mediated calcium 
increase is dispensable for hM3Dq-elicited responses. 

The GFAP promoter-driven hM3Dq mice have been used to 
study glial cells outside of the brain. McClain et al. examined 
the potential role of the enteric glia, which are astrocyte-like 
peripheral glial cells surrounding enteric neurons in the gut [143]. 
An application of CNO to the ileal and colonic myenteric plexus 
prepared from transgenic mice not only elicited and intracellular 
calcium increase in astrocytes but also triggered contraction of 
the ileum and colon to a degree similar to that elicited by direct 
stimulation of smooth muscle or electrical stimulation of enteric 
neurons. The contraction was abolished by the application of 
tetradotoxin, indicating the involvement of neuronal activation in 
the process. These findings have demonstrated that astrocytes in 
the gut play a critical role in the contractions of intestinal smooth 
muscle. The mechanism by which activation of Gq-coupled 
receptor in astrocytes leads to activation of enteric neurons 
remains unknown.

Recently, Sciolino et al. have reported two new transgenic mouse 
lines expressing hM3Dq, depending on Cre and flippase-mediated 
recombination [144]. When crossed to Cre or FLP driver lines, the 
new mouse lines permit the selective expression of hM3Dq in a 
population of cells that express either Cre or flippase. In addition, 

the intersectional strategy involving both Cre- and flippase-
dependent recombination further restricts hM3Dq expression 
in a specific subpopulation. This group reported that a systemic 
application of  CNO to mice expressing hM3Dq in GFAP-
expressing cells elicits hypothermia, confirming the efficacy of the 
new mouse line by reproducing the previous finding [142]. 

Finally, the chemogenetic approach has also been applied to 
reveal the function of Gs-coupled signaling in longterm memory 
in normal animals and the Alzheimer animal model. For example, 
double-transgenic mice encoding GFAP promoter-driven tTA 
and tetO-driven Rs1 have been generated to acutely modulate 
Gs-coupled receptor activity [145]. Rs1 is the human Gs-coupled 
5-HT4b serotonin receptor with a point mutation that renders 
this receptor insensitive to serotonin but highly sensitive to a 
synthetic ligand, GR-125487 [146]. Activation of Gs signaling 
by systemic delivery of GR-125487 impairs the performance of 
transgenic mice in the Morris water maze as well as a novel object-
recognition task. Orr et al. found that Rs1 is constitutively active 
in this mouse model, driving the Gs signaling pathway even in the 
absence of the synthetic ligand. 

CHEMOGENETIC STIMULATION OF ASTROCyTES ExPRESSING 
vIRALLy DELIvERED EFFECTORS

Thus far, only a small number of studies focusing on glia have 
used a virally mediated method to achieve the expression of 
chemogenetic proteins. For example, an AAV encoding GFAP 
promoter-driven hM3Dq or hM4Di has been stereotactically 
injected into the arcuate nucleus of the mouse brain to investigate 
the potential role of medial basal hypothalamic astrocytes in 
regulating food intake [147]. In the feeding assay, hM3Dq-
expressing mice receiving CNO exhibited a significant reduction 
in both baseline feeding and ghrelin-elicited hyperphagia, whereas 
hM4Di-expressing mice receiving CNO showed substantially 
enhanced and prolonged ghrelin-evoked feeding [148, 149]. In 
contrast, following the CNO treatment, leptin-induced anorexia 
was facilitated in hM3Dq-expressing mice but suppressed in 
hM4Di-expressing mice [150-153]. Thus, this study employing 
two different chemogenetic actuators that recruit different 
downstream signaling molecules clearly demonstrated that 
astrocytes in the arcuate nucleus exert bi-directional regulation of 
food consumption.

An AAV virus expressing GFAP promoter-driven hM3Dq was 
injected into the rat nucleus accumbens core (NAcore) in two 
recent studies in order to investigate the contribution of glial cells 
and extracellular glutamate to substance abuse and motivation 
[154, 155]. Bull et al. reported that an application of CNO 
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elicited an elevation of the intracellular calcium level in hM3Dq-
expressing primary astrocytes and a decrease in motivation for 
self-administration of ethanol after 3 weeks of abstinence [154]. 
Scofield et al. showed that intracranial or systemic administration 
of CNO triggered an increase in extracellular glutamate in the 
NAcore [155]. Furthermore, hM3Dq-expressing rats receiving 
intraperitoneal CNO exhibited a significant reduction in the cue-
induced reinstatement of cocaine seeking [155].

CONCLUDING REMARKS

Neurons have always been a main focus of brain research, and 
non-neuronal cells that make up the majority of brain cells, such 
as glial cells, have not received much attention until recently. 
Studies of glia have revealed that they do not merely provide food 
and support to neurons; rather, they play an important role in 
brain function. In order to understand astrocytic function, it is 
critical to be able to control their intracellular activity in a native 
context. Since glia are intermingled with neurons in the brain and 
they express receptors and ion channels that are also expressed in 
neurons, it is difficult to perform such manipulation selectively in 
glial cells, while leaving neighboring neurons unaffected. 

Optogenetics and chemogenetics are novel manipulation 
techniques based on genetically encoded effector molecules, 
such as specific ion channels and GPCRs, that respond to 
exogenously delivered light stimuli or synthetic ligands, but are 
unresponsive to endogenous molecules. In combination with 
cell type-specific promoters and other genetic tools, expression 
of effector molecules can be restricted to specific cell types. In 
addition, a controlled delivery of exogenous stimuli permits 
temporal precision of  manipulation. Thus, the features of 
spatial and temporal control make it possible to perform a time-
resolved functional manipulation in a specific population of cells. 
Optogenetics and chemogenetics have been used most extensively 
in the study of neuronal circuits and behavior, but they have also 
been employed in a number of studies focusing on glial cells, 
mainly astrocytes. Such studies have demonstrated that astrocytes 
play a critical role not only in a variety of basic physiological 
responses, including visual processing, norepinephrine release, 
breathing, cerebral blood flow, feeding, memory, and sleep, but also 
in pathological conditions, including drug addition, depression, 
and ischemia. Those studies have further revealed the importance 
of gliotransmitters, such as extracellular glutamate, ATP, and 
L-lactate, that modulate excitability and synaptic transmission 
in neighboring neurons. However, it is still debatable whether 
astrocytic release of gliotransmitters is a calcium-dependent 
process. In addition, the exact molecular mechanisms governing 

gliotransmitter release from astrocytes remains to be revealed. A 
combinatorial approach of advanced functional manipulation 
techniques such as optogenetics and chemogenetics, together 
with pharmacological and molecular genetic methods, can 
further our understanding of glial function in health and disease, 
including neurodevelopment, neurodegenerative disorders, and 
neuroinflammatory conditions.
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