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A B S T R A C T

The SARS-CoV-2 pandemic led to a huge increase in global pathogen genome sequencing efforts, and the
resulting data are becoming increasingly important to detect variants of concern, monitor outbreaks, and
quantify transmission dynamics. However, this rapid up-scaling in data generation brought with it many
IT infrastructure challenges. In this paper, we report about developing an improved system for genomic
epidemiology. We (i) highlight key challenges that were exacerbated by the pandemic situation, (ii) provide
data infrastructure design principles to address them, and (iii) give an implementation example developed
by the Swiss SARS-CoV-2 Sequencing Consortium (S3C) in response to the COVID-19 pandemic. Finally, we
discuss remaining challenges to data infrastructure for genomic epidemiology. Improving these infrastructures
will help better detect, monitor, and respond to future public health threats.
0. Introduction

An increasingly important tool to help fight pathogenic diseases is
genomic epidemiology. The analysis of pathogen genome sequences
allows us to learn about pathogen evolution and epidemic or endemic
transmission dynamics (Kraemer et al., 2019; Grenfell et al., 2004).
However, the SARS-CoV-2 pandemic has highlighted a growing dispar-
ity between global sequencing data generation capacities and analysis
capacities (Black et al., 2020). As Hodcroft et al. (2021) underscores,
we seem to be drowning in data rather than swimming in information.

Genome sequence data are becoming increasingly important for
epidemic response, as highlighted during the SARS-CoV-2 pandemic.
In December 2019, when an unknown respiratory disease was iden-
tified in Wuhan, China, the first whole genome sequence from the
causal virus helped classify the new human pathogen SARS-CoV-2 (Wu
et al., 2020) and establish its likely origins (Andersen et al., 2020).
Then, comparison of mutational differences in genomes collected from
different regions helped distinguish imported cases from community
transmission (Worobey et al., 2020). Next, genome surveillance ef-
forts identified more transmissible variants of concern, e.g. the al-
pha variant (World Health Organization, 2021) in the UK in late
2020 (Volz et al., 2021). Finally, phylogenetic and phylodynamic meth-
ods use genome sequence data to quantify epidemic dynamics, includ-
ing the reproductive number, transmission routes, effects of public
health measures, and the role of super-spreading (Nadeau et al., 2021;
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Du Plessis et al., 2021; Miller et al., 2020). Thus, pathogen genome
sequence data is instrumental for disease detection, outbreak tracking,
and quantifying transmission dynamics.

The wealth and geographic distribution of available genomic data
underlying these and other analyses indicates many groups around
the world have developed their own infrastructures for genomic epi-
demiology. So far, several large national initiatives have published
descriptions of their technical infrastructures. In particular, (Nicholls
et al., 2021; Matthews et al., 2018; Egli et al., 2019) describe UK-
, Canadian- and Swiss-specific infrastructures that enable linking of
genome sequence data with associated metadata and integrate data
from multiple regional contributors. Other examples are available as
code bases, for instance that of the Spanish SARS-CoV-2 Sequencing
Consortium (Spanish SARS-CoV-2 sequencing consortium, 2022).

Despite these successes, developing a data infrastructure for
genome-based surveillance and genomic epidemiology remains a chal-
lenge (Black et al., 2020; Bernasconi et al., 2021). In the COVID-19
pandemic, bioinformatics capacity has proven to be a key bottleneck in
pandemic response (Hodcroft et al., 2021). This is particularly true in
countries without a well-supported national initiative, or in the period
before such an initiative is established. As a US-focused report (Com-
mittee on Data Needs to Monitor Evolution of SARS-CoV-2 et al., 2020)
highlights, a key priority for pandemic preparedness is to improve upon
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Fig. 1. An illustration of how three key entities – tests, plates, and sequences – are stored in database tables and the mapping table that links the information from each.
xisting systems to integrate clinical and genomic data and better coor-
inate between different public health stakeholders. In this paper, we
hare lessons learned in the Swiss SARS-CoV-2 Sequencing Consortium
S3C) pertaining to three challenges that were particularly exacerbated
y the COVID-19 pandemic: unstable data sources, rapid development
f new tools, and the need for timely reporting. We outline design
rinciples to address these challenges and describe our implementation
f a relational database and containerized microservices as an example.
inally, we highlight remaining challenges in data management for
enomic epidemiology.

The S3C began generating and analyzing SARS-CoV-2 genome se-
uences in March 2020. The Consortium started as a partnership be-
ween two academic groups, an associated academic sequencing facil-
ty, and a large Swiss medical diagnostics company (S3C, 2021). Since
hen, S3C has partnered with three core sequencing facilities in Switzer-
and to sequence over 44,000 samples from companies, hospitals, and
esearch institutions. These data are made available on GISAID (Elbe
nd Buckland-Merrett, 2017) and the European Nucleotide Archive.
o meet the demands of a growing genomic surveillance program

n Switzerland, S3C benefited from early data infrastructure design
hoices that enabled rapid extension to new data sources, types, and
sers.

In the following sections we describe major implementation chal-
enges for data infrastructure in light of the pandemic and outline
esign principles to address them. In particular, we discuss S3C’s imple-
entation of a relational database and microservices-based approach

s an example fulfilling these design criteria using open source tools.
inally, we consider remaining challenges in data infrastructure for
enomic epidemiology that must be met to improve future public health
esponse to pathogenic diseases.

. Unstable data sources

Emerging public health threats bring great uncertainties, including
n data availability and formats. The basic data necessary for genomic
urveillance are pathogen genome sequences and minimal patient meta-
ata, e.g., sample collection date and location. Coupling these data
2

and analyzing them in aggregate allows public health officials to track
transmission and monitor key mutations. However, the format of these
data may shift over the course of an outbreak, and new data may
become available. For example, accommodating genomic restructuring
by the pathogen itself (e.g., by insertion, deletion, recombination, or
reassortment), annotating samples with the presence or absence of
newly discovered key mutations, and newly available or re-formatted
metadata all represent shifts in the basic data required for effective
genomic surveillance. Furthermore, it might not be possible to define
a fixed and sensible file format for data exchange in the early stages of
outbreak response due to time pressure.

Recommendation: ensure clean data

Unreliable and shifting source data can quickly lead to messy data
with, for example, missing values and different spellings of the same en-
tity. Ideally, infrastructure developers will work with data submitters to
develop a standardized data dictionary with clearly defined permitted
values for each variable. However, it is also essential to strictly validate
data upon import as a double-check. It should also be anticipated
that changes and corrections to the data will be necessary over time.
Therefore, data should be maintained in a non-redundant form so that
changes to one attribute can be easily made without the danger of
causing inconsistencies. Data relations should be tracked so that the
effect of changes to one attribute on others are easy to identify. Data
types should be strictly enforced so that changes to data formats are
rapidly detected and mistakes are not incorporated. Finally, it should
be easy to define custom data types and add attributes as new data is
made available.

Example: relational database

Relational database management systems provide a good way to ful-
fill these design criteria. In a relational database management system,
data are stored in a collection of tables, also known as the ‘‘relational
format’’. Each table is independent from the others, but they may be
linked (related) via shared keys, i.e. information common to two or
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Fig. 2. Containerized microservices operate autonomously to add or extract data from the database.
more tables. This allows us to formulate complex queries by joining
different tables together.

A relational database approach helps keep data clean in the face
of unstable data sources. Each table’s columns have fixed data types
and it is possible to define custom types with a limited set of allowed
values. Foreign keys, CHECK constraints and triggers allow definitions
of arbitrarily complex validations. Invalid entries are rejected upon
import so we know when corrections are necessary. This is especially
important in the S3C, since we accept partially human-edited Excel files
and non-documented output data from PCR machines as input. Non-
redundancy between tables makes it easier to correct mistakes in these
data when they arise. Finally, new and corrected data is simultaneously
available to all database users.

Several relational database management systems are available. The
S3C uses PostgreSQL,2 which is freely available and open-source. In
our implementation, we have three core database tables, one each
for tests (samples), plates of RNA extracts, and SARS-CoV-2 genome
sequences (Fig. 1). The test table contains sample metadata from the
originating laboratory, the plate table tracks where each plate was sent
for sequencing and when, and the sequence table stores the assembled
SARS-CoV-2 whole-genome sequence and associated quality control
statistics. Finally, a mapping table links the respective keys from each
table. These tables represent the core of our database, though we
have added other tables through time to accommodate new data. For
example, we store the identifiers assigned by public databases and
additional sample metadata provided by the Swiss Federal Office for
Public Health (FOPH).

2. New tools

State-of-the art computational tools are also likely to change or
are even being newly developed over the course of a public health
response. This is exemplified in the COVID-19 pandemic by evolving
nomenclature systems. Lineage assignment tools were frequently up-
dated to keep up with nomenclature changes as new lineages arose.
For example, the popular pangolin software for assigning SARS-CoV-2
genome sequences to global lineages has 75 releases since its develop-
ment in April 2020 (O’Toole et al., 2021).

Recommendation: modular analysis workflows

Analysis workflows should be modular, rather than monolithic
pipelines. It should be easy to update one component or swap it out
for a different tool without having to re-run a full suite of analysis
programs on the entire cohort. This modular structure allows individual
components to be adapted or re-used for other pathogens or other
projects. For use cases where software version tracking is especially
important, workflow and software versions can be stored alongside the
data in the database.

2 https://www.postgresql.org/.
3

Example: containerized microservices

A microservices approach separates different tasks performed by dif-
ferent tools into loosely-coupled programs that operate autonomously,
each performing a single, well-defined task. For the S3C, we imple-
mented a growing set of microservices that import, export, and process
data by adding or extracting data from the database (Fig. 2). The
microservices each have their own code base, and, depending on the
task, they are written in different languages.

We used a containerization technology to deploy these microser-
vices. This packages software applications together with their depen-
dencies into single units, called containers. For example, a Pango
lineage assigner requires the pangolin tool (O’Toole et al., 2021), a
Nextclade importer needs Nextclade (Aksamentov et al., 2021), and
the metadata importer has to mount a network folder. The services can
be written in different programming languages, perhaps even different
versions of the same language to accommodate different dependencies.

Most services act only upon missing data. For example, we have
a Nextclade importer service that runs the Nextclade program and
imports resulting quality scores and mutations. This service queries the
database every ten minutes and looks for entries in the sequence table
where Nextclade quality scores were previously unpopulated. Other
services avoid redundancy by maintaining a database table that stores a
state, e.g. filenames which have already been processed and should not
be re-imported. For example, our metadata importer service operates in
this way.

The containerized microservices allow fast adoption of new or up-
dated tools. Since they are packaged and deployed independently, they
can be started or stopped without impacting other services. The con-
tainerization further serves to isolate each tool and remove dependency
conflicts between tools. Finally, since services only act upon missing
data or when a state is changed, we avoid redundant computation. An-
other complementary approach to achieving analysis modularity would
be to use scientific workflow systems, such as Snakemake (Mölder et al.,
2021) or Nextflow (Di Tommaso et al., 2017). These systems can be
used together with containerization technologies and further simplify
tracking of component software versions and workflow revisions used
to generate output files.

3. Timely reporting

Timely reporting is crucial for an evidence-based public health
response. Turn-around times for SARS-CoV-2 sequences to be made
available on GISAID vary from a few days to a few weeks post-sampling,
or more. Sample transport logistics, sequencing capacities, bioinformat-
ics analysis, and report preparation all contribute to this turn-around
time. Here, we focus on how to ensure rapid final reporting, as this is
the aspect data managers have the most influence on.

Recommendation: Multiple levels of querying

A data management system needs to support rapid, ad-hoc querying
in addition to generation of regular, stable reports. The prior is nec-
essary for early outbreak detection and detection of new variants of
concern, while the latter is essential for longer-term monitoring. Ide-
ally, the system should be able to expose an application programming
interface (API) for safe public data sharing.

https://www.postgresql.org/
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Fig. 3. A SQL query that finds the samples with the S:N501Y mutation.
xample: Database queries

Relational database systems support querying in several ways, ful-
illing the above design criteria. One way to interact with data in

relational database is by directly using structured query language
SQL), which is a high-level and declarative language specifically de-
igned for efficient querying. In SQL, the user describes (declares) what
ata should be added or retrieved, but not exactly how. The language
hen works behind-the-scenes to optimize the necessary computations
nd return the desired information (Fig. 3). SQL is widely used by data
nalysts and does not require prior programming experience. Graphical
ser interfaces, for example DataGrip,3 allow users to manually add
r modify data and submit queries. For those who are programmers,
opular languages like R and python have packages like dplyr and
andas that enable reading data from a database directly into data
rames.

For recurring queries, for instance for regular reporting, the
atabase enables easy aggregation and reporting using ‘‘views’’. These
re derived tables that aggregate data from existing tables according
o a query. For reporting purposes, we created a number of views,
or instance a billing view that contains the number of sequenced and
ubmitted samples per week and a surveillance view that aggregates
er-sample lineage assignment and mutation information for the Swiss
OPH. These views are automatically updated with the correction or
ddition of data. We also have a microservice that exports the mutation
nformation view on a daily basis to a drop-point for the Swiss FOPH.

Finally, for monitoring purposes, a relational database can also
erve as the back-end to dashboards or websites. We offer two public-
acing websites to interact with sequencing and case data stored in our
atabase. One is a dashboard focused on Swiss case data4 and the other

enables monitoring of global SARS-CoV-2 variants 5 (Chen et al., 2021).

Discussion

The COVID-19 pandemic has underscored both the utility of ge-
nomic epidemiology for public health response and remaining chal-
lenges in supporting related data infrastructure. Here we highlighted
three challenges that were exacerbated by the rapidly changing pan-
demic situation: unstable data sources, rapid development of new tools,

3 https://www.jetbrains.com/datagrip/.
4 https://ibz-shiny.ethz.ch/covidDashboard/?_inputs_&tab=%22ts%22.
5

4

https://cov-spectrum.org.
and the need for timely reporting. Then, we outlined general design
principles to address these challenges. As an example, we describe
the S3C’s implementation of a relational database and containerized
microservices.

These design choices directly enabled genome-based outbreak de-
tection, monitoring, and public health response in the Swiss SARS-
CoV-2 epidemic. Even before a new variant could be reliably called
by lineage classification tools, we could quickly query Swiss data
for mutations characterizing variants of concern. This enabled us to
detect the first instances of the Beta, Gamma, and Delta variants in
Switzerland. Our database also enabled us to quickly develop two
public-facing websites for epidemic monitoring. Finally, we collaborate
with the Swiss FOPH as members of the Swiss National COVID-19
Science Task Force6 to link genome sequences to patient metadata.
Lineage assignment and mutation data are passed back to the FOPH
to support the health authorities in their pandemic response.

Many labs around the world have developed a data infrastructure
for genomic epidemiology over the course of the COVID-19 pandemic.
In fact, there are over 4000 unique submitting labs in the GISAID Epi-
CoV database as of January 2022. Unfortunately, a paucity of published
examples makes it difficult to compare the strengths and weaknesses of
various implementations in light of the challenges outlined by Black
et al. (2020), Bernasconi et al. (2021) and highlighted here. The
largest pathogen genome sequencing consortium in the world is that
of COG-UK. Like S3C, they use a relational database. On top of it, they
developed an API and a web interface for the collaborators to submit
and retrieve data (Nicholls et al., 2021). In comparison, we did not
define a fixed metadata or sequence data format but adapted to the
data provided by collaborators. Our aim was to reduce overhead for our
collaborators. However, as data inputs stabilize, a future improvement
would be to develop a more robust procedure for defining formats and
updating data. An improved technical interface for data upload and
correction by sequence submitters like that of COG-UK would also help.

There are also larger outstanding challenges to developing data
infrastructures for genomic epidemiology. First, genome sequencing
efforts are highly skewed towards high-income countries. In an in-
terconnected world, local variants and fast epidemic spread are of
global concern no matter where they arise. Expanding the technical
and personnel resources for genome sequencing and data management
in low and middle-income countries would enable a better, more coor-
dinated public health response. Second, mistakes are common — from

6 https://sciencetaskforce.ch.

https://www.jetbrains.com/datagrip/
https://ibz-shiny.ethz.ch/covidDashboard/?_inputs_&tab=%22ts%22
https://cov-spectrum.org
https://sciencetaskforce.ch
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sequencing errors introducing spurious mutations, to sample contami-
nation, to metadata errors. SARS-CoV-2 sequences and their metadata
are regularly modified or deleted from public repositories. While some
amount of mistakes are inevitable, better tools for tracking of changes
to sequence data and their metadata would make correcting mistakes
easier and promote reproducible science and transparency. Finally,
we need robust infrastructures for safe linking of patient metadata
with genome data. It can be a challenge to establish standardized,
anonymized identifiers at the relevant scale for national sequencing
projects, particularly in countries with decentralized health care ser-
vices. Strong partnerships with government health ministries will help
here, with metadata like vaccination and hospitalization status being
provided to ensure actionable results for public health response.

In conclusion, generating pathogen genome sequence data and link-
ing it to case-level metadata facilitates a rapid, evidence-based public
health response to evolving infectious pathogens. Effective and timely
generation of these data in rapidly changing situations relies on robust
and agile data infrastructures, and improvements in the area should be
a priority for pandemic preparedness.
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