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Abstract

Oral-facial-digital type I syndrome (OFDI) is a human X-linked dominant-male-lethal developmental disorder caused by
mutations in the OFD1 gene. Similar to other inherited disorders associated to ciliary dysfunction OFD type I patients display
neurological abnormalities. We characterized the neuronal phenotype that results from Ofd1 inactivation in early phases of
mouse embryonic development and at post-natal stages. We determined that Ofd1 plays a crucial role in forebrain
development, and in particular, in the control of dorso-ventral patterning and early corticogenesis. We observed abnormal
activation of Sonic hedgehog (Shh), a major pathway modulating brain development. Ultrastructural studies demonstrated
that early Ofd1 inactivation results in the absence of ciliary axonemes despite the presence of mature basal bodies that are
correctly orientated and docked. Ofd1 inducible-mediated inactivation at birth does not affect ciliogenesis in the cortex,
suggesting a developmental stage-dependent role for a basal body protein in ciliogenesis. Moreover, we showed defects in
cytoskeletal organization and apical-basal polarity in Ofd1 mutant embryos, most likely due to lack of ciliary axonemes. Thus,
the present study identifies Ofd1 as a developmental disease gene that is critical for forebrain development and ciliogenesis
in embryonic life, and indicates that Ofd1 functions after docking and before elaboration of the axoneme in vivo.
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Introduction

The forebrain is the most anterior part of the central nervous

system (CNS) and derives from a simple layer of neuroepithelial

cells, which becomes specified along the antero-posterior (AP) and

dorsal-ventral (DV) axes by the action of various signalling

molecules such as Sonic hedgehog (Shh) and Wnt family members

[1].

Recently, numerous studies have revealed that the primary

cilium plays a crucial role in modulating critical signalling

pathways during CNS development [2,3,4,5,6,7,8,9]. Primary

cilia are single organelles present on almost all mammalian cells

and composed of a basal body and an axoneme of 9 couples of

microtubules. They are essential for the transduction of various

signalling pathways controlled by Shh, Wnt and Planar Cell

Polarity (PCP) molecules, as reviewed in [10,11]. Several mutants

of ciliary proteins, in particular proteins for the IntraFlagellar

Transport (IFT), show severe defects in forebrain development.

The cobblestone mutant, a hypomorphic allele of the IFT gene

Ift88, has severe defects in the formation of dorsomedial

telencephalic structures, and abnormal AP and DV patterning.

In this mutant, Gli3 proteolytic processing is reduced and an

upregulation of canonical Wnt signalling in the neocortex and in

the caudal forebrain can be observed [12]. Inactivation of Ift172

leads to a global brain-patterning defect through the action of

FGF8 signalling at the mid-hindbrain boundary, demonstrating a

crucial role in primary cilia formation during development [13].

Alien (aln) is a mutation in the Ttc21b gene, which encodes the

complex A protein IFT139 that is important for retrograde IFT.

Aln mutant mice show loss of the dorsal cortex, DV patterning

defects and lack of a clear distinction between the telencephalon

and diencephalon mainly due to an upregulation of Shh signalling

in the diencephalon [14]. A recent study on the role of the

ciliopathy gene Ftm (Rpgrip1l) in brain development demonstrates

that olfactory bulb morphogenesis depends on primary cilia [15].

Furthermore, loss of Kif3a, a kinesin involved in the IntraFlagellar

Transport leads to the degeneration of primary cilia, and

disruption of Gli3 processing in the cerebral cortex [16]. Taken

together these studies illustrate a critical role for ciliary intra-

flagellar proteins during forebrain development [17]. However,

little is known on the role of ciliary basal body proteins during

forebrain development.

Ciliary dysfunction is associated with pathologies named

‘‘ciliopathies’’. Oral-facial-digital type I syndrome (OFDI; OMIM

311200) is an X-linked dominant developmental ciliopathy with

lethality in males. Female patients present malformations of the
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oral cavity, face, digits and CNS defects with a high degree of

phenotypic variability observed in affected females even within the

same family, possibly due to X-inactivation [18,19,20]. OFD1, the

gene responsible for this genetic disorder, encodes a protein

localized at the basal body of primary cilia [21,22,23]. Inactivation

of the gene indicates that Ofd1 is required for primary cilia

formation at the embryonic node and for left-right axis specifica-

tion [24]. CNS abnormalities such as agenesis of the corpus

callosum, intracerebral cysts/porencephaly, gray matter heteroto-

pias, and cerebellar malformations are present in about 50% of

OFDI patients [18]. In more recent years mutation in the OFD1

transcript have also been identified in patients with Joubert

syndrome, a ciliopathy characterized by extensive neuropatholog-

ical findings [25]. However whether and how OFD1 acts during

brain development is still unknown.

To elucidate the role of the ciliary basal body protein Ofd1 in

forebrain development, we assessed the neurological phenotype

observed in Ofd1 mutant animals. Our data show that Ofd1

controls DV patterning of the forebrain and elongation of ciliary

axonemes during development, but not at post-natal stages. In

Ofd1 mutant embryos the Shh pathway and apico-basal cell

polarity result affected leading to severe patterning and growth

defects. Moreover, our study indicates that Ofd1 functions after

docking and before elaboration of the axoneme during corticogen-

esis.

Results

Brain phenotypic variability in Ofd1 heterozygous female
embryos

To investigate the role of Ofd1 during embryonic development,

we have previously generated a mouse model with ubiquitous

inactivation of the Ofd1 transcript [24]. Ofd1-knockout animals

reproduce the main features of the human disease, albeit with

increased severity, possibly due to differences of X-inactivation

patterns between human and mouse [19,26]. In mouse the gene is

X-inactivated and female heterozygous mice are mosaics of Ofd1-

expressing and Ofd1-non-expressing cells. In fact, in heterozygous

females one wild type or one mutant allele is transcribed in each

cell. In Ofd1-knockout animals, transcription of the mutant allele

leads to the production of an aberrant mRNA encoding a

truncated protein of 106 aa. Thus, cells expressing the mutant

allele are Ofd1-non-expressing cells given that no functional

protein is produced [24]. Hemizygous male mutants (Ofd1D4–5/y)

die at E11.5 while heterozygous females (Ofd1D4–5/+) die at birth.

To investigate whether Ofd1 is involved during brain patterning,

we analyzed heterozygous females (Ofd1D4–5/+) at E12.5, a

developmental stage at which the two brain hemispheres are well

formed, and the morphological divisions between the dorsal and

ventral telencephalon are clearly visible in wild-type animals.

Because of the process of X-inactivation we observed a high

degree of variability in the phenotype ranging from a mild to a

severe phenotype (Figure 1A–C). We performed Nissl staining on

E12.5 coronal sections of Ofd1D4–5/+ female mutants. In mutants

with the mild phenotype (Figure 1E) the same morphological

structures of wild-type animals could be easily identified

(Figure 1D), differently to the severe phenotype where the

different brain structures were dramatically affected (Figure 1F).

In these embryos, we observed a pronounced disorganization of

the dorsal telencephalon in which the medial structures fail to

invaginate and tend instead to protrude dorsally (red arrow in

Figure 1F). Moreover, mutant embryos showed an abnormally

large ventricle and an apparent expansion of the ventral ganglionic

eminences (Figure 1F). We performed a macroscopical analysis on

140 heterozygous mutant females at E12.5. Forty-five embryos

(32.1%) presented a mild phenotype where the morphology,

although abnormal, was better preserved. Seventy embryos

(50.0%) showed a severe phenotype that displayed an abnormal

brain shape, particularly evident in the forebrain (Figure 1C).

Twenty-five embryos (17.9%) showed an even more severe

phenotype with a very soft and shapeless brain difficult to handle

Figure 1. Brain morphology and architecture in wild-type and
Ofd1 mutant females at E12.5. Lateral view of Ofd1+/+ wild-type (A)
and Ofd1D4–5/+ heterozygous females at E12.5 (B, C). Due to X-
inactivation, heterozygous females show a high degree of variability
ranging from a mild (B) to a severe (C) neurological phenotype, and an
even more severe phenotype (data not shown). In the severe
phenotype (C) mutant heads are enlarged, especially at the level of
forebrain (*) and midbrain (**). Scale bars: 1 mm. Nissl staining on E12.5
coronal sections of Ofd1+/+ wild-type (D) and Ofd1D4–5/+ mutant females
(E–F). The mild phenotype (E) shows a structure similar to the wild-type
(D). The severe phenotype (F) displays a disorganization of the brain
architecture. The presumptive cingulate and hippocampal neuroepi-
thelium fail to normally invaginate and protrude dorsally (red arrow in
F). Dorsal is upwards, ventral is downwards. Scale bars: 300 mm. NCX:
neocortex. GE: ganglionic eminences. A pie chart indicates the
percentage of different neurological phenotypes (G). ISH studies
demonstrated that Ofd1 transcript is expressed in the neocortex
(NCX) and in the ganglionic eminences (GE) at E12.5 (H). No signal was
detected for the sense riboprobe even after a long incubation time of
the sample in staining solution (I). Scale bars: 300 mm. Dorsal is
upwards, ventral is downwards. Quantitative RT-PCR is performed upon
mRNA extraction from E12.5 total brain (J; ***p,0.01). Error bars
indicate standard error of the mean.
doi:10.1371/journal.pone.0052937.g001
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for experimental manipulation and thus not further characterized

(Figure 1G).

Our previous studies revealed that Ofd1 was expressed in the

CNS during embryonic development [21] (see also http://www.

genepaint.org/Frameset.html for additional data). In situ hybrid-

ization confirmed that Ofd1 is expressed both in dorsal and ventral

telencephalon with higher levels in the developing cortex and

medial ganglionic eminence (MGE) (Figure 1H–I). To correlate

the brain phenotype to the expression levels of Ofd1, we performed

Ofd1 mRNA expression analysis on total brain of Ofd1D4–5/+

mutant mice by RT-PCR using primers that detect exclusively the

wild type Ofd1 mRNA but not the mutant one. We demonstrated

that Ofd1 mRNA expression levels were reduced by 23% in the

mild phenotype, while it was reduced by 60% in the severe

phenotype, indicating that the severity of the brain phenotype was

due to the percentage of cells carrying the active or inactive

mutated X chromosome, and thus to the degree of chimaerism

observed in Ofd1 heterozygous females for the X-inactivation

phenomenon (Figure 1J).

Dorsal-ventral patterning is affected in the telencephalon
of Ofd1D4–5/+

To investigate the molecular basis of the brain defects observed

in Ofd1D4–5/+ mutants, we analyzed the expression pattern of

several genes involved in different phases of forebrain develop-

ment. In particular, the dorsal and the ventral telencephalon differ

in the expression of distinct markers. The proneural transcription

factor Paired box gene 6 (Pax6) and Neurogenin 2 (Ngn2) are normally

expressed in the dorsal part of the telencephalon where they play a

critical role in cortical development [27,28,29,30,31]. In the wild-

type telencephalon, Pax6 is normally expressed in the cortex with a

high lateral to low dorsomedial expression pattern, whereas

expression is largely absent from the ventral telencephalon

(Figure 2A). In Ofd1D4–5/+ heterozygous females displaying a mild

phenotype, Pax6 was normally expressed in the dorsal telenceph-

alon (data not shown), whereas in Ofd1D4–5/+ mutants with a severe

phenotype the expression gradient was lost and Pax6 became

restricted to the morphologically abnormal cortex (red arrows in

Figure 2B). No or very low expression was detected in the

protruded dorsomedial structure (Figure 2B). Similarly, Ngn2

expression pattern was normally confined to the cortex in

Ofd1D4–5/+ mutant embryos displaying both mild and severe

phenotypes (data not shown and red arrows in Figure 2D) but

absent in dorsomedial telencephalon of severely affected mutant

brains. Thus, Ofd1 mutants displaying different severities of the

brain phenotype (mild or severe) showed similar restricted

expression pattern of cortical markers, suggesting that the dorsal

telencephalon has maintained its cortical regional identity. To

further understand the molecular fate of the dorsomedial

protruded structures, we analyzed the pattern of Lhx2, which is

normally expressed in the dorsal telencephalon in a high

dorsomedial to low lateral gradient (Figure 2E) [32]. Similarly to

Pax6 and Ngn2, Lhx2 expression has lost its expression gradient, but

is still maintained in the malformed cortex, and not ectopically

Figure 2. Markers of the dorsal telencephalon are preserved in
the absence of Ofd1. Pax6 and Ngn2 expression in the forebrain of
wild-type (A, D) and Ofd1 mutants (B, C, E, F) analyzed by ISH on coronal
sections at E12.5. These transcripts are normally expressed in Ofd1+/+

wild-type and Ofd1D4–5/+ heterozygous females in the dorsal part of
telencephalon. In Ofd1D4–5/+ heterozygous females displaying a severe
phenotype expression was detected exclusively in the presumptive
neocortex (red arrows in B, D), but was absent in the dorsomedial
regions. mRNA expression of Lhx2 was detected in the dorsal
telencephalon in a high dorsomedial to low lateral gradient
(Figure 2E) [32]. Similarly to Pax6 and Ngn2, Lhx2 expression lost its
expression gradient, but was still maintained in the malformed cortex
(red arrows in Figure 2F), and not ectopically expressed in the
protruded dorsomedial structure in severely affected Ofd1D4–5/+ mutant
embryos. mRNA expression of Wnt8b was detected in dorsomedial
cortical structures, but not in the cortical primordium (Figure 2G) [33].
Severely affected Ofd1D4–5/+ mutant embryos showed only a slight
expansion of Wnt8b expression dorsomedially (red arrows in Figure 2H),
indicating that the abnormally protruded dorsomedial structure in

mutant embryos has not a cortical origin. Immunohistochemical
analysis for Tbr2 reveals that its expression is still maintained in
severely affected Ofd1D4–5/+ heterozygous females (I, J) although some
areas lack Tbr2 expression (red arrows in J). Similarly, immunohisto-
chemical analysis for Tbr1 reveals that its expression is mainly preserved
in Ofd1D4–5/+ heterozygous females with a severe phenotype (K, L)
although Tbr1-negative patches can be detected (red arrows in L).
Dorsal is upwards, ventral is downwards. Scale bars: 100 mm. NCX:
neocortex. GE: ganglionic eminences.
doi:10.1371/journal.pone.0052937.g002
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expressed in the protruded dorsomedial structure in severely

affected Ofd1D4–5/+ mutant embryos (red arrows in Figure 2F).

Finally, we assessed the expression of Wnt8b, which is expressed in

dorsomedial cortical structures, but not in the cortical primordium

(Figure 2G) [33,34]. Severely affected Ofd1D4–5/+ mutant embryos

showed only a slight expansion of Wnt8b expression dorsomedially

(red arrows in Figure 2H), indicating that the abnormally

protruded dorsomedial structure in mutant embryos has not a

cortical origin.

To investigate whether cortical progenitors are able to resume a

normal differentiation program in the absence of Ofd1 function,

we performed immunohistochemistry with Tbr2, a marker for

intermediate cortical progenitors [35,36], and Tbr1, which labels

the first post-mitotic cortical neurons (Figure 2I–L) [37,38].

Strikingly, expression of Tbr2 and Tbr1 was maintained in

severely affected Ofd1D4–5/+ mutant embryos, indicating that

corticogenesis is preserved in the presence of a morphological

malformed cortical primordium (Figure 2J, L). Nevertheless, Tbr2-

negative areas, and to a less extent Tbr1-negative patches, were

observed in mutant embryos, suggesting that in some restricted

regions cortical progenitors failed to undergo proper differentia-

tion (red arrows in Figure 2J, L).

To assess whether ventral identity was preserved in the absence

of Ofd1, we analyzed the expression pattern of markers specific for

the ganglionic eminences (GE). The homeodomain gene Gsh2 and

the neural gene Mash1 are expressed in the progenitor population

of the GE and are involved in the maintenance of the molecular

identity of this region during development [39,40,41,42,43].

Strikingly, we found that Gsh2 and Mash1 were ectopically

expressed in the neocortex of severely affected Ofd1D4–5/+ mutant

embryos (red arrows in Figure 3C, F), whereas in mildly affected

Ofd1D4–5/+ mutant animals expression of Gsh2 and Mash1 was not

altered (Figure 3B, E).

To provide more information on the ventral cell types

ectopically located in the dorsal telencephalon, we analyzed the

cortical interneuron marker Dlx2 expressed in the subventricular

zone of the lateral (L) GE and medial (M) GE, and Nkx2.1,

restricted to the MGE and preoptic area (POA) [44,45,46]. High

mRNA expression of Dlx2 was detected in the presumptive

neocortical region of severely affected Ofd1D4–5/+ mutant embryos

(red arrows in Figure 3I), differently from mildly affected

Ofd1D4–5/+ mutants (Figure 3H), which show a similar pattern to

wild-type embryos (Figure 3G). Immunohistochemical analysis of

Nkx2.1 demonstrated that in wild-type Ofd1+/+ embryos and in

mutant females with a mild phenotype, protein expression was

confined to the MGE and POA, although the expression boundary

between MGE and LGE was blurred in the mild phenotype and

patches of Nkx2.1-positive cells were detected in the LGE (red

arrows in Figure 3K), suggesting that the LGE might have

partially acquired an MGE-fate. This is exacerbated in the

severely affected Ofd1D4–5/+ mutant embryos, in which high

expression of Nkx2.1 is ectopically induced along the entire ventral

telencephalon and at lower levels in the dorsal telencephalon (red

arrows in Figure 3L). Ectopic expression of ventral markers in

dorsal telencephalon might suggest a lack of morphological

division between dorsal and ventral regions of the telencephalon.

However, no differences in the expression of pallial-subpallial

boundary (PSPB) markers such as Sfrp2 and Dbx1 [47,48] were

detected in both mildly and severely affected Ofd1D4–5/+ mutant

embryos (black arrows in Figure 3M–R), suggesting that ectopic

activation of ventral markers in dorsal telencephalon is indepen-

dent of the presence of a PSPB boundary.

Taken together these data suggest that Ofd1 plays an important

role in DV patterning of the telencephalon and particularly in

restricting ventral telencephalic fate during forebrain neurogenesis.

Shh signalling and Gli3 protein processing are defective
in the Ofd1D4–5/+ forebrain

In the absence of Sonic Hedgehog (Shh), the transmembrane

protein Patched 1 (Ptch1) inhibits Smoothened (Smo) in

transducing the signal, and as a result, the full-length activator

form of Gli3 (Gli3FL), a transcriptional effector of the Shh signaling

pathway, is proteolytically cleaved into the repressor form Gli3R.

The binding of Shh to Ptch1 induces the release of Smo, which in

turn inhibits Gli3 processing. As a result of Shh pathway

activation, the Gli3 activator induces downstream targets. Some

of the abnormalities observed in Ofd1 mutant animals resemble

defects of the extra-toes Gli3Xt2J/Xt2J mutant in which Gli3 is not

expressed due to a deletion within the 39 end of the gene

[49,50,51,52,53].

We thus investigated whether Shh signalling was perturbed in

the forebrain of Ofd1 mutant embryos by analyzing the expression

pattern of Shh, Ptch1 and Gli1, which encode for the ligand, the

receptor and the downstream target of Shh signalling, respectively.

In both severely and mildly affected E12.5 mutants, Shh

expression remained confined to the pre-optic region with no

evidence of ectopic dorsal spread (black arrows in Figure 4A–C).

In contrast, the mRNAs of both Gli1 and Ptch1 were ectopically

expressed in the dorsal telencephalon in mutants with the severe

phenotype (red arrows in Figure 4F, I). However, while Gli1

expression was not altered in the mild phenotype (black arrow in

Figure 4E), restricted expression of Ptch1 in the intraganglionic

sulcus was now shifted to the PSPB boundary and lateral cortex of

mildly affected Ofd1 mutant embryos (red arrow in Figure 4H).

Thus, in the absence of Ofd1, Shh-induced targets were

ectopically expressed in the dorsal telencephalon leading to

abnormal Shh signaling in the developing cortex.

Since a misregulation of Shh pathway could be due to altered

proteolytic processing of Gli3 as reported in numerous ciliary

mutants [15,54,55,56,57,58,59,60], we assessed Gli3 processing in

Ofd1 mutants. We performed western blot analysis on protein

lysates from the forebrain of wild-type and mutant embryos, by

using an antibody that recognizes both the full-length and

repressor forms of Gli3. This analysis revealed that the ratio

between Gli3FL and Gli3R levels was increased in the forebrain of

mutant animals with a 3.4-fold increase of the Gli3FL form versus

the Gli3R form in Ofd1D4–5/+ heterozygous female showing a

severe phenotype, as demonstrated by densitometric analysis

(Figure 4J).

To further confirm abnormal Shh signalling in Ofd1D4–5/+

mutant females, we performed quantitative mRNA expression

analysis on total brains of E12.5 embryos by RT-PCR (Figure 4K).

First, we analyzed mRNA expression levels of Ofd1 in total brains

with a severe phenotype and confirmed a 60% decrease of Ofd1

transcript. While mRNA expression levels of Shh were not

modified, Gli1 and Ptch1 expression levels were upregulated

(Figure 4K), in accordance with the above-mentioned molecular

markers analysis. Interestingly, no changes in expression levels for

Smo were detected in mutant embryos displaying a severe

phenotype (Figure 4K), indicating that Ofd1 acts mainly on the

expression of the Ptch1 receptor, but not on Smo, and that

alteration of Gli3 function was due to altered protein processing

rather than to a control at the transcriptional level. Since mRNA

levels of Gli3 were not altered in Ofd1 mutant embryos, as also

confirmed by in situ hybridization experiment (Figure 4L–M), we

hypothesize that the full-length isoform of Gli3 is more stable than

Ofd1 in Brain Development
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Figure 3. Markers of the ventral telencephalon are ectopically expressed in the dorsal telencephalon of Ofd1 mutant embryos. ISH
analysis showed that Gsh2, Mash1 and Dlx2 genes are all expanded dorsally into the neocortex of Ofd1D4–5/+ heterozygous females with a severe
phenotype (red arrows in C, F, I) compared to Ofd1+/+ wild-type embryos (A, D, G). Immunohistochemical analysis for the ventral marker Nkx2.1
reveals an ectopic expression in the dorsal part of the brain with a severe phenotype (L) when compared to Ofd1+/+ wild-type embryos (J). We do not
observe any difference in the expression pattern of ventral markers on brain sections of Ofd1 mutants displaying a mild phenotype (B, E, H) with the
exception of Nkx2.1, which is slightly mis-expressed in the LGE (red arrows in K) and it is ectopically induced at lower levels in the dorsal
telencephalon (red arrows in L). The analysis of the expression pattern of Sfrp2 and Dbx1 genes at the boundary between pallial and subpallial zones
(PSBP) demonstrated that these transcripts show a normal expression domain in Ofd1D4–5/+ heterozygous females (black arrows in N, O, Q, R) when
compared to wild-type animals (black arrows in M, P). Dorsal is upwards, ventral is downwards. Scale bars: 150 mm. NCX: neocortex. GE: ganglionic
eminences.
doi:10.1371/journal.pone.0052937.g003
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Figure 4. Shh signalling is altered in the developing forebrain of Ofd1D4–5/+ embryos. ISH showed a normal expression pattern of Shh in
Ofd1D4–5/+ heterozygous females (black arrows in B, C) when compared to Ofd1+/+ wild-type embryos (black arrow in A). Gli1 displays an ectopic
expression in the neocortex in mutants with a severe phenotype (red arrows in F) while it is confined to the ventral part in Ofd1+/+ wild-type embryos
(black arrow in D) and Ofd1D4–5/+ heterozygous females with a mild phenotype (black arrow in E). Ptch1 expression is upregulated in the neocortex in
both mutants with a mild (red arrow in H) and severe phenotype (red arrows in I). Dorsal is upwards, ventral is downwards. Scale bars: 200 mm. NCX:
neocortex. GE: ganglionic eminences. Western blot analysis of Gli3 protein on E12.5 Ofd1+/+ wild-type and Ofd1D4–5/+ heterozygous brains with a
severe phenotype. An increase level of the larger isoform 190 kDa Gli3FL isoform is observed in Ofd1 mutant animals when compared to controls,
thus indicating an impairment during Gli3 processing (J). Quantification of the ratio of Gli3FL versus Gli3R indicates a 3.4-fold increase in the mutant
animals (J). Asterisk (*) denotes statistically significant changes with p,0.05. Quantitative RT-PCR is performed upon mRNA extraction from E12.5
total brain (K; ***p,0.01). Error bars indicate standard error of the mean. ISH analysis showed that no difference in Gli3 mRNA expression pattern was
observed in Ofd1D4–5/+ heterozygous females with a severe phenotype (M) when compared to Ofd1+/+ wild-type embryos (L). Dorsal is upwards,
ventral is downwards. Scale bars: 100 mm. NCX: neocortex. GE: ganglionic eminences.
doi:10.1371/journal.pone.0052937.g004

Ofd1 in Brain Development

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e52937



the processed one ultimately leading to a total increase of the

amount of Gli3. These data support previous findings reported in

another study on the role of primary cilia during corticogenesis

[12]. Hence, Ofd1 mutant females with a severe phenotype show

an upregulation of the Shh pathway in the dorsal telencephalon

most likely due to defective Gli3 processing.

Ofd1 is essential for ciliogenesis in the embryonic brain
but is dispensable in the post-natal cortex

To evaluate the effect of Ofd1 inactivation on cilia formation, we

performed immunofluorescence analysis on forebrain sections

using the Adenylyl-Cyclase III antibody, which stains specifically

the ciliary axoneme of neuronal cells [61,62]. Strikingly, the

number of primary cilia was dramatically reduced in the forebrain

and at the apical side of E12.5 telencephalic neuroepithelial cells of

severely affected Ofd1D4–5/+ mutants (Figure 5A–H9H). In the

ganglionic eminences, 75% and 5% of total cells analyzed were

still ciliated in embryos with mild and severe phenotype,

respectively (Figure 5I). Differently, in the cortex of mildly affected

mutant embryos, 70% of the total cells analyzed were still ciliated,

whereas the number was drastically reduced to 3% in those

displaying a severe phenotype (Figure 5I). Since we observed a

reduction in the number of ciliated cells, we decided to investigate

the presence of centrosomes at the bases of ciliary protrusions. We

counted the number of centrosomes observed in the immunoflu-

orescence analysis (Figure 5G, H), on different sections (at least

three sections per three mice per genotype) and we found no

differences between wild-type and severely affected heterozygous

females (data not shown). To further understand the nearly total

absence of primary cilia in the cortex of severely affected mutants

despite the apparent expression levels of Ofd1 measured in the total

brain (residual expression level of 40%, Figure 1J), we dissected the

whole brain of wt and Ofd1D4–5/+ severe mutant embryos and

performed Ofd1 mRNA expression analysis by RT-PCR separately

on the cortex and on the whole remaining brain (Figure 5J).

Strikingly, we found that Ofd1 mRNA expression levels were

drastically reduced (residual expression level of 10%) in the cortex

of severe mutants, indicating that the cortex is almost homoge-

neously deficient for Ofd1. To determine more accurately the

extent of Ofd1 inactivation, we performed quantitative RT-PCR

with primers that specifically amplify the wild-type Ofd1 allele on

genomic DNA obtained from the cortex and from the whole

remaining brain of embryos. The analysis revealed that in

Ofd1D4–5/+ severe mutant embryos only 12% (60.02) of wild-type

allele is still present in the cortices while the whole remaining brain

yet expresses 86% (60.03) of wild-type allele. Thus, we found a

clear correlation between Ofd1 expression levels and distribution

(cortex versus whole remaining brain) and severity of the

phenotype observed in the cortex.

To investigate whether Ofd1 has a developmental stage-

dependent role in the forebrain, we analyzed a conditional null

mouse model containing the Ofd1 floxed allele and the tamoxifen-

inducible Cre-recombinase expressed from the actin promoter

(CAGG-creERTM) [63]. Efficient deletion of Ofd1 was induced

just before birth by injecting pregnant mothers at E18.5. Our

previous studies revealed that expression of the Ofd1 transcript is

maintained in the cortex at post-natal stages [21]. Thus, we

measured mRNA expression levels through RT-PCR to validate

Ofd1 inactivation at birth and in adult stages. Our results indicate

that tamoxifen injection strongly downregulates Ofd1 at P0

(88%61.5 reduction in mutated cortex compared to the wild-

type cortex) and that inactivation is still maintained at P30

(85%62.2 reduction compared to the wild-type cortex). We next

analyzed the presence of primary cilia by using the Adenylyl-

Cyclase III antibody on sections from Ofd1flox/y (wild-type) and

Ofd1flox/y; CAGG-creERTM (hereafter called Ofd1-indKO) ani-

mals (Figure 5K, L). Interestingly, Ofd1-indKO male mutant mice

were still viable 30 days after tamoxifen injection, which allowed

us to focus on a post-natal Ofd1 null mouse model. Unexpectedly,

similar numbers of primary cilia were detected on cortical neurons

of wild-type and Ofd1-indKO mice (Figure 5M), suggesting that

Ofd1 is dispensable for ciliogenesis in the post-natal cortex. Taken

together, these data demonstrate that Ofd1 plays a crucial role in

ciliogenesis primarily during embryonic developmental stages.

Ofd1 is not required for basal body docking and
orientation but is crucial for axoneme elongation in vivo

Given the lack of ciliary axonemes in Ofd1D4–5/+ severely

affected mutant embryos, we decided to investigate the ultrastruc-

ture of basal bodies to elucidate the role of Ofd1 in ciliogenesis.

We performed both Scanning Electronic Microscopy (SEM) and

Transmission Electron Microscopy (TEM) analyses on neocortical

cells of 3 Ofd1+/+ wild-type and 3 Ofd1D4–5/+ severely affected

mutant embryos. SEM analysis showed numerous primary cilia

emerging from a pit in the apical cell surface of Ofd1+/+ wild-type

embryos (Figure 6A). The number of primary cilia was reduced in

Ofd1D4–5/+ mutant embryos with a mild phenotype (Figure 6C),

while no primary cilia were observed in the cortex of severely

affected mutant embryos (Figure 6H), even if a few stunted

protrusions were occasionally observed in some cases (Figure 6F).

TEM analysis revealed the presence of mature basal bodies and

primary cilia (n = 58) with a normal ultrastructure (963) in Ofd1+/+

wild-type animals (Figure 6B, D, E). On the contrary, we observed

almost complete lack of ciliary axonemes in Ofd1D4–5/+ mutant

females as illustrated in Figure 6G, I, J. At the distal tip of the basal

bodies, a short expansion of the membrane could be observed, but

this structure was either embedded in the neuroepithelium or

much shorter than a primary cilium and, importantly, lacked an

axoneme (Figure 6G, I, J). We counted n = 52 mature basal bodies

with no protruding primary cilium and only very few basal bodies

with primary cilia (n = 3) in Ofd1D4–5/+ severe mutant embryos

(Figure 6K). The basal body appeared correctly orientated with a

normal ultrastructure (Figure 6L). The appendages are an

important site of microtubule anchoring with characteristic

TEM appearances depending on the plane of section [64]. In

mutant embryos, distal appendages were evident by TEM

(Figure 6G, I). Moreover, loss of Ofd1 did not affect microtubule

anchoring (Figure 6G). In addition, we did not observe any

difference in length of basal bodies in Ofd1D4–5/+ mutant embryos.

In fact, in the cortex of wild-type embryos the average length for

basal bodies (n = 35) was 360650 nm and in Ofd1D4–5/+ severe

mutant embryos it was 369673 nm for n = 26 basal bodies

analyzed.

Our data indicate that Ofd1 is mainly involved in ciliary

axoneme elongation in the developing forebrain but not in basal

body orientation, docking and maturation.

Cytoskeletal organization and apico-basal cell polarity
are affected in Ofd1D4–5/+

Previous studies reported the importance of apical actin

enrichment during ciliogenesis [65,66]. Thus, we first analyzed

the distribution of F-actin by staining with fluorescent phalloidin.

In Ofd1D4–5/+ severe embryos we observed a reduction of actin

staining at the cell apex (Figure 7A–B), consistent with defective

ciliogenesis (Figure 5I). To understand further cytoskeletal

rearrangements, we analyzed the distribution of b-catenin, a cell

adhesion molecule that anchors the actin cytoskeleton. Immuno-
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Figure 5. The number of neuronal cilia is reduced in Ofd1 mutant embryos at E12.5 while cilia are not affected upon Ofd1
inactivation at E18.5. A–J. Immunofluorescence analysis by anti-Adenylyl cyclase type III (green) in Ofd1+/+ wild-type embryos (A, D), Ofd1D4–5/+

heterozygous females with a mild phenotype (B, E) and in Ofd1D4–5/+ heterozygous females with a severe phenotype (C, F) at E12.5. Nuclei are
counterstained with DAPI (blue). In both the cortical plate (A, B, C) and the lateral ganglionic eminences (LGE) (D, E, F) the number of cilia is
dramatically reduced in embryos with a severe phenotype (C, F). Scale bars: 10 mm. Immunofluorescence analysis by anti-Adenylyl cyclase type III
(green labels the cilium) and anti-c tubulin (red labels the basal body) specific for centrosomes in Ofd1+/+ wild-type embryos (G), and in Ofd1D4–5/+

heterozygous females with a severe phenotype (H) at E12.5. Dashed rectangles designate enlarged areas indicated in panels G9 and H9 showing
primary cilia at the ventricular surface of the dorsal telencephalon (G9, H9). Histograms indicate the percentage of ciliated cells in the cortex and in the
GE (I). In both cases the number is significantly reduced in the severe phenotype at E12.5. Asterisk (*) denotes statistically significant changes with
p,0.05. Quantitative RT-PCR is performed upon mRNA extraction from E12.5 brain. The analysis is performed on isolated cortex and on the remaining
part of the brain (J; ***p,0.01, Student’s test). Error bars indicate standard error of the mean. K–M. Immunofluorescence analysis by anti-Adenylyl
cyclase type III (red) in male wild-type mice (K) and male Ofd1-indKO mice (L) at P30. Nuclei are counterstained with DAPI (blue). Neuronal primary
cilia are still present in mutant animals analyzed at P30 in which Ofd1 inactivation was induced at E18.5 and. Scale bars: 20 mm. Histograms indicate
no difference in the percentages of ciliated cells in male wild-type mice and male Ofd1-indKO mice (M).
doi:10.1371/journal.pone.0052937.g005
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Figure 6. Neuronal primary cilia are severely affected in Ofd1D4–5/+ forebrains. SEM analysis of neocortex from embryos at E12.5 (A, C, F, H).
Numerous primary cilia (white asterisks) are present in Ofd1+/+ wild-type neocortex (A). A higher magnification of a primary cilium where the pit is
more evident (dashed white circle) is reported in inset A. The distribution of primary cilia (white asterisks) is reduced in Ofd1D4–5/+ heterozygous
females displaying a mild phenotype (C). In severely affected Ofd1D4–5/+ heterozygous females, we observe regions with short protrusions of
membrane indicated by white arrows (F) and regions completely devoid of cilia (H). TEM analysis of neocortex from embryos at E12.5 (B, D, E, G, I, J, K,
L). Primary cilium in Ofd1+/+ wild-type neocortex (B). Primary cilium in Ofd1+/+ wild-type neocortex where the ciliary pocket is evident, as indicated by
the black arrow (D). Transverse section of a normal basal body, where the nine triplets of microtubules are easily recognized (E). No ciliary axonemes
can be detected in severely affected Ofd1D4–5/+ heterozygous females (G). The basal body in Ofd1D4–5/+ heterozygous females appear mature as
indicated by the presence of appendages (black asterisk) on which microtubules are correctly anchored (dashed black lines demarcate the area where
microtubules can be observed) (G). The basal body in severely affected Ofd1D4–5/+ heterozygous female appear to be correctly docked as indicated by
the presence of the sheath (black arrow) and, as described above, they appear to be mature, given the presence of appendages (black asterisks) (I).
Similar to SEM analyses, TEM analyses reveal that severely affected Ofd1D4–5/+ heterozygous female show short protrusions of membrane indicated by
white arrow (J). One of the few ciliary axonemes present in a severely affected Ofd1D4–5/+ heterozygous female is showed (K). Transverse section of
the basal body in a severely affected Ofd1D4–5/+ heterozygous female showing a normal ultrastructure with nine triplets of microtubules (L).
doi:10.1371/journal.pone.0052937.g006
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staining with b-catenin revealed a continuous band in wild-type

embryos (Figure 7C), but a punctuate and discontinuous band in

Ofd1D4–5/+ severely affected embryos (arrowheads in Figure 7D),

suggesting defective cell adhesion properties in mutant embryos.

Hence, we analyzed the expression pattern of ZO1, a marker of

tight junctions and consistently, we found a discontinuous pattern

along the margin of the ventricular zone in Ofd1D4–5/+ severely

affected embryos (arrowheads in Figure 7F) compared to wild-type

embryos (Figure 7E). Thus, in Ofd1 severely affected heterozygous

females the apical membrane is discontinuous and shows several

gaps along the margin of the ventricular zone suggesting apico-

basal cell polarity defects. Several studies demonstrated that cell

polarity is regulated by both the Par3/Par6/aPKC complex and

the PCP pathway [67,68]. The polarity protein Par3, crucial for

growth and elongation of the primary cilium in epithelial cells

[69], is expressed in a discontinuous pattern along the cells lining

the ventricular zone of Ofd1D4–5/+ severely affected embryos

(Figure 7G, H). Given that Par-complex proteins promote

proliferative progenitor divisions in the developing mouse cerebral

cortex [70], we performed double immunofluorescence for Par3

and Ki67, a marker for proliferative cells. We observed abnormal

expression of Ki67 and most importantly disorganized and

disoriented progenitors in the regions devoid of Par3 in

Ofd1D4–5/+ severely affected embryos (arrowheads in Figure 7J)

with respect to wild-type Ofd1+/+ embryos (Figure 7I). Thus,

abnormal cell polarity at the apical membrane observed in patches

along the ventricular zone might correlate with disrupted Tbr2

and Tbr1 expression, as shown in Figure 2H and J, suggesting that

abnormal cell polarity and cytoskeletal rearrangements due to

defective ciliogenesis might interfere with proper corticogenesis.

Finally, we assessed whether cell death was increased in mutant

embryos by testing the presence of Caspase 3-positive cells. We

found no obvious difference between wild-type and Ofd1D4–5/+

mutant embryos in the distribution of dying cells (Figure 7K–L).

Figure 7. Cytoskeletal organization and cell polarity are altered
in Ofd1D4–5/+ embryos. Staining for F-actin with fluorescent phalloidin
reveals a reduced signal and actin disorganization at the cell apex in
severely affected Ofd1D4–5/+ mutants (B) with respect to wild-type
Ofd1+/+ embryos (A). Scale bars: 200 mm. A higher magnification of the
actin boundary indicates a reduced thickness in mutant embryos (inset
B) compared to wild-type Ofd1+/+ embryos (inset A). Immunofluores-
cence with b-catenin reveals a continuous band in wild-type embryos
(C) but a punctuate and discontinuous band in Ofd1D4–5/+ severe
mutants (D). Scale bars: 100 mm. Immunofluorescence analysis of ZO1, a
marker of tight junctions, shows a discontinuous pattern along the
margin of the ventricular surface (F) compared to wild-type embryos (E).
Scale bars: 50 mm. Immunostaining of Par3 with a discontinuous pattern
along the cells lining the ventricular zone in Ofd1D4–5/+ severe mutant
embryos (H) compared to wild-type embryos (G). Scale bars: 50 mm.
White arrows in panels D, F, H indicate expression discontinuity along
the apical membrane. Immunostaining of Ki67 (in red) and Par3 (in
green) indicate reduced Ki67 expression and presence of abnormally
located cortical progenitors, which tend to protrude outside the
ventricular zone in Ofd1D4–5/+ severe mutant embryos (J) compared to
wild-type embryos (I). Scale bars: 200 mm. vz: ventricular zone.
Immunofluorescence analysis of Caspase 3 revealed no difference in
the number of apoptotic cells in wild-type embryos (K) and in Ofd1D4–5/+

severe mutant embryos (L). Dashed rectangles designate enlarged areas
indicated in panels K9 and L9 showing apoptotic cells in the ganglionic
eminence (GE) region. Scale bars: 500 mm.
doi:10.1371/journal.pone.0052937.g007
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Discussion

Ofd1D4–5/+ mutants display a phenotypic variability
We assessed Ofd1 function during forebrain development and

we found that Ofd1D4–5/+ heterozygous female mutants displayed a

phenotypic variability that ranges from mild to severe. This is most

probably due to the mosaicism expected for the X-inactivation

phenomenon in mice, in which the amount of Ofd1 expressed in

heterozygous females depends on which allele, and also in which

cell-type Ofd1 function is abolished. Once X-inactivation has

occurred, all cells derived from a common progenitor maintain the

same pattern of inactivation. On the basis of this assumption, we

focused our analysis mainly on Ofd1D4–5/+ embryos with a severe

phenotype in which Ofd1 inactivation in the cortex is almost

complete, as demonstrated by our quantitative analysis. Never-

theless, our study shows that the cell-type-dependent mosaic

inactivation of Ofd1, even in the severe phenotype, could lead to

variable and mixed cellular phenotypes. For example, we

demonstrated that Ofd1 inactivation during mouse embryonic

development results in ventralization of the telencephalon, a

phenotype also described in other ciliary-specific mutant mice [8].

We found that dorso-ventral patterning of the telencephalon in

Ofd1D4–5/+ mutant embryos was severely compromised, as shown

by the expansion of ventral markers in the dorsal part of the

telencephalon. However, proper cortical markers were also

maintained in the dorsal telencephalon of Ofd1D4–5/+ embryos,

leading most probably to a presumptive cortex with mixed DV

identity. Although we do not know yet the reason of this mixed

phenotype, we presume that it might be part of the mosaic cellular

inactivation, as described above. Moreover, analysis of primary

cilia revealed the nearly complete absence of protruding ciliary

axonemes in the cortex of severely affected Ofd1D4–5/+ mutant

embryos. In the mild phenotype, we found a ‘‘patchy’’ distribution

with some regions devoid of primary cilia and some with

protruding structures, in accordance with a less severe phenotype

associated, again, to the mosaicism observed for the X-inactivation

in female embryos.

Inactivation of the basal-body protein Ofd1 leads to
perturbation of the Shh pathway

It is well established that the Hh pathway is a major regulator of

growth and patterning in both invertebrates and vertebrates

[71,72]. Interestingly, the primary cilium and IFT machinery have

shown to play an essential and vertebrate-specific role in Hh signal

transduction [54,55,73,74,75,76,77]. In fact, several mutants of

ciliary proteins, primarily belonging to the IFT machinery, present

severe defects in forebrain development coupled to an alteration in

Hh signalling. For example, the cobblestone mutant, a hypomor-

phic allele of Ift88, shows severe defects in brain patterning

associated to an altered Gli3FL and Gli3R ratio and increased Gli1

and Ptch1 expression levels in the ventral telencephalon [12].

Similarly, mutations in Ift139 lead to DV patterning defects and

activation of the Shh pathway [14]. Furthermore, Ift172 mutant

embryos show severe brain patterning defects, which are

associated to downregulation of the Shh pathway and Gli1

expression [13]. Similarly, in the absence of Rfx4, an upstream

regulator of Ift172, mouse mutants have distinct DV patterning

defects in the ventral spinal cord and telencephalon due to

aberrant Shh signalling and Gli3 activity [78]. Finally, mouse

mutants lacking the ciliopathy gene Ftm/Rpgrip1l have brain

defects due to the reduction of the Gli3R form [15].

However, analysis of the mutant hennin phenotype did not

correspond to either a simple decrease or increase in the activity of

the Hh pathway. Cells requiring the highest Hh activity failed to

be specified, whereas cells requiring intermediate Hh activity are

found in an expanded domain, a phenotype not described in other

mouse mutants [79]. These data show that misregulation of the

Shh pathway due to mutations in ciliary proteins does not always

follow the same trend (in some cases the pathway is downregu-

lated, in others upregulated), and suggests that each ciliary protein

might play different roles in the regulation of the Shh pathway

and/or Gli3 processing.

Little is known on the role of basal body proteins in Shh

signalling during forebrain development. Our studies show that

the basal body protein Ofd1 seems to regulate the Shh pathway

differently depending on the tissue and on the developmental

stage. In fact, our previous reports demonstrated alterations of the

Shh pathway and reduced Gli1 and Ptch1 expression levels in limbs

deficient for Ofd1 at E11.5 [80], in the myeloma cell line MM1S

inactivated for Ofd1 [81] as well as in the ventral neural tube of

male mutant Ofd1 embryos at E9.5 [24]. On the contrary, in the

brain of Ofd1 mutants analyzed in the present study we report an

activation of the Shh pathway, as demonstrated by increased and

ectopic expression of Gli1 and Ptch1 in the dorsal telencephalon.

We measured no differences in Shh and Smo expression levels,

suggesting that Ofd1 acts downstream of the ligand in the Hh

pathway. Consistent with an increase of both Gli1 and Ptch1

mRNA expression levels, we showed an increase of the Gli3FL

form. Although a recent paper elegantly demonstrated that the

Gli3R form is the major player during telencephalic DV patterning

in Ftm mutants, we cannot exclude that altered Gli3 processing

might have a different outcome in Ofd1 mutants.

Ofd1 plays a stage dependent role in late phases of
ciliogenesis

Ciliogenesis is characterized by several steps. First, the

centrosome migrates to the apical cell surface during early cell

polarization. Once the centrosome has migrated to and docked

with the apical cell surface, it matures to form the basal body. The

last phase of ciliogenesis is the axoneme elongation [82]. Our

study demonstrates for the first time that Ofd1 participates in

axoneme formation during late phases of ciliogenesis after basal

body docking and before axoneme elongation. Indeed, ultrastruc-

tural analysis of the neocortex of severely affected Ofd1D4–5/+

mutants showed that the basal bodies were mature, correctly

docked and orientated, however primary cilia, e.g. axonemes,

could not be detected. This is also in accordance with our previous

studies. Analysis of primary cilia in the developing limb, in which

Ofd1 complete inactivation becomes effective only by E11.5 in the

limb, revealed that although primary cilia do appear, they have a

shortened and malformed axoneme [80]. Moreover, no primary

cilia could be detected in Ofd1D4–5/y hemizygous male mutants at

the embryonic node, although some were identified in Ofd1D4–5/+

heterozygous female mutants [24]. All these studies strongly

suggest a stage-dependent role for Ofd1 in axoneme elongation

during ciliogenesis. The different models (in vitro versus in vivo) and

the stage-dependent role for Ofd1 in axoneme elongation could

explain the apparent discrepancy with previous data obtained in

murine embryonic stem cells that demonstrate that Ofd1 is a

component of the distal centriole and is crucial for the formation of

the distal appendages, which is a prerequisite for cilium formation

[83,84].

In our in vivo animal model, and in particular during

corticogenesis, EM analyses revealed that the basal body length

was not affected and that distal appendages correctly formed in the

absence of Ofd1. Thus, the basal body protein Ofd1 is not

required for basal body migration, docking and maturation but

controls axoneme elongation thereby indicating, for the first time,
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that Ofd1 functions after docking and before elaboration of the

axoneme.

To date, the role during post-natal development of the majority

of ciliary proteins displaying defects in forebrain development

(Ftm, Ift172, Ttc21b, the hypomorphic allele of Ift88, Kif3a)

[12,13,14,15,16], remains still undefined. Complete inactivation of

Ift88 causes absence of primary cilia both during embryonic

development and in adult life [85,86], whereas the role of Ift172 in

ciliogenesis in the adult life is still undefined [87]. Interestingly,

recent data suggest that the assembly of primary cilia is a critical

event in the dendritic refinement and synaptic integration of adult-

born neurons [88]. Our study suggests that conditional inactiva-

tion of Ofd1 at birth does not affect formation of neuronal primary

cilia during post-natal life. In fact, the comparison between male

Ofd1-indKO (complete null) and heterozygous female embryos

(mosaics for Ofd1) showed that Ofd1 is dispensable for ciliogenesis

during post-natal life, but it is crucial during embryonic

development. We hypothesize that the Ofd1 ciliary protein can

play different roles in ciliogenesis depending on the developmental

stage. Further studies using cell-type specific inducible Cre-

recombinases at different time points might help elucidating the

exact role of Ofd1 during development and at post-natal stages.

Ofd1 mutants display actin disorganization
Several studies have revealed that actin remodelling is crucial

for ciliogenesis [89] and that actin accumulates at the cell apex and

it is required for basal body docking and subsequent axoneme

assembly [66]. Remarkably, we observed actin disorganization

and diminished apical enrichment of actin in severely affected

Ofd1D4–5/+ mutants, despite basal bodies being correctly orientated

and docked. Thus, actin disorganization could be a consequence

rather than a cause of defective ciliogenesis in Ofd1D4–5/+ mutant

females, suggesting that actin remodelling also occurs after basal

body docking. Accordingly, a high-throughput functional screen

recently identified modulators of ciliogenesis involved in actin

dynamics [90]. Here, we demonstrate that cell adhesion and

apico-basal cell polarity were affected in Ofd1D4–5/+ mutants

displaying a severe phenotype.

In summary, the current study extends our knowledge regarding

the role of the basal body protein Ofd1 in forebrain development

and may help explaining the neuropathological findings observed

in patients bearing mutations in the OFD1 transcript and affected

by OFD type I [18] and Joubert syndromes [25,91]. Similarly to

other ciliary proteins, Ofd1 is crucial for dorso-ventral patterning

of the telencephalon. We demonstrate that ventralization of the

telencephalon is due to altered Shh signalling associated with

defective Gli3 processing. Moreover, the ultrastructural analysis

reported here improves our understanding of Ofd1 function in

ciliogenesis and demonstrates that Ofd1 is essential for ciliary

axoneme elongation but is not required for basal body docking

and maturation in the developing forebrain. We suggest that

cytoskeletal rearrangements are most likely secondary to defective

ciliogenesis and we report apico-basal cell polarity defects in Ofd1

severe mutants. Finally, Ofd1 might have a developmental stage-

dependent role in primary cilia formation in the cortex.

Materials and Methods

Ethics statement
All animal experimentation was done under regulation of the

Animal Care and Use Committee of the Cardarelli Hospital

Naples, Italy to which our Institute (the Telethon Institute of

Genetics and Medicine) refers to and authorized by the Italian

Ministry of Health. The appropriate ethics committee specifically

approved this study. According to Italian regulations and

guidelines no permit number was issued.

Mouse and genotyping
The generation of Ofd1 knock-out mice and PCR genotyping

were previously described [24]. Noon of the day of the vaginal

plug was considered day 0.5 of gestation (E0.5). Embryos were

stage-matched to controls by day count.

The CAGG-creERTM mice were obtained from Jackson

laboratories and were generated by Dr. A. McMahon [63]. For

induction of Cre activity at birth in the inducible model, tamoxifen

administration was performed once at E18.5 in the pregnant

mother Ofd1flox/flox crossed with CAGG-creERTM male. Tamox-

ifen (Sigma, St. Louis, MO) dissolved in corn oil (Sigma) was

administered by intraperitoneal injection at a dose of 75 mg/g

body weight. Ofd1flox/y and Ofd1flox/y; CAGG-creERTM animals

were analyzed 30 days post tamoxifen injection.

Tissue preparation
Embryos at E12.5 and E18.5 were obtained by dissection in

Dulbecco’s phosphate-buffered saline (PBS). For in situ hybridiza-

tion (ISH), embryos were fixed overnight in 4% paraformaldehyde

in PBS pH 7.4 and subsequently cryoprotected in a gradient scale

of sucrose (10%, 20% and 30%), embedded and frozen in

Optimum Cutting Temperature compound (Tissue-Tek). Brains

were serially sectioned at the cryostat (12 mm). For immunohis-

tochemical analysis, they were fixed overnight with 4% parafor-

maldehyde in PBS pH 7.4, dehydrated, and embedded in paraffin

wax. Brains were serially sectioned at the microtome (10 mm).

Histology and immunohistochemistry
Nissl staining was performed on cryosections using standard

procedures. For immunohistochemical studies, tissue sections were

deparaffinized, rehydrated and processed. The following antibod-

ies were used: polyclonal rabbit anti-Nkx2.1 (kind gift from R. Di

Lauro, Stazione Zoologica Anton Dohrn, Naples), polyclonal

rabbit anti-Tbr1 and anti-Tbr2 (1:1000, kind gift from R. Hevner,

Seattle Children’s Research Institute, Seattle). Stained sections

were visualized on an AxioPlan2 microscope and AxioCam CCD

camera (Zeiss). Both histological and immunohistochemical

staining were performed on three different embryos per genotype.

In situ RNA hybridization (ISH)
The embryos for ISH on cryostat sections were fixed and

sectioned as described previously [92]. We used the following

probes: Pax6 (kind gift from P. Gruss, Max Planck Institute of

Biophysical Chemistry, Göttingen) and Dlx2 (kind gift from J.

Rubenstein, University of California, San Francisco). Partial

complementary DNA (cDNA) of Ofd1, Ngn2, Lhx2, Wnt8b, Mash1,

Gsh2, Sfrp2, Dbx1 and Gli3 genes were obtained by Reverse

Transcription-PCR and then subcloned into TOPO cloning

vector (Invitrogen). Digoxigenin-labelled RNA probes were

prepared by in vitro transcription with the Digoxigenin RNA

Labeling Kit (Roche) using T7 or Sp6 RNA polymerases. Sections

were incubated overnight at 68uC in prehybridization buffer

containing 200 ng/ml of digoxigenin-labeled RNA probe. Im-

munodetection of the hybridized probe was carried out using an

anti-digoxigenin antibody (1:2000, Roche). ISH images were

visualized on an AxioPlan2 microscope and AxioCam CCD

camera (Zeiss). All in situ RNA hybridizations were performed on

three different embryos per genotype.
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Immunofluorescence
For immunofluorescence analysis, brain cryosections were

blocked for 30 minutes with 1% BSA, 2% goat serum in PBS/

0.3% TritonX-100 and then incubated with primary antibody

overnight at 4uC. The following antibodies were used: rabbit anti-

Caspase 3 (1/500, BD Pharmigen), rabbit anti-Adenylyl cyclase

type III (clone C-20, 1/500, Santa Cruz Biotechnology), mouse

monoclonal anti-c tubulin (1/2000, Sigma), mouse monoclonal

anti-b catenin (1/1000, Santa Cruz Biotechnology), rabbit

polyclonal anti-ZO-1 (1/400, Zymed), rabbit polyclonal anti-

PAR3 antibody (1/500, Upstate), mouse monoclonal anti-Ki67

(1/200, BD Pharmingen). For Ki67 experiment, sections were

heated at 95uC in citrate buffer pH 6.0 for 7 minutes before

incubation with primary antibody. The sections were then washed

with PBS and incubated with secondary antibody. For F-actin

staining we used Phalloidin-TRITC conjugated (1/1000, Sigma)

diluted in PBS pH 7.4. Nuclei were counterstained with 49,6-

diamidino-2-phenylindole (DAPI) and stained sections were

mounted with Vectashield (Vector Laboratories). Microscopy

was performed with a Zeiss Axioplan 2 microscope and with

Leica TCS SP2 AOBS confocal microscope with a 636Neofluor

Pan-Apo 1.3 nm oil objective. Every immunofluorescence was

performed on three different embryos per genotype. For analysis

at P30 we used three different brains per genotype.

Western blotting
For western blotting analysis of Gli3, whole-cell lysates were

prepared from brains of E12.5 wild-type and Ofd1D4–5/+ mutant

females using RIPA buffer [10 mM Na-phosphate ph 7.2,

150 mM NaCl, 2 mM EDTA, 1% NP-40, 1% Na-deoxycholate,

0.1% SDS, protease inhibitors cocktail (Roche)]. Heads from three

different embryos per genotype were disrupted using a mini-pestle

(Bio-Optica) prior to protein extraction. Equal amounts of protein

were loaded onto 7% SDS-PAGE gels and western blotting was

performed as described [93]. The membranes for the Western

were probed using a goat polyclonal anti-Gli3 (1/250, R&D

Systems), then stripped and probed with a mouse monoclonal anti-

b-tubulin (1/3000) as loading control. Densitometry was used to

compare protein levels between the full-length activator and

truncated repressor forms of Gli3 (ImageJ 1.37v software available

at http://rsb.info.nih.gov/ij/).

Real-Time PCR analysis
Whole brain from animals were dissected and washed with ice-

cold PBS. They were mixed and homogenized in Trizol reagent

(Life Technologies). Total RNA was then purified on RNeasy

columns (Qiagen). cDNA synthesis was performed according to

manufacturer’s instructions (SuperScript kit; Invitrogen). For Real

Time (RT)-PCR, cDNA and primers were mixed with SYBR-

green RT-PCR Master Mix (Roche Applied Science) and then

assayed in a LightCyclerH480 RT-PCR detection system (Roche

Applied Science) as directed by the manufacturer. The relative

level of each mRNA was calculated using the standard curve

method and normalized to the corresponding Hprt mRNA levels.

Five independent RNA samples were used for each group (e.g.,

one group was Ofd1D4–5/+ mice, severe phenotype) and triplicate

reactions of each sample were used to derive the normalized

expression level for each gene. The average normalized expression

levels were used to determine the average expression level within a

group, and for statistical comparisons between groups (thus, N = 5

for each group). ANOVA and Student t-tests were performed to

measure variations in gene expression between groups.

Oligonucleotides
The primers for each gene analyzed were designed with

Primer3 software: Ofd1F: 59-TGGCAGACCACTTACAAA-

GATG-39; Ofd1R: 59- AGACTGGATGAGGGGTTAATC-39;

ShhF: 59-CCCAAAAAGCTGACCCCTTTA-39; ShhR: 59-

TTCCCTTCATATCTGCCGCT-39; Gli1F: 59-TGCAG-

TAAAGCCTTCAGCAATG-39; Gli1R: 59-TTTTCGCAGC-

GAGCTAGGAT-39; Ptch1F: 59-CCACGACAAAGCCGACTA-

CAT-39; Ptch1R: 59-GCTGCAGATGGTCCTTACTTTTC-39;

Gli3F: 59-GCTGGCTTGATTGTTCACGA-39; Gli3R: 59-

GGCTTTTGTGCAACCTTCAAA-39; SmoF: 59-CAGTTC-

CAAACATGGCAAACAG-39; SmoR: 59-TGCTATGT-

GAGGCCAATGTGA-39. The primers used for the analysis of

genomic DNA are the followings: Ofd1F: 59-CATTCCTGT-

TAGTATTTGGAGG-39; Ofd1R: 59-GTGTTAGGAGGG-

TATGAACATG-39; GapdhF: 59-TCTTCTGGGTGGCAGT-

GAT-39; GapdhR: 59-TGCACCACCAACTGCTTAGC-39.

Scanning electron microscopy (SEM)
Neocortex from Ofd1+/+ wild-type and Ofd1D4–5/+ mild and

severe embryos at E12.5 were isolated in 1.5% glutaraldehyde,

0.067 M Cacodylate buffer pH 7.4 plus 1% sucrose and after were

fixed in the same fixative for 4 h at 4uC. Then they were rinsed in

0.134 M Cacodylate buffer pH 7.4 overnight. Post fixation was

based on 1% osmium tetroxide solution (Fluka) in 0.067 M

Cacodylate buffer pH 7.4 plus 1% sucrose cooled on ice for 1 h.

After several rinses in 0.134 M Cacodylate buffer pH 7.4, the

specimens were subjected to serial dehydration followed by critical

point drying. The samples were mounted on aluminium stubs and

sputter coated with gold. The processed specimens in the area of

the ventricular zone were investigated and photographed using a

JEOL 6700F SEM operated at 5 kV and at 8.3 or 3.1 mm

working distance. SEM images were collected digitally. SEM

analysis was performed on three different embryos per genotype.

Transmission electron microscopy (TEM)
Neocortex from Ofd1+/+ wild-type and severe Ofd1D4–5/+

embryos at E12.5 were isolated in 1.5% glutaraldehyde,

0.067 M Cacodylate buffer pH 7.4 plus 1% sucrose and after

they were fixed in the same fixative for 4 h at 4uC. Then, they

were rinsed in 0.134 M Cacodylate buffer pH 7.4 overnight. Post

fixation was based on 1% osmium tetroxide solution (Fluka) in

0.067 M Cacodylate buffer pH 7.4 plus 1% sucrose cooled on ice

for 1 h. After several rinses in 0.134 M Cacodylate buffer pH 7.4,

specimens were dehydrated with ethanol and then, with propylene

oxide and embedded in Epon 812 resin (Fluka). The blocks were

cut using a Super Nova Leica Ultratome. Semithin sections at

2 mm thickness, were studied with a light microscope (Polivar

Reichert-Jung) after staining with 1% toluidine blue (Carlo Erba).

Ultrathin sections (80 nm) were stained with 2% uranyl acetate

(Electron Microscopy Sciences) for 10 min at room temperature

and 2.66% lead citrate (Electron Microscopy Sciences) for 3 min

at room temperature. Grids were examined by using a JEM-1011

Jeol transmission electron microscope operating at 100 kV. TEM

analysis was performed on three different embryos per genotype.

Statistics
All error bars represent one standard deviation. For immuno-

fluorescence quantifications, at least 200 cells were counted on

each duplicate coverslips in at least two separate experiments.

Student’s unpaired t test was used to determine statistical

significance with a p value of less than 0.05.
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