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Abstract

Mice with epidermal deletion of JunB transcription factor displayed a psoriasis-like inflammation. 

The relevance of these findings to humans and the mechanisms mediating JunB function are not 

fully understood. Here, we demonstrate that impaired JunB function via gene silencing or 

overexpression of a dominant negative mutant increased human keratinocyte cell proliferation but 

decreased cell barrier function. RNA-seq revealed over 500 genes affected by JunB loss-of-

function which included an upregulation of an array of proinflammatory molecules relevant to 

psoriasis. Among these were TNFα, CCL2, CXCL10, IL6R and SQSTM1, an adaptor protein 

involved in NF-κB activation. ChIP-Seq and gene reporter analyses showed that JunB directly 

suppressed SQSTM1 through binding to a consensus AP-1 cis-element located around 2 Kb 

upstream of SQSTM1-trasncription start site. Similar to JunB loss-of-function, SQSTM1-

overexpression induced TNFα, CCL2 and CXCL10. Conversely, NF-κB-inhibition genetically 

with a mutant IκBα or pharmacologically with PDTC prevented cytokine, but not IL6R, induction 

by JunB-deficiency. Taken together, our findings indicate that JunB controls epidermal growth, 

barrier formation and proinflammatory responses through direct and indirect mechanisms, 

pinpointing SQSTM1 as a key mediator of JunB-suppression of NF-κB-dependent inflammation.
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Introduction

Psoriasis and psoriatic arthritis affect nearly 3% of the US population(Helmick et al., 2014; 

Rachakonda et al., 2014). While the etiology of the process is known to be multifold 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
3Correspondence: Jennifer Zhang, 40 Duke Medicine, Duke. S. Purple Zone, Rm 4032B, DUMC3135, Duke University Medical 
School, Durham, NC27710, Office: 919-684-6794, jennifer.zhang@duke.edu. 

Conflict of Interest
Authors declare no conflict of interest

HHS Public Access
Author manuscript
J Invest Dermatol. Author manuscript; available in PMC 2015 October 01.

Published in final edited form as:
J Invest Dermatol. 2015 April ; 135(4): 1016–1024. doi:10.1038/jid.2014.519.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


involving multiple cell types and various genetic and environmental factors, it is clear that a 

disarrayed T-cell driven immune response is critical for the pathogenesis of psoriasis (Clark, 

2010). Current therapies are mostly designed to target immune cells, and treatment results 

are often mixed and unpredictable (Belge et al., 2014). Recently, it has become apparent that 

defects in epidermal cells, the predominant barrier cells of the skin, can initiate a wide 

spectrum of immune responses. This was best demonstrated using conditional genetic 

animal models. Of particular interest, mice with epidermal deletion of JunB, an AP-1 family 

transcription factor, alone or together with c-Jun, developed joint and skin lesions that bared 

a remarkable resemblance to human arthritis and psoriasis, respectively (Zenz et al., 2005). 

Additionally, targeted JunB deletion in epidermal cells led to a multi-organ inflammation 

involving blood, kidney and lymph nodes (Meixner et al., 2008). These studies establish that 

JunB plays an important role in epidermal cell-mediated innate and adaptive immune 

responses in mice.

In humans, JunB is located in the previously identified psoriasis susceptibility locus PSOR6 

(19p13) (Huffmeier et al., 2009), though the significance of which has not been validated by 

later GWAS studies. Interestingly, JunB mRNA levels were found increased in psoriatic 

lesions as compared to nonlesional skin (Haider et al., 2006; Johansen et al., 2004; Kulski et 

al., 2005), whereas JunB protein levels were reduced in the basal and spinous layers of the 

lesional epidermis (Park et al., 2009; Zenz et al., 2005). The discrepancy between the 

mRNA and protein levels may be due to the presence of lymphocytes in the lesional skin or 

a posttranslational effect. Regardless, the reduced protein expression suggests that JunB-

hypofunction in epidermal cells may have a causal effect on epidermal cell proliferation and 

inflammation. In agreement with this possibility, our recent studies have shown that JunB 

inhibits, whereas its dominant negative mutant promotes, epidermal growth(Jin et al., 2011).

In this study, we demonstrated that gene silencing of JunB in normal epidermal cells 

resulted in increased cell proliferation and compromised epidermal barrier function. By 

using global RNA-seq and ChIP-seq, we found that JunB regulated expression of a wide-

range of molecules involved in cell growth, interaction, differentiation and inflammation 

through both direct and indirect mechanisms. In particular, JunB directly interacted with the 

consensus AP-1 response element to suppress gene transcription of SQSTM1/p62, an 

adaptor protein linked to Paget’s disease of bone and neurodegenerative disorders, and also 

upregulated in psoriasis (Rea et al., 2014; Sundaram et al., 2011). SQSTM1/p62 has been 

characterized as a key regulator involved in NF-κB activation and autophagy (Wooten et al., 

2005; Zotti et al., 2014). We found that NF-κB, but not autophagy, is essential for the 

expression of various psoriasis-relevant chemokines induced by decreased JunB-function. 

These findings demonstrate that JunB-hypofunction impairs epidermal barrier function, and 

triggers a proinflammatory response through direct and indirect target gene regulation, and 

identified SQSTM1 and NF-κB signaling axis as a potential therapeutic target for skin 

diseases such as psoriasis.
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Results

JunB loss-of-function leads to an increased keratinocyte cell proliferation but reduced 
barrier function

To determine the role of JunB in human skin, we first examined JunB loss-of-function 

effects on epidermal growth and barrier function via siRNA-mediated gene silencing in 

primary human keratinocytes. The efficiency of gene silencing was confirmed by RT-PCR 

and Western blotting (Fig. 1a). Cell growth analyses were performed in the absence or 

presence of TNFα which has been shown to inhibit normal keratinocyte growth in culture 

(Detmar and Orfanos, 1990). JunB gene silencing induced a significantly higher rate of cell 

proliferation, and diminished the growth inhibitory effects of TNFα (Fig. 1b). To assess 

effects on barrier function, we plated cells on permeable membrane inserts for induction of 

differentiation with 1.2 mM Ca++, and then measured the transepithelial electrical resistance 

(TER) as described (Sumigray et al., 2012). A higher TER value corresponds to a healthier 

barrier function. Gene silencing of JunB significantly reduced the TER at both 24h and 48h 

time-points (Fig. 1c), indicating that JunB is important for the epidermal cell barrier 

formation.

To confirm the growth effects observed with gene silencing, we transduced keratinocytes 

with retrovirus for stable overexpression of JunB or the dominant negative deletion mutant 

of JunB (DNJunB) (Fig.1d). Monolayer cell growth analysis revealed that overexpression of 

JunB significantly reduced cell proliferation, while DNJunB induced a modest increase of 

cell growth (Fig. 1e). Consistently, skin grafts regenerated on immunodeficient SCID mice 

with the transduced keratinocytes showed that JunB reduced epidermal proliferation, 

whereas DNJunB induced hyperproliferation as indicated by the over 2-fold changes of the 

number of Ki-67-positive cells (Fig. 1f). These findings indicate that JunB is involved in 

controlling epidermal cell proliferation and barrier function.

Global RNA-seq analysis reveals an important role for JunB in regulation of epidermal 
inflammation and cell adhesion

To examine how JunB regulates epidermal homeostasis, we performed RNA-seq with 

mRNA isolated from primary human keratinocytes that had been transfected with siRNA 

oligonucleotides for JunB gene silencing. Around 8-20 million sequence reads passed 

quality control for each sample, accounting for over 15,000 genes that were expressed at a 

detectable level in normal human keratinocytes. In response to JunB gene silencing, about 

500 genes displayed significant changes with 138 decreased and 84 increased by over 2-fold 

(Table S1-S2). The JunB responsive genes include many of those involved in inflammation 

and cell adhesion as shown by the heatmap analysis (Fig. 2a-b). Of the 29 inflammation 

related genes, over 70% of them were found increased in patient psoriatic lesions in a recent 

large scale RNA-seq data set (GSE54456) (Li et al., 2014). Additionally, a majority of these 

molecules have been previously linked to psoriasis and psoriatic arthritis. These include 

CCL2, CXCL10, CXCL11 and TNFα, as well as receptors such as IL6R and the leukocyte 

interaction molecule ICAM1(Antonelli et al., 2009; Danik et al., 2009; Fraticelli et al., 

2001; Paukkonen et al., 1995; Plant et al., 2006). Similarly, 70% of the 16 downregulated 

cell-adhesion molecules were found decreased in patient psoriatic lesions (GSE54456).
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To validate the RNA-seq data, we performed RT-PCR for a number of proinflammatory 

molecules, including TNFα, CXCL10, IL6R and SQSTM1, which were increased in 

response to reduced JunB expression (Fig. 2c), To further examine whether the altered 

mRNA levels were reflected at protein levels, we collected conditioned keratinocyte culture 

media for cytokine analysis. We found that CCL2 and CXCL10 were significantly 

upregulated in cells with reduced JunB expression (Fig. 2d). In agreement with results 

observed with gene silencing, overexpression of the dominant negative JunB (DNJunB) also 

increased the expression levels of multiple cytokines, such as TNFα, CXCL10 and CCL2, as 

demonstrated by RT-PCR or cytokine analysis (Fig. S1a-b). Additionally, we confirmed by 

RT-PCR that the cell adhesion molecule CNTN1 was reduced, whereas MMP7, MMP9 and 

ICAM1 was upregulated, whereas the terminal differentiation marker filaggrin was not 

changed in response to reduced JunB expression (Fig. S2a). Western blotting further 

validated the increased expression of ICAM1 in response to JunB gene silencing (Fig. S2b). 

These results indicate that JunB loss-of-function induces cell adhesion defects and 

proinflammatory responses reminiscent of psoriasis.

ChIP-Seq analysis identifies SQSTM1 as a direct JunB target

Next, we performed ChIP-seq analysis to identify JunB direct target genes. To do this, 

genomic DNA was isolated from primary human keratinocytes for chromosomal 

immunoprecipitation (ChIP) with an antibody against JunB and then subjected to ChIP-seq 

analyses. Peak calling using Chipseeqer identified a total of 2377 sequences. Alignment 

with the RefSeq database revealed that 43% of these sequences were located in gene 

promoter regions with 17% in the proximal region (2kb+/−) and 26% in the distal region 

(2-50kb) (Fig. 3a). The rest were located in the introns (32.7%), intergenic regions (20.4%) 

and exons (0.2%). Motif analysis with ChipSeeqerFIRE demonstrated that AP-1 consensus 

elements were present with a high confidence score of 10 out of 10 (Giannopoulou and 

Elemento, 2011) (Fig. 3b), confirming that JunB ChIP achieved a satisfactory enrichment of 

the putative AP-1 target genes.

Focused peak analysis on UCSC genome browser (hg19) identified a peak on chromosome 5 

at about 1.8 kb upstream of the transcription start site of SQSTM1 (Fig. 3c), which encodes 

an adaptor protein important for NF-κB activation and autophagy (Sanz et al., 2000), and 

was recently found upregulated in psoriatic lesions (Lee et al., 2011). In agreement with 

SQSTM1 being an actively transcribed gene, its promoter region was enriched with 

H3K27Ac modification, a marker for active enhancers, and DNase-sensitive, an indicator 

for open chromatin state. In addition, within the peak harbored a putative AP-1-response 

element (TGACTCA) (Fig. 3e). To validate the ChIP-seq result, we performed quantitative 

ChIP-PCR with primers designed to cover the 5′ and 3′ends of the AP-1 cis-element. As 

expected, JunB ChIP achieved an over 10-fold enrichment of SQSTM1-sequence (Fig. 3e). 

To further examine the importance of the AP-1 cis-element, we performed luciferase gene 

reporter analysis, and found that JunB inhibited gene expression driven by the WT 

SQSTM1-promoter but not the mutant containing a defective AP-1 response-element (Fig.

3f). Thus, JunB suppresses SQSTM1 expression via the AP-1 cis-element.
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SQSTM1 mediates chemokine expression

Interestingly, among the JunB-responsive genes, only 27 of them were enriched by JunB 

ChIP-seq (Table S3), which suggests that some of those responsive genes were caused by 

secondary effects. Specifically, we predicted that SQSTM1 is involved in mediating the 

upregulation of the inflammatory cytokines. To test this idea, we first confirmed that 

SQSTM1 was increased at the protein level by JunB gene silencing (Fig. 4a). We then 

performed gene silencing or retrovirally mediated overexpression of exogenous SQSTM1 

(Fig. 4b-c). Quantitative RT-PCR revealed that exogenous expression of SQSTM1 increased 

CXCL10 and CCL2 mRNA levels as compared to LacZ control (Fig. 4d). Conversely, gene 

silencing of SQSTM1 prevented the induction of both chemokines by reduced JunB 

expression (Fig. 4e). These results indicate that SQSTM1 positively regulates chemokine 

expression.

NF-κB is required for the induction of CCL2 and CXCL10

Since SQSTM1 is a key mediator of NF-κB activation by TRAF6/IKKγ signaling axis 

(Wooten et al., 2005; Zotti et al., 2014), we predicted that NF-κB is responsible for the 

increased cytokine expression. In agreement with this possibility, NF-κB activation was 

induced by gene silencing of JunB as indicated by the increased levels of pIKKα/β and 

pIκBα and NF-κB-driven luciferase expression (Fig. 5a-b). Inhibition of NF-κB via 

expression of the IκBα mutant (IκBαM), a well-known super-repressor of NF-κB abolished 

the induction of CXCL10 by SQSTM1 (Fig. 5c). To further test whether NF-κB is required 

for the cytokine expression, we treated cells with the pharmacological NF-κB inhibitor 

pyrrolidine dithiocarbamate (PDTC) or autophagy inhibitor chloroquine (CQ) at 24h post-

gene silencing. The conditioned culture media were collected for cytokine analyses at the 

72h time-point. We found that PDTC but not CQ markedly reduced the protein levels of 

CCL2 and CXCL10 (Fig. 5d). In line with the results obtained with the pharmacological 

agents, expression of IκBαM significantly reduced the mRNA levels of TNFα, CCL2 and 

CXCL10, as shown by quantitative RT-PCR (Fig. 5e). In contrast, IL6R, a direct target of 

JunB which was previously validated in mouse keratinocytes (Zenz et al., 2005), was not 

affected by IκBαM. In agreement with the responsiveness to NF-κB, TNFα, CCL2 and 

CXCL10, but not IL6R, all contained one or more putative NF-κB cis-elements on the 

promoter region (Fig. S2). These findings indicate that NF-κB is required for the induction 

of the proinflammatory cytokines.

Taken together, our findings support a working model in which JunB-hypofunction leads to 

increased expression of SQSTM1 and consequent NF-κB-dependent induction of 

proinflammatory cytokines (Fig. 6). Additionally, JunB loss-of-function increases cell 

proliferation, and compromises barrier functions through direct and indirect target gene 

regulations. Future studies are needed to determine whether the proinflammatory cytokines 

indirectly affect cell growth and barrier function.

Discussion

Our studies demonstrate that reduced JunB expression affects multiple cellular processes 

through direct and indirect regulation of an array of target genes. The most pronounced 
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consequences of JunB reduction is the increased expression of various proinflammatory 

chemokines and reduced expression of cell adhesion molecules. SQSTM1, as a direct 

downstream target of JunB, serves as a critical mediator to the uncontrolled NF-κB 

activation and subsequent proinflammatory responses.

Our findings suggest that the reduced JunB protein expression in psoriatic lesions, as 

demonstrated in earlier studies (Park et al., 2009; Zenz et al., 2005), may contribute to the 

development of the lesions due to the uncontrolled expression of the inflammatory 

cytokines. In this respect, JunB may be important for the inhibition of the disease onset or 

progression. Given that JunB mRNA level is increased in psoriatic lesions (Haider et al., 

2006; Johansen et al., 2004; Kulski et al., 2005), it is conceivable that the reduced JunB 

protein level in the lesional skin is due to a posttranscriptional deregulation. Future studies 

will be necessary to determine whether and how JunB protein translation or stability is 

altered in psoriatic lesions.

Current therapies for psoriasis are mainly focused on targeting T-cell mediated disease 

processes (Belge et al., 2014). A chosen treatment option may produce good outcomes for 

some patients but be less efficient for others, which is likely due to the complex nature of 

the etiology involving genetic and environmental heterogeneities. Our findings suggest that 

it might be possible to block the disease at an early stage by interfering keratinocyte-

mediated proinflammatory responses. Strategies that modulate the SQSTM1/NF-κB 

signaling axis in keratinocytes might be applied for disease prevention.

SQSTM1 is implicated in cancers of various organs, including kidney(Li et al., 2013), 

tuberous sclerosis complex (Parkhitko et al., 2011), pancreatic (Ling et al., 2012), prostate 

(Chang et al., 2014), lung(Inoue et al., 2012), and oral (Inui et al., 2013; Kuo et al., 2014). 

However, in cutaneous squamous cell carcinoma, SQSTM1 displays an inverse correlation 

with malignant progression (Yoshihara et al., 2014), suggesting that SQSTM1 may have 

epidermis-specific functions. Similar to SQSTM1, NF-κB is known to stimulate 

inflammation and tumorigenesis in a wide range of tissues. On the other hand, persistent 

NF-κB activation promotes epidermal aging and inhibits cutaneous neoplasia (Adler et al., 

2007; Dajee et al., 2003; Zhang et al., 2004; Zhang et al., 2005b). Thus, NF-κB-inhibition 

predicts both beneficial and harmful results (Wullaert et al., 2011). It will be important to 

determine whether SQSTM1 is involved in the regulation of the functional dichotomy of 

NF-κB, and may be exploited to maximize the beneficial effects of NF-κB-targeted therapy.

Materials and Methods

Cell culture, gene transfection and barrier function analysis

Primary human keratinocytes were isolated from surgically discarded foreskin samples 

obtained from Duke Children’s Hospital in accordance to in institutionally approved IRB 

protocol. Patient consent for experiments was not required because French laws consider 

human tissue left over from surgery as discarded material. Cells were grown and passaged in 

keratinocyte serum free media (Invitrogen, Grand Island, NY) at 37 °C with 5% CO2, and 

used at passage 2-3. 293T cells were obtained from ATCC and cultured in 10%FBS/DMEM. 

Gene transfection was performed with Genjet transfection reagent (SignaGen Laboratories, 
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Rockville, MD). siRNA oligonucleotides targeting JunB (S7776 and S7662), SQSTM1 

(HSS113116) and non-silencing control were purchased from Invitrogen and used at 100nM 

concentrations. Unless noted, siJunB were performed with S7662. The SQSTM1 cDNA 

expression construct was obtained from Addgene (Fan et al., 2010), and subcloned into the 

LZRS retroviral construct. For barrier function analysis, cells were seeded onto to Costar 

Transwell Permeable membrane inserts at 24h post-transfection, and induced with 1.2 mM 

calcium for 24h and 48h. TER was measured by using a Millipore Millicell ERS-2 ohm 

meter. Readings were normalized against wells with no cells (set as zero resistance) and to 

insert area. A higher resistance indicates better barrier function. The retroviral LZRS 

expression constructs for JunB and DNJunB were described previously (Jin et al., 2011).

RNA-Seq and RT-PCR

For RNA-seq, total RNA was isolated from triplicate sets of human keratinocytes at 48h 

after transfection using RNAeasy column purification (Qiagen, Germantown, MD). cDNA 

library was prepared via oligo-dT-directed reverse transcription (Ambion, Grand Island, 

NY), and subject to deep sequencing on Illumina HiSeq2000 (50bp single-read sequencing) 

and analyzed at Duke Genome Sequencing & Analysis Resource. The analysis pipeline 

includes the initial QC to remove sequencing adaptors and low quality bases to facilitate 

mapping using fastx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html). High 

quality reads were mapped to the human reference genome (hg19) using tophat (Trapnell et 

al., 2009). The gene differential expression analysis was performed between control and 

treatment using cuffdiff with upper quartile normalization, multi-hit correction and 0.5% 

FDR(Trapnell et al., 2013). Three biological replicates were used for statistical analysis of 

differential expression for each comparison. Pathway analyses were performed using WEB-

based GEne SeT AnaLysis Toolkit (Wang et al., 2013; Zhang et al., 2005a). SYBR green-

based real-time RT-PCR was performed in Bio-Rad iCycler with primers listed in (Table 

S4). Ribosomal 18S RNA or GAPDH was used as an internal control.

ChIP-Seq and ChIP-PCR

ChIP was performed as described (Guo et al., 2012). Briefly, primary keratinocytes cultured 

in eight 30-cm plates were scraped off the dish with PBS at about 60-80% confluence, and 

cross-linked with 1% formaldehyde for 8 minutes, and then treated with 1.25 M glycine for 

5 minutes to stop crosslink. Cells were pelleted by centrifuging 5 minutes at 1500 rpm, and 

lysed with ChIP lysis buffer (Santa Cruz Biotechnology, Santa CruZ, CA) for cell nuclei 

isolation. DNA fragmentation was performed by sonication with Branson Sonifier. The 

fragmented DNA underwent IP with the antibody against JunB (Cell Signaling Technology, 

Beverly, MA) followed by purification with MinElute DNA kit (Qiagen) and library 

construction with the NEBNext® DNA library preparation kit (New England BioLabs). The 

library was sequenced using Illumina Hiseq 2000 platform and analyzed at Duke Genome 

Sequencing & Analysis Resource. The analysis pipeline includes the initial QC to remove 

sequencing adaptors and low quality bases to facilitate mapping using fastx toolkit (Martin, 

2011). High quality reads were mapped to the human reference genome (hg19) using bwa 

(Li and Durbin, 2009), and genes lists were from the Ensemble Gene database (http://

www.ensemble.org) and the RefSeq (www.ncbi.nlm.nih.gov/RefSeq). Distal promoter and 

terminator regions of the genes were defined as those sequences that mapped +/−2 kb 
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upstream or +/− 50 kb from transcription “start” and “end” sites, respectively. Peak 

detection, annotation, de novo motif discovery and pathway analysis were performed using 

ChIPseeqer tool (Giannopoulou and Elemento, 2011), and visualized by UCSC genome 

browser (Kent et al., 2002). Motif analysis was performed with FIRESeq as 

described(Mathelier and Wasserman, 2013). ChIP-PCR was performed with primers listed 

in (Table S4). The raw data and additional information of ChIP-seq and RNA-seq are 

available from NCBI Gene Expression Omnibus (Accession number GSE63081).

Multiplex cytokine analysis

For cytokine analysis, human keratinocytes cultured in 12-well plates were transfected in 

duplicates with 100nM siRNA oligonucleotides targeting non-silencing control and JunB 

(Invitrogen). At 24h post-transfection, cells were treated with DMSO control, Pyrrolidine 

Dithiocarbamate (PDTC) or Chloroquine (Sigma, St Louis, MO) for 48h. Cell culture 

conditioned media were analyzed in tetrads with custom ordered Luminex Screening Assay 

System (R&D Systems, Pittsburgh, PA). The readings were obtained on a Bioplex 

reader-200 (Bio-Rad, Hercules, CA) at a flow rate of 60ul/min and 50ul/sample.

Skin regeneration

Human skin regeneration was performed as described in our previous studies in accordance 

with protocols approved by the Duke Animal Care and Use Committee (Jin et al., 2011). 

Briefly, primary human keratinocytes were transduced with retrovirus encoding genes of 

interest, and seeded onto devitalized human cadaver dermis (National Disease Research 

Institute) for grafting onto the back of CB17.SCID mice (n=3-5 per group, purchased from 

National Cancer Institute). Animals were euthanized at 6 weeks post-grafting for tissue 

collection.

Western blotting and immunostaining

For western blotting, 20ug protein lysates of primary human keratinocytes collected at 

48-72h post transfection were separated on SDS-PAGE, and immunobloted with antibodies 

against JunB, SQSTM1, IκBα and actin, followed by IR-dye-conjugated secondary 

antibodies (Invitrogen). The blots were scanned on the Odyssey imaging system (Li-COR, 

Lincoln, NE). For immunostaining, 5um frozen tissue sections were fixed with cold 

methanol, incubated with primary antibodies against Ki-67, and detected with a secondary 

antibody conjugated to Alexa 5 (Invitrogen) and counterstaining with Hoechst 33342. The 

images were obtained with the Olympus imaging system.

Gene reporter analysis

NF-κB-luciferase (Promega) and SQSTM1-luciferase reporter constructs were transfected 

together with the CMV-renilla luciferase and genes of interest into 293T cells using Genjet 

transfection reagent. Dual luciferase assay was performed at 24h post-transfection. The 

relative luciferase reading unit (RLU) was obtained by normalizing the readings of firefly 

luciferase to that of renilla luciferase, and then to that of the control cells. The p-values were 

obtained in Excel with two-tiered student T-test.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. JunB loss-of-function leads to increased epidermal cell proliferation and reduced 
barrier function
(a) Confirmation of gene silencing via real-time RT-PCR and Western blotting. Relative 

expression levels of JunB were shown below each band via densitometry. (b) Cell growth of 

human keratinocytes treated with or without 50ng/ml TNFα for 72h. (c) Barrier functions as 

measured by the Transepithelial Electrical Resistance (TER). Keratinocytes were induced to 

differentiate with 1.2 mM Ca++on permeable membranes for 24h and 48h prior to TER 

measurement. (d) Confirmation of gene expression via immunoblotting. (e) Cell growth 

analysis. (f) Immunostaining of 6-week old skin grafts generated on SCID mice with human 

keratinocytes transduced to express genes as indicated. Ki-67 [orange] and nuclei [blue]. 

Graphs represent the average values of triplicate samples + SD. P-values were obtained via 

two-tiered student T-test. Scale bar=100μm.
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Figure 2. RNA-seq reveals JunB-targets involved in inflammation and cell adhesion
(a-b) Heat map analysis of gene expression of 3 independent sets of human keratinocytes 

underwent gene-transfection with siRNA oligonucelotides targeting JunB (siJunB) or 

nonsilecning control (siCon). (c) Real-time RT-PCR for JunB, TNFα, IL6R, CCL2, 

CXCL10 and SQSTM-1. Graph represents average fold changes of triplicate samples + SD. 

(d) Cytokine analysis of cell culture conditioned media. Graph represents average of tetrad 

samples + SD.
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Figure 3. ChIP-seq identifies p62/SQSTM1 as a JunB-target gene
(a) Percent of ChIP-seq distribution. (b) Motif analysis with ChIPseeqerFire. (c) A 

representative ChIP-seq peak located on SQSTM1. (d) DNA sequence of the SQSTM1-

promoter (Promoter ID: 33839; http://rulai.cshl.edu/cgi-bin/TRED). The consensus AP-1 

element -5′TGACTCA3′- was underlined in red. (e) ChIP-PCR with primers marked in (d). 

Graph represents the average fold enrichment of triplicate samples by JunB-ChIP over the 

input DNA + SD. (f) Dual luciferase gene reporter analysis of 293T cells transfected with 

the firefly luciferase reporter constructs containing the WT SQSTM1-promoter or the mutant 

with a defective AP-1 element along with the CMV-renilla luciferase and JunB expression 

constructs. Graph represents the average of relative luciferase reading units + SD.
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Figure 4. SQSTM1 positively regulates chemokine expression
(a-c) Immunoblotting of SQSTM1, JunB, Actin or GAPDH with protein lysates collected 

from human keratinocytes at 48h post gene transduction. Relative expression levels of 

SQSTM1 and JunB were shown below each band. Note: Results obtained with two different 

siRNA oligonucleotides (Invitrogen S7776 and S7662) targeting JunB were comparable. 

Most studies were performed with the second oligonucleotide. (d) Relative mRNA levels of 

CXCL10 by real-time RT-PCR. Graph represents relative mRNA levels of triplicates + SD 

with GAPDH used as the internal control. (e) Cytokine analysis of cell culture conditioned 

media. Graph represents average of tetrad samples + SD.
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Figure 5. NF-κB is required for cytokine induction
(a) Immunoblotting for pIKKα, pIκBα, p62 and Actin of protein lysates isolated from 

keratinocytes at 48h post-transfection. (b) Dual luciferase NF-κB-gene reporter assay. (c) 

Relative mRNA levels of SQSTM1 and CXCL10 in human keratinocytes at 48h post-gene 

transduction as determined by real-time RT-PCR with 18S RNA used as the internal control. 

(d) Cytokine analysis of keratinocyte conditioned culture media collected at 48h after 

treatment with 20uM PDTC or 10uM chloroquine (CQ). (e) Relative mRNA levels of 

TNFα, CXCL10, CCL2 and IL6R analyzed by RT-PCR as in described above. Graphs 

represent the average values of triplicate or tetrad samples + SD. P-values were obtained via 

two-tiered student T-test.
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Figure 6. Working model
JunB-suppression of inflammation. JunB regulates epidermal cell proliferation, cell adhesion 

and inflammation through direct and indirect target genes. In particular, JunB-hypofunction 

leads to increased expression of SQSTM1 and consequently NF-κB-dependent expression of 

multiple inflammatory cytokines.
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