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The flexible ditopic ligand 3,3′-bipyridine (3,3′-bpy) has been reacted with a series of transition metal species (Ag+, Hg2+, cis-
a2M2+ (a = NH3 or a2 = en; M = Pt, Pd), trans-a2Pt2+ (a = NH3)) in an attempt to produce discrete cyclic constructs. While
Ag+ gave a polymeric structure {[Ag(3,3′-bpy)](ClO4) ·H2O}n (1), with all other metal entities cyclic structures were formed.
Interestingly, Hg(CH3COO)2 produced a dinuclear complex [Hg(3,3′-bpy)(CH3COO)2]2 · 3H2O (2), in which the two 3,3′-
bpy ligands adopt a cis-orientation of the coordinating pyridyl entities. With cis-(NH3)2Pt2+, a cyclic complex 4 was isolated
in crystalline form which, according to HRMS, is a trimer. With trans-(NH3)2Pt2+, different species are formed according to 1H
NMR spectroscopy, the nature of which was not established.

1. Introduction

The “molecular library” concept has proven highly efficient
in designing discrete supramolecular metal complexes by
combining di- or multitopic metal entities with rigid di-
or multitopic ligands [1, 2]. It is less straightforward if
ligands are flexible and can adopt, in principle, different
rotamer states. In its simplest form, this is the case when
two N-heterocyclic ligands are connected via a C–C bond.
Examples are, among others, 2, 2′-bipyridine (2, 2′-bpy),
3, 3′-bipyridine (3, 3′-bpy) and, 2, 2′-bipyrazine (2, 2′-bpz)
(Scheme 1). While 2, 2′-bpy, in the overwhelming number
of structures, acts as a chelating ligand with the two ring
N atoms in a cis-orientation, there are also rare cases
of 2, 2′-bpy adopting a bridging mode, hence being in
a transconfiguration or half-way between cis and trans-
[3]. It depends on the conformation of the ligand and
the geometry of the metal, what kind of construct/s is/are
formed. With 2, 2′-bpz, we have studied this question in
more detail and have characterized a number of discrete
molecular entities, which include a flat triangular struc-
ture, 3D triangular entities of different shapes (prism,
vase), as well as a tetranuclear open box [4, 5]. In all
these cases the N4/N4′ positions are involved in metal

coordination, occasionally complemented by addition of
metal chelation via N1/N1′, and influenced by counter
anions.

In principle, 3, 3′-bipyridine (3, 3′-bpy) metal complexes
should be able to reveal analogous topologies as 2, 2′-bpz,
with the advantage of higher basicities of the N donor atoms
(Figure 1). There are several reports in the literature on
polymeric structures containing cis- [6] and in particular
trans-arranged 3, 3′-bpy ligands [7], yet none with a discrete
molecular metallacycle. The only related examples are those
of trinuclear cycles containing three cis-a2MII units (a2

= diamine; M = Pd or Pt) and three 4,7-phenanthroline
ligands, which can be considered rigid analogous of 3, 3′-
bpy ligands with the two pyridine entities fixed in a cis-
orientation [8, 9]. Our interest in discrete cationic metallacy-
cles stems, among others, from their potential of interacting
noncovalently with DNA [10] or particular DNA secondary
structures such as DNA quadruplexes [11], as well as their
ability to act as hosts for anions [12, 13]. In the present study,
we have employed different transition metal ions and metal
entities which previously have been shown by others and
ourselves to produce discrete cyclic complexes, namely Ag(I),
Hg(II), enPd(II), cis-(NH3)2Pt(II) as well as trans-a2Pt(II) (a
= NH3) [14–16].
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Scheme 1: cis- and trans-orientation of pyridine and pyrazine rings in 2, 2′-bpy, 3, 3′-bpy, and 2, 2′-bpz.
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Figure 1: Feasible discrete (I–IV) and polymeric (V, VI) structures of 3, 3′-bpy metal complexes, and novel dinuclear complex (VII) observed
in the HgII complex 2.
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2. Experimental

2.1. Synthesis Procedures. AgClO4 and Hg(CH3COO)2 were
of commercial origin. 3, 3′-bpy [17], PdCl2(en) [18], cis-
PtCl2(NH3)2[19], and trans-PtCl2(NH3)2 [20] were pre-
pared according to known literature procedures.

{[Ag(3,3′-bpy)] (ClO4)·H2O}n (1). To a solution of 3, 3′-
bpy (15.6 mg, 0.1 mmoL) in water (3 mL), an aqueous solu-
tion (2 mL) of AgClO4 (20.7 mg, 0.1 mmoL) was added. The
white precipitate which formed immediately was centrifuged
off and recrystallized from water (4 mL, 40◦C). Colorless
crystals were obtained after 2 d at room temperature. Yield:
30.5 mg (80%). Anal. Calcd (%) for C10H10AgClN2O5: C,
31.5; H, 2.6; N, 7.3. Found: C, 31.4; H, 2.6; N, 7.5.

[Hg(3,3′-bpy)(CH3COO)2]2·3H2O (2). An aqueous so-
lution (4 mL) of 3, 3′-bpy (15.6 mg, 0.1 mmoL) and
Hg(CH3COO)2 (31.9 mg, 0.1 mmoL) was stirred at room
temperature for 12 h. The solution is filtered and kept at
room temperature. After 3 d, colorless crystals were obtained.
Yield: 37.1 mg (74%). 2 was characterized by X-ray analysis.

[{Pd(en)(3,3′-bpy)}(NO3)2·H2O]n (3). An aqueous suspen-
sion (15 mL) of PdCl2(en) (47.4 mg, 0.2 mmoL) and AgNO3

(68 mg, 0.4 mmoL) was stirred in dark for 12 h. The resultant
AgCl precipitate was filtered off and 3, 3′-bpy (31.2 mg,
0.2 mmoL) was added to the filtrate. The solution was stirred
at 40◦C for 1 day and then concentrated to a volume of
4 mL by rotary evaporator. The solution was filtered and
kept at room temperature. After 4 d, light yellow powder
was recovered. Yield: 61 mg (66%). Anal. Calcd (%) for
(C12H18N6O7Pd)n (1-hydrate): C, 31.0; H, 3.9; N, 18.1.
Found: C, 30.8; H, 4.0; N, 18.0.

cis-[{Pt(NH3)2(3,3′-bpy)}(PF6)2·H2O]n (4). An aqueous
suspension (20 mL) of cis-PtCl2(NH3)2 (60 mg, 0.2 mmoL)
and AgNO3 (68 mg, 0.4 mmoL) was stirred in dark for 12 h.
The resultant AgCl precipitate was filtered off and 3, 3′-bpy
(31.2 mg, 0.2 mmoL) was added to the filtrate. The solution
was stirred at 60◦C for 3 d, then solid NH4PF6 (65.2 mg,
0.4 mmoL) was added to it and the solution was stirred at
60◦C for another day. The solution was concentrated to a
volume of 5 mL (pD = 3.20) and kept in an open beaker at
4◦C. After 5 d, colorless crystals were obtained. According to
MS, 4 represents a cyclic trimer, hence n = 3. Yield: 73 mg
(54%). Anal. Calcd (%) for C30H48N12O3P6F36Pt3: C, 17.3;
H, 2.3; N, 8.1. Found: C, 17.5; H, 2.6; N, 7.9.

2.2. X-Ray Crystal Structure Determination. X-ray crystal
data for 1 and 2 (Table 1) were recorded at 150 K with
an Xcalibur diffractometer equipped with an area detector
and graphite monochromated Mo Kα radiation (0.71073 Å).
Data reduction was done with the CrysAlisPro software
[21]. Both structures were solved by direct methods and
refined by full-matrix least-squares methods based on
F2 using SHELXL-97 [22]. All nonhydrogen atoms were
refined anisotropically. Hydrogen atoms (including water

molecules) were positioned geometrically and refined with
isotropic displacement parameters according to the riding
model. All calculations were performed using the SHELXL-
97 and WinGX programs [22, 23]. CCDC 763713 and 763714
contain the crystallographic data for compounds 1 and 2.

2.3. Instruments. Elemental (C, H, N) analysis data were
obtained on a Leco CHNS-932 instrument. The 1H NMR
spectra were recorded in D2O with tetramethylammo-
nium chloride (TMA) and sodium-3-(trimethylsilyl)-1-
propanesulfonate (TSP) as internal reference, on Bruker AC
200 and Bruker AC 300 spectrometers.

2.4. Electrospray Mass Spectrometry. The mass spectrum of
4 was recorded with an LTQ orbitrap (high resolution
mass spectrometer) coupled to an Accela HPLC-system
(consisting of Accela pump, Accela autosampler, and Accela
PDA detector), from Thermo Electron. The parameters for
HPLC were as follows: (i) Eluent A (0.1% formic acid in
H2O) and eluent B (0.1% formic acid in acetonitrile) with
mobile phase consisting of 50% A and 50% B, (ii) Flow
rate 250 μL/min, (iii) injection volume 5 μL, (iv) scan of
wavelength range from 200 to 600 nm. The parameters for
MS were as follows: (i) ionisation mode ESI (electrospray
ionization), (ii) source voltage 3.8 kV, Capillary voltage 41 V,
Capillary temperature 275◦C, tube lens voltage 140 V, (iii)
scanned mass range 150 m/z to 2000 m/z with resolution set
to 60000. Analysis was done by flow injection (without any
column).

2.5. Determination of pKa Values. The pKa values of 3, 3′-
bpy ligand were determined by evaluating the changes
in chemical shifts of bipyridine protons at different pD
values. pD values were measured by use of a glass electrode
and addition of 0.4 units to the uncorrected pH meter
reading (pH∗). The graphs (chemical shifts versus pD)
were evaluated with a nonlinear least-squares fit according
to Newton-Gauss method [24] and the acidity constants
(calculated for D2O) were converted to values valid for H2O
[25].

3. Results and Discussion
1H NMR Spectra of 3, 3′-Bipyridine. Figure 2 displays a
typical 1H NMR spectrum of the free ligand at pD 6.8. The
individual resonances show the expected coupling patterns
[17]. In the D2O spectrum, all resonances show splitting
due to long-range coupling. For example, the H2 signal is
split into a doublet due to coupling with H4 (1.5 Hz) and
additionally displays coupling with H5 (0.7 Hz). Upon proto-
nation, all resonances are downfield shifted, with H6 affected
most. pKa values for [3, 3′-bpyH]+ and [3, 3′-bpyH2]2+, as
determined by pD dependent 1H NMR spectroscopy, are 4.58
± 0.1 and 2.71 ± 0.1 (values converted to H2O), respectively.
These values compare with 4.3 and ca. 0.3 for 2, 2′-bpy, and
0.45 and –1.35 for 2, 2′-bpz, and reflect the higher basicity of
3, 3′-bpy as compared to two other ligands.
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Table 1: Crystallographic data for compounds {[Ag(3, 3′-bpy)](ClO4) ·H2O}n(1) and [Hg(3, 3′-bpy)(CH3COO)2]2· 3H2O (2).

1 2

Formula C10H10Ag1Cl1N2O5 C28H34Hg2N4O11

Formula weight (g moL−1) 381.52 1003.77

Crystal color and habit colorless prisms colorless prisms

Crystal size (mm) 0.20× 0.20× 0.10 0.15× 0.10× 0.05

Crystal system monoclinic triclinic

Space group P21/c P-1

a (Å) 9.7606(10) 8.5635(5)

b (Å) 7.3145(8) 9.2096(6)

c (Å) 19.572(2) 11.3262(6)

α (◦) 90 74.746(5)

β (◦) 119.148(9) 84.183(4)

γ (◦) 90 63.221(6)

V (Å
3
) 1220.4(2) 769.21(8)

Z 4 1

Dcalcd. (g cm−3) 2.077 2.167

F (000) 752 478

μ (mm−1) 1.888 10.034

No. reflections collected 2333 3572

No. reflections observed 1557 2969

Rint 0.0317 0.0359

No. parameters refined 172 208

R [I > 2σ(I)] 0.0331 0.0270

wR (all reflections) 0.0572 0.0453

Goodness-of-fit (GOF) 1.041 0.911

Δρmax and Δρmin (e Å
−3

) 0.941 and –0.517 1.078 and –1.283

GOF = [Σw(F2
o − F2

c )2/(No−Nν)]1/2; R = Σ‖Fo| − |Fc‖/Σ|Fo|; wR = [Σ(w(F2
o − F2

c )2)/Σw(F2
o )2]1/2.

1H NMR resonances of 3, 3′-bpy in D2O display a
moderate sensitivity on concentration, which is consistent
with intermolecular stacking. For example, when going from
0.0125 M to 0.125 M, upfield shifts are 0.06 ppm (H2),
0.03 ppm (H4), 0.05 ppm (H6), and 0.04 ppm (H5).

Ag+ and Hg2+ Coordination. Addition of Ag+ ions to an
aqueous solution of 3, 3′-bpy in D2O expectedly does not
reveal resonances due to individual species, but rather gives
only averaged signals of the free ligand and the various Ag
complexes as a consequence of fast exchange.

A similar situation applies to mixtures of 3, 3′-bpy
and Hg(II) acetate. The spectrum of the dinuclear Hg(II)
complex 2 has its 1H resonances (δ, ppm; D2O, pD 5.2)
at 8.97, 8.73, 8.44, and 7.88 as well as 2.02 (acetate). No
coupling of any of the 3, 3′-bpy resonances with the 199Hg
isotope is observed as in a previously reported case [26],
and a comparison of the shifts of 2 with those of the free
ligand at the same pD (downfields shifts of H2, 0.06 ppm;
H4, 0.06 ppm; H6, 0.09 ppm; H5, 0.13 ppm) does not permit
any conclusions regarding the bonding situation in solution.

The crystal structure of {[Ag(3, 3′-bpy)](ClO4) ·H2O}n
(1) reveals a polymeric structure rather than a discrete cyclic

structure as we had hoped for. The silver atom (Ag1) shows
a distorted octahedral coordination sphere (Figure 3(a)),
with two 3, 3′-bpy ligands at the apical positions (Ag1-
N1, 2.181(3) Å; Ag1-N11, 2.189(3) Å). The equatorial coor-
dination is completed by a water molecule (Ag1-O1w,
2.722(3) Å), two perchlorate counter anions (Ag1-O13,
2.773(4) Å; Ag1-O13′, 2.861(4) Å), and an argentophilic
interaction [27, 28] with a neighbor silver atom (Ag · · ·Ag,
3.3751(8) Å). Angles and distances involving the coordina-
tion sphere of Ag1 are listed in Table 2. The polymeric struc-
ture is assembled by coordination of additional silver units
to the bridging 3, 3′-bpy ligands of the apical positions, with
a –Ag–[N11-3, 3′-bpy-N21]–Ag– basic motif, which extends
along the [1 0 1] direction (Figure 3(b)). The 3, 3′-bpy lig-
ands adopt transconformations with a twist angle of 27.9(1)◦

between pyridine halves. The dihedral angle between two
pyridyl rings coordinated to Ag1 is 7.2(1)◦. The crystal pack-
ing is based on π − π stacking and argentophilic interactions
between polymer strands. An upper view of the ac plane
evidences the presence of voids in the structure (Figure 4(a)).
They are essentially rectangular tunnels along the b axis,
which house two sets of hydrogen bond-based perchlorate-
water polymers. These polymers are built by connecting
water molecules of crystallization and perchlorate anions.

http://www.sciencedirect.com/science?_ob=ArticleURL\&_udi=B6TG5-4XHCJ35-1\&_user=10\&_coverDate=01%2F04%2F2010\&_rdoc=3\&_fmt=full\&_orig=browse\&_srch=doc-info%28%23toc%235245%232010%23996369998%231570151%23FLA%23display%23Volume%29\&_cdi=5245\&_sort=d\&_docanchor=\&_ct=42\&_acct=C000050221\&_version=1\&_urlVersion=0\&_userid=10\&md5=d723fdc6dde5171bddfa2ba1e1bf05b4
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Table 2: Selected bond distances (Å) and angles (o) for compound 1.

Ag1-N1, 2.181(3) N1-Ag1-N11, 174.37(13) N11-Ag1-Ag1′, 76.06(9)

Ag1-N11, 2.189(3) O13-Ag1-Ag1, 157.52(8) N11-Ag1-O13, 87.31(11)

Ag1-Ag1, 3.3751(8) O1w-Ag1-O13, 168.17(10) N11-Ag1-O13′, 92.86(11)

Ag1-O1w, 2.722(3) N1-Ag1-Ag1′, 108.03(9) N11-Ag1 O1W 95.33(11)

Ag1-O13, 2.773(4) N1-Ag1-O13, 84.58(11) Ag1′-Ag1-O1w, 78.60(7)

Ag1-O13′, 2.861(4) N1-Ag1-O13′, 87.48(11) O1w-Ag1-O13, 83.13(10)

Bpy-rings, 27.86(7) N1-Ag1-O1w, 89.35(11) O13-Ag1-O13′, 85.22(10)

py-Ag-py′, 7.19(10) O13-Ag1-Ag1′, 113.22(7)
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Figure 2: (a) Low field section of 1H NMR spectrum of 3, 3′-bpy
(D2O, pD = 6.8) and pD dependence of individual resonances,
focusing splitting of the H2 resonances. (b) pD dependence of H2,
H4, H6, and H8 resonances of free 3, 3′-bipyridine.

Each O1w forms two hydrogen bonds with two perchlorate
anions: · · ·O14-Cl1-O12· · · (H1w)O1w(H2w) · · ·O14-
Cl1-O12· · · (Figure 4(b)). Distances and angles involving
O1w are O1w· · ·O12, 2.969(5) Å; O1w· · ·O14, 2.886(5) Å;
O12· · ·O1w· · ·O14, 119.5(2)◦.

The crystal structure of the dinuclear species [Hg(3,3’-
bpy)(CH3COO)2]2· 3H2O (2) is given in Figure 5. Unlike

in 1, in 2 the 3, 3′-bpy ligands adopt a cis-conformation of
the two pyridyl rings, with a twist angle of 30.4(2)◦, and act
as bridges between two mercury centers. The coordination
geometry of the Hg ion (Table 3) is distorted tetrahedral,
enclosing two 3, 3′-bpy entities (Hg1-N1a, 2.274(3) Å; Hg1-
N1b, 2.263(3) Å), and two chelating/semichelating acetates
(Hg1-O11, 2.490(3) Å; Hg1-O12, 2.392(3) Å; and Hg1-O21,
2.286(3) Å; Hg1-O22, 2.762(3) Å). Selected distances and
angles around mercury are listed in Table 3. Both 3, 3′-bpy
ligands and their bonded mercury atoms are almost coplanar
with a tendency towards a boat conformation (distance from
Hg1 to the plane defined by N1a, N1b, N1a′, N1b′ is 0.58 Å).

The disposition of the acetate ligands is worthy to
be discussed in more detail. Both ligands form a dihe-
dral angle of 79.23(16)◦ with each other. The ligand
containing O11,O12 is roughly coplanar with the pyridyl
rings (7.27(27)◦, 23.28(23)◦), whereas the ligand A2 (with
O21,O22) is roughly perpendicular (78.33(15), 72.81(14)◦).
Both are asymmetrically coordinated to Hg1, displaying
significant longer bond distances of those oxygen atoms
involved in hydrogen bonding: O1w· · ·O11, 2.802(5) Å
(Hg1-O11, 2.490(3) Å versus Hg1-O12, 2.392(3) Å) and
O1w· · ·O22, 2.757(4) Å (Hg1-O21, 2.286(3) Å versus Hg1-
O22, 2.762(3) Å). Further hydrogen bonding includes a
twofold O1w· · ·O2w (2.785(10) Å) connection. Besides
hydrogen bonding, the crystal packing includes π − π-
and anion–π-interactions. N1a-pyridyl rings are pairwise
π − π stacked (3.5 Å), and both rings are involved in an
additional anion–π-interaction with O11 (O11· · · centroid,
3.47 Å). Considering the latter, the formation of staggered
rows is observed, in which each molecule displays four
anion–π-interactions with neighbor molecules. Rows are
interconnected by π − π-stacking and hydrogen bonding.

Complexes with enPdII and cis-(NH3)2PtII. Reactions
of 3, 3′-bpy with [Pd(en)(H2O)2](NO3)2 and cis-
[Pt(NH3)2(H2O)2](NO3)2 (1 : 1 ratio) give products of
1 : 1 stoichiometry [{Pd(en)(3, 3′-bpy)}(NO3)2]n (3) and
cis-[{Pt(NH3)2(3, 3′-bpy)}(PF6)2]n (4) which, according to
1H NMR spectroscopy, are pure materials. Only single sets
of 3, 3′-bpy resonances are observed in both compounds,
indicating that both compounds must be cyclic. Chemical
shifts (δ, ppm; D2O, TMA as internal reference) are as
follows: 3, 9.15, 8.84, 8.27, 7.69 ppm (3, 3′-bpy) and 2.98
(en); 4, 8.99, 8.95, 8.23, 7.67 (3, 3′-bpy). When TSP was used
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Figure 3: (a) Detail of the coordination sphere of the silver atom in 1. (b) Polymeric motif between Ag1 and 3, 3′-bpy bridging ligands in 1.

Table 3: Selected bond distances (Å) and angles (o) for compound 2.

Hg1-N1a, 2.274(3) N1a-Hg1-N1b, 114.74(11) N1b-Hg1-O21, 115.85(11)

Hg1-N1b, 2.263(3) N1a-Hg1-O11, 88.58(11) O11-Hg1-O12, 53.82(11)

Hg1-O11, 2.490(3) N1a-Hg1-O12, 140.71(12) O11-Hg1-O21, 93.87(10)

Hg1-O12, 2.392(3) N1a-Hg1-O21, 103.25(12) O12-Hg1-O21, 91.53(11)

Hg1-O21, 2.286(3) N1b-Hg1-O11, 134.38(12) Bpy-rings, 30.43(16)

Hg1-O22, 2.762(3) N1b-Hg1-O12 89.72(12) py-Hg-py′, 30.43(16)

c

a

(a)

b

(b)

Figure 4: (a) Section of the packing pattern in 1 (excluding H2O
and ClO4

−), including voids along the b direction. (b) Water-
perchlorate hydrogen bonded polymer inserted along the packing
tunnels of 1.

as a reference, shifts differed by 0.1 ppm (3) and 0.09 ppm
(4), suggesting that the TSP anion interacts with the cations
of 3 and 4 [29]. Although 4 was isolated in microcrystalline
form, an X-ray structure determination proved impossible.

The high resolution MS of a sample of 4 was carried out
and confirmed a triangular structure (see (II) or (IV)
in Figure 1). The mass spectrum displayed peaks due to
[M–(PF6)]+: 1880.08114 (calcd. 1880.07904), (M–(PF6)2]2+:
867.55844 (calcd. 867.55828), and [M–(PF6)4]4+: 361.29666
(calcd. 361.29621). The HRMS spectrum of [M–(PF6)4]4+

is given in Figure 6 and compared with the simulated
spectrum.

Reaction with trans-[Pt(NH3)2(H2O)2]2+. Reaction of 3, 3′-
bpy with trans-[Pt(NH3)2(D2O)2](NO3)2 was carried out
with different ratios between 3, 3′-bpy and the Pt species
(10 : 1, 2 : 1, 1 : 1, 1 : 10) on the 1H NMR scale in D2O.
Without exception, the spectra displayed time-dependent
changes, but within 2-3 d at 50◦C, constant spectra were
obtained. Even then, however, resonances due to multiple
products were present. In the case of a large excess of ligand
over Pt (10 : 1), the spectrum reveals the presence of a
major species attributed to trans-[Pt(NH3)2(3, 3′-bpy)2]2+

and excess 3, 3′-bpy (Figure 7). The resonances of the free
3, 3′-bpy (L) were unambiguously identified by adding solid
3, 3′-bpy to the NMR sample. The two sets of pyridine
resonances of the coordinated 3, 3′-bpy ligands of the 1 : 2
complex are assigned on the basis of their relative intensities.
What strikes is that the H2 and H4 resonances of the free
ligand are very much broadened (cf. Figure 2(a)) and that
H2, H4, and H6 are upfield shifted by ca. 0.2, 0.08, and
0.14 ppm, respectively. As these shifts cannot be interpreted
with a pD effect, we propose that the presence of the 1 : 2-
Pt complex has an effect on the rotamer equilibrium of the
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Figure 5: (a) View of 2 with atom numbering scheme. (b) Side view
of 2, evidencing a boat conformation of the mercury atoms with
respect to the 3, 3′-bpy ligands.

free ligand. Consistent with this proposal, the two resonances
closest to the C3–C3 bond, hence H2 and H4, become quite
broad. Stacking interactions between free and coordinated
3, 3′-bpy could possibly account for this feature.

The 1H NMR spectrum of a 1 : 1 mixture of trans-
[Pt(NH3)2(D2O)2]2+ and 3, 3′-bpy displays four H2 (H2′)
singlets of different relative intensities at lowest field, and at
least for the H6 (H6′) resonances also four components can
be differentiated. Free 3, 3′-bpy is not detectable. It is obvious
that the self-assembly process of trans-(NH3)2PtII and 3, 3′-
bpy does not lead to a preferred single product, unlike in the
case of enPdII and cis-(NH3)2PtII.

4. Summary

The flexible ditopic ligand 3, 3′-bipyridine forms with
Hg(CH3COO)2 and cis-[Pt(NH3)2(H2O)2](PF6)2 discrete
di- and trinuclear cycles 2 and 4, respectively. The solid
state structure of the Hg(II) complex 2 is unique in that it
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Figure 6: HRMS spectrum of complex 4: Observed and calculated
pattern for [M–(PF6)4]4+.
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Figure 7: 1H NMR spectrum of mixture of trans-
[Pt(NH3)2(D2O)2]2+ and 3, 3′-bpy (L) in ratio 1 : 10 after
2 d, 50◦C, D2O, pD = 6.65. Main resonances are assigned to 1 : 2
complex and free ligand; minor resonances (∗) are not assigned.

represents the smallest possible entity of any cyclic complex.
It appears that the opening of the N1a-Hg-N1b angle to ca.
115◦ allows the dinuclear to be formed. A similar structure,
with the two 3, 3′-bpy ligands approximately coplanar, is
not to be expected for cis-a2PtII with its 90◦ bonding angle.
Consequently, 4 is a cyclic trinuclear compound. On the
NMR time scale, 2 is kinetically labile in aqueous solution,
but 4 is inert. We plan to further study 4 with regard to its
host-guest chemistry and its noncovalent interaction with
DNA.
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