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Multiple recent investigations have highlighted the promise of helminth-based

therapies for the treatment of inflammatory disorders of the intestinal tract

of humans, including inflammatory bowel disease and coeliac disease.

However, the mechanisms by which helminths regulate immune responses,

leading to the amelioration of symptoms of chronic inflammation are unknown.

Given the pivotal roles of the intestinal microbiota in the pathogenesis of these

disorders, it has been hypothesized that helminth-induced modifications of the

gut commensal flora may be responsible for the therapeutic properties of gastro-

intestinal parasites. In this article, we review recent progress in the elucidation of

host–parasite–microbiota interactions in both animal models of chronic inflam-

mation and humans, and provide a working hypothesis of the role of the gut

microbiota in helminth-induced suppression of inflammation.
1. Introduction
The human gastrointestinal tract is inhabited by approximately 1013–1014 bacterial

cells, which together are known as the gut microbiota. This complex network of

commensal microorganisms exerts a number of specialized functions beneficial

to the host, including absorption of nutrients, synthesis of essential organic com-

pounds, protection against pathogens and contribution to the development of the

intestinal immune system [1,2]. Perturbations of the gut microbial ecology (¼ ‘dys-

biosis’) have been implicated in a number of diseases, including obesity,

malnutrition, type I and type II diabetes, cancer and neurological disorders

[1,3]. In addition, intestinal dysbiosis is associated with a range of chronic inflam-

matory disorders of the gastrointestinal tract, including Crohn’s disease (CD),

ulcerative colitis (UC) [4] and coeliac disease (CeD) [5]. These diseases exact an

enormous toll in developed countries, with CD and UC being the two most

common forms of inflammatory bowel disease (IBD), estimated to cost the

economy of the United Kingdom alone approximately £1 billion per year [6].

CD and UC are lifelong inflammatory conditions of the colon and small intes-

tine, characterized by aberrant responses of the mucosal immune system against

the commensal flora [7]. While genetic factors contribute to the susceptibility to

IBD [7], a number of studies support a pivotal role for environmental factors

such as the gut microbiota in the pathogenesis of these chronic conditions [8].

IBD is associated with alterations in the nature of the microbial communities

within the gut, which may affect immune development and intestinal barrier

function. As a result, the breakdown in tolerance and compartmentalization of

commensal microorganisms then perpetuates disease by stimulating the acti-

vation of inflammatory T cells, resulting in chronic inflammation [8]. While the

exact mechanisms which determine this cascade of biological events are yet to

be fully determined, a high concentration of mucosally-associated bacteria,

together with the presence of enteric bacterial pathogens (e.g. adherent/invasive
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Figure 1. Potential role for microbiota in helminth-mediated suppression of autoimmune diseases? Helminths, including Trichuris sp. and hookworms are thought to
limit the severity of IBDs and autoimmune diseases via promotion of type 2 and regulatory T cell responses that counteract pro-inflammatory type 1 or type 17
immune responses. However, emerging evidence suggests that helminth-mediated immune modulation may be, in part, due to alterations in the composition of the
intestinal microbiota, which can profoundly influence immune cell development and function in the intestine. ES, excretory/secretory. (Online version in colour.)
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Escherichia coli and enterotoxigenic Bacteroides fragilis) and host

factors contributing to intestinal dysbiosis (e.g. impaired bac-

terial killing) have been hypothesized to contribute to the

development and severity of disease [8].

A role for intestinal dysbiosis in the pathogenesis and

severity of CeD has been recently hypothesized [5,9]. CeD is

an autoimmune disorder caused by an inappropriate response

to dietary gluten, where symptoms include intestinal pain and

discomfort, chronic constipation or diarrhoea, impaired nutri-

ent absorption, anaemia and fatigue [10]. In people with CeD,

ingestion of even trace amounts of gluten (10–50 mg), a major

component of foods containing wheat, barley and rye, can

cause infiltration of pro-inflammatory T cells to the small intes-

tine, which causes apoptosis in the epithelial cells that form

the intestinal barrier [11]. This inflammation is compounded

by the production of autoantibodies against enzymes that pro-

cess gluten, which are deposited in the intestine and promote

truncation of the villi lining and destruction of the epithelial

barrier [12]. An expansion in populations of Bacteroides spp.,

together with a reduction of Bifidobacterium spp., has been

associated with the development of CeD [13]. Interestingly,

adherence to a strict gluten-free diet (GFD) does not result

in restoration of microbial balance, thus leading to the hypo-

thesis of a link between genotype and intestinal dysbiosis

that may predispose to disease [9]. To date, there are no effec-

tive cures for IBD or CeD that will enable affected individuals

to engage in normal diets and lead symptom-free lives;

however, modulation of the gut microbiota via the use of pre-

biotics, probiotics, antibiotics or faecal transplants could be

viable therapeutic strategies.
2. Helminth-therapy to treat inflammatory gut
disorders

One theory for the increased incidence of allergic and auto-

immune diseases in the developed world, including IBD and

CeD, is that improved sanitation has reduced our exposure to

pathogens in childhood, which affects the development of the

immune system. Consequently, there are increases in the inci-

dence of immune disorders related to inappropriate responses

to harmless stimuli—commonly referred to as the ‘hygiene

hypothesis’ [14]. Therefore, in recent years, there have been

multiple attempts to exploit the hygiene hypothesis via the

controlled re-introduction of infectious agents with immuno-

suppressive properties, such as parasitic helminths [15–18].
In particular, two gastrointestinal parasitic nematodes,

namely whipworms (Trichuris sp.) and hookworms (Necator
americanus), have been investigated in a range of studies in

both humans and animal models aimed at developing novel

treatment strategies against IBD and CeD, respectively [16,19].

As a consequence of these pilot studies, there have been

intriguing observations that some of the immunoregulatory

capacity of worms may be directly or indirectly related to altera-

tions in intestinal microbial communities (figure 1), which will

be the focus of the remainder of this article.
3. Therapeutic potential of helminths and the
role of the gut microbiota

(a) Whipworms
Whipworms of the genus Trichuris are parasites of the

large intestine of mammals. Infection occurs following

the ingestion of the embryonated eggs, which hatch in the

small intestine and release the infective larvae that develop

to adults within the large intestine, partially embedding

themselves within the epithelial lining [20,21]. Interestingly,

the presence of commensal bacteria within the host is essen-

tial for the hatching of Trichuris eggs and hence the successful

establishment of Trichuris infection [22]. Indeed, using individ-

ual in vitro cultures of five strains of bacteria (including E. coli,
an extremely common gut commensal) and one of yeast, Hayes

et al. [22] observed successful hatching of embryonated eggs of

the murine whipworm, T. muris, similarly to that induced by

incubation of eggs with tissue explants of mouse caecum con-

taining the commensal microflora. Removal of bacterial or

yeast cells from cultures prevented hatching, thus revealing,

for the first time, a close association between a metazoan para-

site and the gut microbiota [22]. Like many other species of

intestinal helminths, Trichuris infection elicits a biased type 2

immune response in its host, which is thought to be involved

in downregulating type 1 and type 17 immune responses that

are typically associated with many autoimmune diseases

including IBD [16].

Of the approximate 70 known Trichuris species, T. trichiura
and T. suis are known as the human and porcine whipworms,

respectively. However, the latter can establish asymptomatic,

transient infections in the large intestine of humans [23],

thus providing scope for investigations into the role of this

parasite as a safe alternative therapeutic strategy for allergic

and autoimmune disorders [23]. Indeed, in recent years,
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several studies have reported amelioration of clinical symptoms

of CD and UC in patients subjected to oral administration of

T. suis ova (TSO) [16,24–26]. In addition, ingestion of TSO by

volunteers affected by multiple sclerosis was followed by a

reduction in number of brain lesions (as verified by magnetic

resonance imaging), thus providing evidence for the systemic

nature of the immune response elicited by this parasite [27].

Efforts to elucidate the mechanisms by which experimen-

tal whipworm infections lead to improvement of clinical

symptoms of immune-mediated diseases have primarily

focused on the immunoregulatory properties of parasites

[16]. For instance, a number of studies using mouse models

of IBD and helminth infections [28] have demonstrated that

elements of both the innate and adaptive immune systems

are modulated by helminths. These include suppression of

interferon (IFN)g and interleukin (IL)-17 expression, increased

type 2 cytokine responses, induction of regulatory T cell

responses and cytokines such as IL-10, transforming growth

factor (TGF)-beta and IL-22 and the recruitment of alternatively

activated macrophages, dendritic cells and B cells [28,29].

However, the exact mechanisms by which administration of

TSO results in improvement of clinical indices of inflammation

in human patients affected by IBD remain to be elucidated.

Importantly, while regulation of the host immune system by

helminths such as TSO is one of the likely mechanisms by

which the parasites can suppress IBD symptoms, whether

these effects are direct (via the excretion of immunomodulatory

parasite proteins) or indirect, for example via alterations in the

nature of intestinal environment (e.g. the microbiota) remains

to be defined.

Given the pivotal roles that disturbances in the intestinal

microbiota play in multiple immune disorders [1], and

the fact that gastrointestinal parasites and the commensal

flora share the same environmental niche [30], there is an

increasing interest in understanding helminth–microbiota

interactions and their relative contributions to health and dis-

ease. For instance, studies involving experimental infections

with Heligmosomoides polygyrus bakeri in a mouse model of

IBD revealed a significant expansion of the bacterial family

Lactobacillaceae in the ileum of infected mice, which corre-

lated with improved disease outcome [31,32]. Similarly, the

administration of a single dose of TSO was able to alter the

composition of the gut microbiota of infected pigs, including

a reduction in the abundance of Fibrobacter and Ruminococcus
and an expansion of Campylobacter [33]. In addition, a study

using a primate model of idiopathic chronic diarrhoea (ICD)

has demonstrated that the therapeutic ability of T. trichiura
whipworms to improve clinical symptoms of inflammation

was associated with significant changes in the composition

and relative abundance of different gut bacterial species [34].

In particular, a marked reduction in the bacterial phylum

Cyanobacteria was observed following Trichuris adminis-

tration to macaques with ICD when compared with healthy

controls, accompanied by an expansion of Bacteroidetes and

Tenericutes; in addition, bacterial diversity was increased in

Trichuris-infected ICD macaques [34]. The authors attributed

these changes to the restoration of a ‘healthy’ flora driven by

the parasite [34]. Notably, bacterial attachment (one of the

key factors contributing to the pathogenesis of IBD) was

substantially reduced following Trichuris treatment, thus

suggesting a role for the parasite in mucosal healing which,

in turn, results in a reduction of bacteria-mediated immune-

stimulation [34,35]. Each of these studies investigating the
relationships between helminth parasites and the commensal

flora in animal models of inflammation have shed at least

some light on the potential roles of the gut microbiota in

whipworm-mediated suppression of inflammation [36]. How-

ever, in order to establish whether similar mechanisms occur

during helminth infections in humans, studies of the impact

of parasite colonization on the composition of the human gut

microbiota are necessary.
(b) Hookworms
Hookworms, including Ancylostoma duodenale and

N. americanus, are blood-feeding nematodes that inhabit the

small intestine of humans [18]. Necator americanus is the most

widely distributed human hookworm, causing significant mor-

bidity for the infected host when worm burdens become high

and/or diet is inadequate [37]. The infection occurs when the

infective third-stage larvae (L3s) penetrate the skin of a suscep-

tible human host after cuticular shedding [38]; subsequently,

larvae enter the subcutaneous tissue and migrate to the small

intestine, via the circulatory system, to the heart and lungs,

where they moult to fourth stage larvae (L4s). From the lungs,

the larvae migrate (via the trachea and pharynx) to the small

intestine, where they develop to adult males and females [38].

The larvae mature to adult stages and attach by their buccal cap-

sule to the intestinal mucosa where their voracious appetite for

blood results in iron-deficiency anaemia, the major pathogenesis

associated with hookworm infection.

While heavy burdens of hookworm parasites are associ-

ated with pathological effects, experimental infections with

small numbers of N. americanus are safe and well tolerated

[39–42]. In addition, the chronic nature of hookworm infec-

tions presents advantages for helminth-based therapy when

compared with administration of T. suis—as the parasite is

adapted to long-term survival in humans it need not be

continuously administered. In modern sanitary environments,

hookworm-infected individuals pose no risk of transmission

to others [15]. The immune response to hookworm infection

is similar to that of other intestinal helminths (including

whipworms), with increased expression of the regulatory cyto-

kines IL-10 and TGFb, expansion of Foxp3þ regulatory T cells,

increased IL-22 and IL-5 expression, and reductions in IL-23,

IFNg and IL-17A levels [42–44]. In addition, when adminis-

tered to mouse models of IBD, hookworm excretory/

secretory products protect against inflammation and weight

loss [45], thus providing support to further investigations of

hookworm-based therapies for the treatment of chronic gut

inflammatory diseases of humans. Indeed, experimental

N. americanus infections have been shown to confer temporary

benefit to patients with active CD [46], and improve gluten

tolerance in CeD volunteers [43]. However, similarly

to Trichuris-based therapies, the elucidation of the exact

mechanisms by which these parasites are able to suppress

the symptoms of chronic inflammation is pivotal to the

transfer of hookworm-based therapies from the laboratory to

the clinic.

Recently, our laboratory conducted a pilot study to explore

the impact of experimental infections with N. americanus on the

human gut microbiota [47]. Eight volunteers were infected with

N. americanus larvae while on GFD, and the changes in relative

abundance of individual bacterial species within the faeces

were analysed [47]. Following massively parallel sequencing

of two distinct hypervariable regions of the bacterial 16S
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rRNA gene and bioinformatics analyses of sequence data,

Principal Coordinates Analysis revealed strong clustering of

the samples by individual, rather than by infection status,

thus indicating that the community composition of each subject

remained stable over time [47]. Interestingly, an increase in the

number of observed bacterial species (¼ richness) was observed

eight weeks post-infection; however, this difference was just

below the statistical significance level when corrected for

multiple testing [47]. Further investigations are currently under-

wayexamining the changes in commensal bacterial communities

at later time points and following gluten challenges.

This observation of increased bacterial richness supports

the results from a recent study [48] showing that human

infections by gastrointestinal helminths (including Trichuris,
hookworms and the intestinal roundworm Ascaris sp.) in

endemic areas are associated with an increase in richness and

diversity of the gut microbiota. Intriguingly, a higher species

richness of the gut microbiota has been associated with ‘heal-

thier’ intestinal homeostasis [49–51]. For example, a study

comparing the intestinal microbiota of subjects suffering

from IBD with that of healthy controls revealed that species

richness was significantly higher in the latter [49]; in addi-

tion, the microbiota isolated from ‘histologically normal’,

non-inflamed tissue from diseased subjects displayed a signifi-

cantly increased species richness when compared with that

from inflamed (as assessed by histological examination)

biopsy samples from the same individuals [49]. Therefore,

based on the results of our and others’ investigations linking

an increase in microbial species richness to (i) human infections

by gastrointestinal parasites [47,48] and (ii) the absence or ame-

lioration of clinical and histological indices of inflammation

[34,49–51], it is tempting to speculate that the therapeutic prop-

erties of hookworms and other helminths are partly associated

with their ability to promote species richness and restore/

maintain microbial (and immune) homeostasis in the gastroin-

testinal tract [47]. Clearly, in order to address this hypothesis in

greater detail, larger human trials in a variety of inflammatory

disease settings are required, where both faecal and mucosally-

associated bacterial communities at the sites of inflammation

are examined.
4. Concluding remarks
The complex relationships between the human host and the

commensal gut microbiota have been hypothesized to result

from a lengthy process of coevolution, whereby the host

benefits from the metabolic functions of the gut microbes
while providing them with a protective environment [52].

Gastrointestinal parasitic helminths have also evolved numer-

ous strategies to survive and reproduce within the body of the

host [53]; therefore, it is conceivable that, in a dysbiotic

environment, parasites may actively (directly or indirectly)

contribute to reinstating the gut homeostasis via modulating

the composition of the gut microbiota. Indeed, over the last

few years, a body of evidence has been generated that links

infections by gastrointestinal parasitic helminths with quanti-

tative and qualitative modifications of the gut microbiota, in

both animals and humans, and under both natural and exper-

imental settings [31,34,47,48,53,54]. However, the nature of the

parasite–microbiota interactions that underpin such modifi-

cations is yet to be elucidated. In a recent study, Reynolds

et al. [32] hypothesized that changes in the composition of

the gut microbiota of mice infected with H. polygyrus may be

a consequence of: (i) the secretion of antimicrobial components

by the parasite that actively modify the microbiota, (ii) the

disruption of the epithelial barrier by the parasite that alters

the intestinal environment and favours the establishment of

selected commensals, or (iii) the stimulation of specific

immune responses (such as expansion of Tregs) that actively

contribute to a shift in gut microbiota [32]. Whether parasite-

associated changes in gut microbiota are a direct consequence

of the infection or, rather, the immune response elicited by hel-

minths remains to be determined. In the future, mechanistic

studies, in both normal and germ-free mice, focusing on the

effects of experimental infections with gastrointestinal helminths

on both the gut microbiota and host responses will facilitate elu-

cidation of this intriguing conundrum. For instance, studies of

global gene expression changes occurring at the site of parasite

attachment (and, for instance, in response to the administration

of an inflammatory stimulus) may provide a better understand-

ing of the relationships between the parasite, the host responses

and the ecology of the gut microbiota and may, in turn, assist the

development of novel, helminth-based therapeutics of chronic

inflammatory gut disorders.
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