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Abstract

The spindle position checkpoint (SPC) ensures correct mitotic spindle position before allowing mitotic exit in the budding
yeast Saccharomyces cerevisiae. In a candidate screen for checkpoint genes, we identified bud2D as deficient for the SPC.
Bud2 is a GTPase activating protein (GAP), and the only known substrate of Bud2 was Rsr1/Bud1, a Ras-like GTPase and a
central component of the bud-site-selection pathway. Mutants lacking Rsr1/Bud1 had no checkpoint defect, as did strains
lacking and overexpressing Bud5, a guanine-nucleotide exchange factor (GEF) for Rsr1/Bud1. Thus, the checkpoint function
of Bud2 is distinct from its role in bud site selection. The catalytic activity of the Bud2 GAP domain was required for the
checkpoint, based on the failure of the known catalytic point mutant Bud2R682A to function in the checkpoint. Based on
assays of heterozygous diploids, bud2R682A, was dominant for loss of checkpoint but recessive for bud-site-selection failure,
further indicating a separation of function. Tem1 is a Ras-like protein and is the critical regulator of mitotic exit, sitting atop
the mitotic exit network (MEN). Tem1 is a likely target for Bud2, supported by genetic analyses that exclude other Ras-like
proteins.
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Introduction

Eukaryotic cells partition their chromosomes between mother

and daughter cells on cell division. In budding yeast, the plane of

cell division is determined at the start of the cell cycle by selection

of a site of polarized growth - the bud site. As the bud grows, the

bud site becomes the position of the mother-bud neck. At

anaphase, the mitotic spindle must be perpendicular to and

intersect to the plane of cell division, and this requires that one

spindle pole body (SPB) move into the bud while the other remains

in the mother. To position the mitotic spindle, cytoplasmic (astral)

microtubules interact with the bud cortex and pull the spindle into

the mother/bud neck, via the independent actions of the dynein

and Kar9 pathways [1]. When either the dynein or the Kar9

pathway is defective, the mitotic spindle fails to enter the neck in a

timely manner in a fraction of cells. In these cells, the cell cycle

arrests, in late anaphase, with the chromosomes near the poles and

the spindle microtubules intact. This arrest appears to result from

a checkpoint mechanism termed the spindle position checkpoint

(SPC) [2–5].

To investigate the molecular mechanisms of the spindle position

checkpoint, with a focus on the molecular basis by which the cell

senses spindle position, we screened candidate null mutants lacking

proteins with structural or functional connections to the mother-

bud neck. To activate the checkpoint, we performed the screen in

a strain lacking dynein function (a dynactin/arp1D mutant). In

such a strain, a fraction of the cells in the population fail to move

the spindle into the neck, and the cell cycle halts. When the

checkpoint mechanism is defective, these cells proceed to exit from

mitosis with the spindle in the mother. In our screen, a bud2D null

mutant gave a relatively strong phenotype, so we have investigated

the role of Bud2 in the spindle position checkpoint.

BUD genes are so-named because null mutants are defective in

bud site selection [6]. At the beginning of the cell cycle, a and a
cells (such as normal haploids) select a bud site adjacent to the

previous budding site [7]. Subsequent sites are chosen by the same

rule, in an axial pattern. Diploid a/a cells have a bipolar budding

pattern, in which the newly born daughter places her first bud site

at the distal pole, away from its mother [7,8]. Subsequent buds

form at one pole or the other, chosen at random. Axial and bipolar

pathways both require Rsr1/Bud1, a Ras-related protein, as well

as Bud2, a GAP for Rsr1/Bud1, and Bud5, a GEF for Rsr1/Bud1

[6,9–12]. Null mutants lacking any of the three proteins show a

random pattern of bud site selection, as haploids or diploids,

suggesting that Rsr1/Bud1 cycles between GTP and GDP-bound

states. Bud2 and Bud5 are recruited to the presumptive bud site by

spatial landmarks, and they recruit Rsr1/Bud1 [13–15].

Exit from mitosis appears to be controlled by the activity of

another Ras-like GTPase, Tem1 [3,4,16]. Studies of the mitotic

exit network (MEN) identify a putative GAP, composed of Bub2

and Bfa1, and a putative GEF, Lte1. Loss of Bub2 or Bfa1 causes a

complete failure of the spindle position checkpoint, as does

overexpression of Lte1, which means that 100% of cells with mis-

positioned spindles proceed to premature exit from mitosis.

Mutations of a pathway that inhibits Lte1 are sufficient to cause

failure of the checkpoint, but only in about half of such cells [2]. In
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these strains, adding an lte1 null mutation prevents the premature

mitotic exit. This pathway also involves a BUD gene, BUD6.

Here, we show that loss of Bud2 also causes failure of the

checkpoint in about half of cells with mis-positioned spindles. The

checkpoint defects caused by point mutations affecting the Bud2

GAP domain were similar to the defects caused by null mutations

of bud2. However, checkpoint failure in the bud2 mutant was

independent of Lte1, providing a contrast to the pathway that

involves Bud6 [2]. Remarkably, Rsr1/Bud1, the only known

substrate of Bud2, had no role in the SPC, based on several

observations.

Results

Checkpoint Defects in a bud2D Mutant
In our screen for candidate checkpoint genes, dynactin/arp1D

bud2D mutants had many cells with greater than three nuclei,

consistent with but not specific for a defect in the SPC. To assay

the integrity of the checkpoint, we performed time-lapse movie

analysis of single cells with mitotic spindles in the mother. Using

GFP-tubulin as a marker for mitotic spindle breakdown, we

calculated the percentage of cells in which the checkpoint was

intact (Fig. 1A). About 45% of bud2D cells with long-late anaphase

spindles in the mother displayed a failure of checkpoint-induced

arrest, with mitotic spindle breakdown occurring within a time

comparable to the time to mitotic exit in an otherwise wild-type

(wt) cell. The bud2D mutants underwent inappropriate spindle

breakdown in the mother with a MT in the mother-bud neck,

eliminating the possibility that the bud2D mutant accumulates

multinucleate cells as a result of aberrant MT dynamics. An

example is shown in Movie S1. A bud2 lte1 double mutant had a

checkpoint defect similar to that of a bud2 single mutant, indicating

that the checkpoint defect was independent of Lte1.

In a previous study, null mutations in a pathway including

BUD6 had a checkpoint defect with magnitude similar to the one

observed here for bud2, and the bud6 checkpoint defect did depend

completely on LTE1 [2]. Here, we confirmed those results, and we

found that a bud2D bud6D double mutant showed an exacerbated

checkpoint defect (Fig. 1A), supporting the idea that Bud2’s

checkpoint function belongs to a molecular pathway distinct from

that of Bud6 and Lte1.

Functional Checkpoint in Other Bud-site Selection
Mutants

Bud2 is known to function in the bud-site-selection pathway,

acting as a GAP for Rsr1/Bud1 [10]. To determine whether

Bud2’s action in the SPC involves Rsr1/Bud1 or other bud-site-

selection pathway components, we assayed the checkpoint in bud-

site selection mutants (Fig. 1B). First, to test whether hyperactive

Rsr1/Bud1 resulting from deletion of its GAP is involved in the

loss of checkpoint, an rsr1D bud2D double mutant was evaluated

and found to be similar to bud2D. That is, deleting RSR1 did not

suppress the checkpoint defect of a bud2D mutant. Second, a rsr1D
single mutant had no checkpoint defect. A bud5D mutant, which

lacks the GEF Bud5, had no checkpoint defect. Bud3 and Bud4

are parts of the positional marker for the axial budding pattern in

haploid cells; a bud3D mutant and a bud4D mutant also had normal

checkpoint function. Together, these results suggest that the role of

Bud2 in the checkpoint is independent of the bud-site-selection

pathway and Rsr1/Bud1.

The GAP Function of Bud2
The Bud2 GAP domain contains the ‘FLR motif’, which is

highly conserved in Ras-GAPs from other organisms [10]. The

Figure 1. BUD2 is required for the spindle position checkpoint.
arp1D GFP-TUB1 cells with the additional indicated mutations were
assayed for checkpoint integrity by video analysis. Cells with long (late-
anaphase) spindles in the mother of a budded cell were followed over
time. Checkpoint integrity is the percent of cells in which the spindle
that remained intact, i.e. did not break down, for a time greater than the
mean plus two standard deviations of the time for normal mitotic exit.
A. bud2D mutants have a defect in the spindle position checkpoint, with
failure to maintain arrest in about half of cells. bub2D is a positive
control known to have a complete defect. The bud2D phenotype does
not depend on LTE1, based on the bud2D lte1D double mutant. BUD6 is
in a pathway upstream of LTE1, as described previously [2] and
confirmed here. The bud2 bud6 double mutant has an exacerbated
phenotype, confirming that BUD2 is in a genetic pathway independent
of BUD6 and LTE1. The bud2D bud6D double mutant does not have a
complete loss of phenotype, as bub2 does, suggesting a possible third
input into the checkpoint control of mitotic exit. B. The bud-site-
selection pathway has no role in the spindle position checkpoint.
Mutants lacking either Rsr1/Bud1, the only known substrate of Bud2, or
Bud5, the GEF for Rsr1/Bud1, have no checkpoint defect. Deleting RSR1/
BUD1 does not suppress the checkpoint defect of a bud2D mutant. bud3
and bud5 null mutants, defective in axial and all budding patterns,
respectively, are also normal.
doi:10.1371/journal.pone.0036127.g001
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arginine residue at position 682 of Bud2 is analogous to Arg at 903

in p120-GAP that is responsible for catalyzing GTP hydrolysis

[17,18]. We constructed two point mutations in the Bud2 GAP

domain, bud2R682A and bud2F680A, by substituting Arg at 682 to Ala

and Phe at 680 to Ala. The bud2R682A mutant on a low-copy-

number CEN plasmid did not rescue the bud-site selection defect

of a bud2 strain (Fig. 2C). The bud2F680A mutation resulted in a

temperature-sensitive bud-site selection defect, and also conferred

temperature-dependent synthetic lethality to the cln1 cln2 mutant

(data not shown), suggesting that these bud2 mutants are defective

in the GAP activity.

We tested the checkpoint function of these bud2 mutant alleles

on a low-copy-number CEN plasmid. The bud2R682A allele did not

rescue checkpoint function at all (Fig. 2A), and the temperature-

sensitive bud2F680A allele gave partial rescue at the semi-permissive

temperature of 30u. As a control, the wt BUD2 plasmid gave

complete rescue. Thus, the GAP activity of Bud2 is likely to be

necessary for its role in the SPC. A BUD2 strain with the bud2R682A

CEN plasmid had a checkpoint phenotype similar to that of a bud2

null mutant, indicating that bud2R682A was dominant for

checkpoint function (Fig. 2B). To determine whether bud2R682A

was dominant for the function of bud-site selection, we examined

the budding patterns of the same strain (Fig. 2C). Remarkably,

bud2R682A had no effect on bud-site selection in a strain with wt

BUD2. Thus, bud2R682A is recessive for bud site selection, but

dominant for checkpoint function. The same strains were used for

the checkpoint assays and the bud-site-selection assays, arguing

against a difference in plasmid copy number or the Bud2

expression level accounting for the difference in dominance. Note

that the bud2R682A plasmid did not exacerbate the checkpoint

defect of the bud2D null mutant, suggesting that the effect of

bud2R682A in a wt cell is due to loss of Bud2 function, not to

extraneous effects.

Discussion

We have discovered that Bud2 is required for the spindle

position checkpoint, and this function is independent of bud-site

selection. The GAP activity of Bud2 is necessary for checkpoint

function and bud-site selection; however, Rsr1/Bud1 and Bud5,

which are the small G-protein target of Bud2 and the GEF

opposing Bud2, respectively, have no checkpoint function. These

results suggest that Bud2 is acting as a GAP for a novel target.

Another line of evidence supporting these two independent

functions of BUD2 is the observation that a point mutation in

the Bud2 GAP domain is dominant-negative for checkpoint

function but recessive for bud-site selection.

Potential Roles for Bud2 in Checkpoint Pathways
The pathways that control the SPC center on the small G-

protein Tem1. The regulator Lte1 had been considered to be a

putative GEF for Tem1, but recent reports do not find such

activity [19], and instead they argue that Lte1 functions via effects

on Bfa1 [19] and Kin4 [20]. We found Lte1 to be downstream of

MT-cortex interactions involving a different bud-site selection

gene, BUD6 [2]. Here, we found that the actions of BUD2 and

BUD6 in the checkpoint are independent in vivo. The bud2

checkpoint phenotype does not depend on LTE1, but the

checkpoint phenotype of bud6 does depend on LTE1. The bud2D
bud6D double null mutant has a more severe checkpoint

phenotype than does either single null mutant. Interestingly, the

loss of checkpoint in the bud2D bud6D double mutant is not 100%,

which can be seen in strains that overexpress LTE1 or completely

lack Bub2, the putative GAP for Tem1. This observation suggests

the possible existence of additional, as yet undiscovered, input

mechanisms for activating the checkpoint. At this point, nothing is

known about what may lie upstream of Bud2 in a checkpoint-

related pathway. The nature of this and other potential sensor

mechanisms remain to be defined.

Four Ras-like GTPases have been identified in budding yeast:

Rsr1/Bud1, Ras1, Ras2, and Tem1. Rsr1/Bud1, a central

component of the bud-site-selection pathway, has been eliminated

as having a role in the SPC by genetic analyses. Ras1 and Ras2 are

Figure 2. The GAP activity of Bud2. A. arp1D GFP-TUB1 cells were
assayed as in Figure 1. Wt BUD2 suppressed the checkpoint defect of a
bud2D mutant, but the GAP-defective point mutant bud2R682A did not. A
temperature-sensitive allele, bud2F680A, at a semi-permissive tempera-
ture (30u), partially suppressed the checkpoint defect. B. The
checkpoint defect of bud2R682A was dominant to wt BUD2, and
bud2R682A did not enhance the checkpoint defect of a bud2D mutant.
The phenotype of bud2F680A was not strong, and tests for dominance
were inconclusive (data not shown). C. Cells with the wt or mutant
plasmid were fixed and stained with Calcofluor to observe the budding
pattern. Axial budding pattern integrity represents the percentage of
cells with multiple bud scars that were all adjacent. The GAP-defective
bud2R682A did not disrupt the bud-site selection pattern of cells with wt
BUD2, and bud2R682A does not rescue the bud-site-selection defect of a
bud2D null mutant. In this experiment, cells with two or more bud scars
were counted. In an independent experiment, cells with three or more
bud scars were counted, and the results were very similar. The only
difference was that the value for the BUD2 wt plasmid was ,90%
instead of ,70%.
doi:10.1371/journal.pone.0036127.g002
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believed to have some level of redundancy in their function, which

includes cAMP signaling, stress response, and anchoring the MEN

activator Lte1 to the bud cortex [21–24]. Ras1 and Ras2 are

required for the checkpoint, based on results with single null

mutants, and, for both, their checkpoint phenotype depends on

LTE1 [2]. Bud2 does not catalyze the hydrolysis of guanine

nucleotide bound to Ras2 in vitro, but Bud2 does have GAP activity

for Rsr1/Bud1 (Figure S1 and [10]). Therefore, we speculate that

the substrate of Bud2 for its checkpoint function may be Tem1,

which is a potent activator of mitotic exit. Deleting BUB2/BFA1,

the known GAP for Tem1, yields a strong spindle position

checkpoint defect. An alternative hypothesis is that Bud2 inhibits

mitotic exit, when the checkpoint is active, through another small

GTPase such as a Rab.

The BUD2 GAP-deficient allele bud2R682A is dominant for

checkpoint function but recessive for bud-site selection. The

dominance may result from the mutant form of Bud2 binding to a

substrate, such as Tem1, with higher affinity than does wt Bud2,

which may result from failure of GTP hydrolysis. The off rate

constant may depend on the nucleotide-bound state of the

substrate. For Rsr1/Bud1, the substrate for Bud2 in bud site

selection, the dependence of the off rate on nucleotide may be

different. Alternatively, if the amounts of the two different

substrates in cells are different, then the mutant Bud2 may be

able to titrate out the one present in a lesser amount but not the

one present in a higher amount.

In conclusion, the GAP Bud2 is necessary for the spindle

position checkpoint, which is a novel role for Bud2. This function

of Bud2 is independent of its role in bud site selection, based on the

observations that other bud mutants have a normal checkpoint and

that a GAP-defective point mutant of Bud2 is dominant for the

checkpoint but recessive for bud-site selection.

Materials and Methods

Reagents were from Fisher Scientific (Pittsburgh, PA) or Sigma-

Aldrich (Saint Louis, MO), except as indicated. Yeast were

cultured and manipulated by standard techniques [25]. Yeast

strains are listed in Table 1.

Point mutations of BUD2 were produced by PCR-mediate

mutagenesis using a YCp50 plasmid carrying wt BUD2, pHP519,

as template [13]. pHP571 and pHP572 carry bud2F680A and

bud2R682A, respectively.

Activation and failure of the spindle position checkpoint were

assayed with time-lapse video microscopy observing the behavior

of the mitotic spindle in individual living cells expressing GFP-

tubulin (GFP-Tub1), as described [2,26]. In brief, living cells from

asynchronous cultures were imaged, at 30uC. The observer

identified cells with long, i.e. late-anaphase, spindles in the

mother. These cells were followed with time-lapse fluorescence

microscopy. In many cases, the spindle entered the neck and then

broke down, indicating mitotic exit. In other cases, the spindle

remained intact and in the mother, while in other cases the spindle

broke down in the mother. The cells were followed for a period of

time equal to the mean plus two standard deviations of the

duration of normal mitotic exit (generally 25–35 minutes). Cells in

which the spindle broke down in the mother were scored as

defective for the checkpoint, while cells that remained arrested

with an intact spindle in the mother were scored as normal for the

checkpoint. When the spindle entered the neck, these cells were

not discarded for the calculation of checkpoint integrity.

To assay bud site selection, haploid cells carrying each plasmid

were grown to mid-log phase in rich liquid medium lacking uracil,

and then stained with Calcofluor, as described [27]. Bud-site-

selection integrity was calculated as the percentage of cells in

which all bud scars were adjacent to one another, which is the

normal axial pattern for haploids [7]. In the experiment shown in

Figure 2C, cells with two or more bud scars were counted. In

another set of experiments, we counted cells with three or more

bud scars; similar results were obtained except that a higher

percentage of cells exhibited the axial budding pattern with the

wild-type BUD2 plasmid.

Table 1. List of yeast strains.

Name YJC # Relevant genotype

arp1D bub2D 2667 MATa arp1D::kanR bub2D::HIS3 ura3-52 lys2-801 leu2-1 his3-200 trp1-63 ura3-52::URA3-GFP-TUB1

arp1D bud2D 3560 MATa LEU2::LEU2-GFP-TUB1 arp1D::KanR bud2D::HIS3MX6 ura3-52 lys2-801 leu2-1 his3-D200 trp1-63

arp1D bud3D 3627 MATa LEU2::LEU2-GFP-TUB1 arp1D::KanR bud3D::KanR ura3-52 lys2-801 leu2-1 his3-D200

arp1D bud1D 3632 MATa LEU2::LEU2-GFP-TUB1 arp1D::KanR bud1D::KanR ura3-52 lys2-801 leu2-1 his3-D200

arp1D bud2D lte1D 3633 MATa LEU2::LEU2-GFP-TUB1 arp1D::KanR lte1D::KanR bud2D::HIS3 ura3-52 lys2-801 leu2-1 his3-D200

arp1D bud6D lte1D 3635 MATa LEU2::LEU2-GFP-TUB1 arp1D::KanR lte1D::KanR bud6D::HIS3 ura3-52 lys2-801 leu2-1 his3-D200

arp1D bud1D bud2D 3674 MATa LEU2::LEU2-GFP-TUB1 arp1D::KanR bud1D::KanR bud2D::HIS3 ura3-52 lys2-801 leu2-1 his3-D200 trp1-63

arp1D 3681 MATa arp1D::KanR LEU2::LEU2-GFP-TUB1 ura3-52 lys2-801 leu2-D1 his3-D200

arp1D bud6D 3697 MATa arp1D::KanR bud6D::His3MX6 LEU2::LEU2-GFP-TUB1 ura3-52 lys2-801 leu2-1 his3-D200

arp1D bud5D 3717 MATa bud5D::HIS3 LEU2::LEU2-GFP-TUB1 arp1D::KanR ura3-52 lys2-801 leu2-1 his3-200 trp1-63

arp1D bud2D bud6D 3960 bud2D::KanMX6 bud6D::KanMX6 dyn1D::His3 GFP-TUB1::Leu2 his31 leu20 lys2-801 ura3-D0

dyn1D [CEN BUD2] 5179 MATa dyn1D::KanMX6 GFP-TUB1-LEU2 [pHP519 - YCp50 URA3 BUD2] his3D1 leu2D0 ura3D0 lys2D0

dyn1D [CEN bud2F680A] 5180 MATa dyn1D::KanMX6 GFP-TUB1-LEU2 [pHP571 - YCp50 URA3 bud2F680A] his3D1 leu2D0 ura3D0 lys2D0

dyn1D [CEN bud2R682A] 5181 MATa dyn1D::KanMX6 GFP-TUB1-LEU2 [pHP572 - YCp50 URA3 bud2R682A] his3D1 leu2D0 ura3D0 lys2D0

dyn1D bud2D [CEN BUD2] 5182 dyn1D::KanMX6 bud2D::KanMX6 GFP-TUB1-LEU2 [pHP519-YCp50 URA3 BUD2] his3D1 leu2D0 ura3D0

dyn1D bud2D [CEN bud2F680A] 5183 dyn1D::KanMX6 bud2D::KanMX6 GFP-TUB1-LEU2 [pHP571 - YCp50 URA3 bud2F680A] his3D1 leu2D0 ura3D0

dyn1D bud2D [CEN bud2R682A] 5184 dyn1D::KanMX6 bud2D::KanMX6 GFP-TUB1-LEU2 [pHP572 - YCp50 URA3 bud2R682A] his3D1 leu2D0 ura3D0

doi:10.1371/journal.pone.0036127.t001
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For GAP assays, the proteins were a kind gift of Drs. Paul

Polakis and Frank McCormick (Onyx Pharmaceuticals) except for

GST-Bud2, which was purified from yeast in our lab. The assay

conditions were as previously described, except that only one time

point was measured after 20 min incubation (see Fig. 2b, Ref

[10]). Briefly, Rsr1 or Ras2 was preloaded with [c -32P]GTP, and

then incubated with GST or GST-Bud2 at 23uC for 20 min,

followed by a filter binding assay to measure the protein-bound

radioactivity. We calculated and plotted the percent of GTP

remaining, compared to the amount at time zero.

Supporting Information

Figure S1 Bud2 acts as a GAP for Rsr1/Bud1 but not for
Ras2. Rsr1/Bud1 or Ras2 preloaded with [c -32P]GTP was

incubated with GST-Bud2 or GST, and the percentage of

radiolabelled GTP remaining bound to each GTPase is plotted.

This plot represents an average of two experiments with similar

results.

(TIF)

Movie S1 Mitotic exit, marked by breakdown of the
mitotic spindle, occurs in a bud2 mutant cell in which a
cytoplasmic microtubule is present in the mother-bud
neck.
(MOV)
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