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Summary

Epigenetic changes represent an attractive mechanism for under-

standing the phenotypic changes associated with human aging.

Age-related changes in DNA methylation at the genome scale

have been termed ‘epigenetic drift’, but the defining features of

this phenomenon remain to be established. Human epidermis

represents an excellent model for understanding age-related

epigenetic changes because of its substantial cell-type homo-

geneity and its well-known age-related phenotype. We have now

generated and analyzed the currently largest set of human

epidermis methylomes (N = 108) using array-based profiling of

450 000 methylation marks in various age groups. Data analysis

confirmed that age-related methylation differences are locally

restricted and characterized by relatively small effect sizes.

Nevertheless, methylation data could be used to predict the

chronological age of sample donors with high accuracy. We also

identified discontinuous methylation changes as a novel feature

of the aging methylome. Finally, our analysis uncovered an age-

related erosion of DNA methylation patterns that is characterized

by a reduced dynamic range and increased heterogeneity of

global methylation patterns. These changes in methylation

variability were accompanied by a reduced connectivity of

transcriptional networks. Our findings thus define the loss of

epigenetic regulatory fidelity as a key feature of the aging

epigenome.
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Introduction

DNA methylation represents a conserved and highly dynamic epigenetic

modification of animal and plant genomes (Law & Jacobsen, 2010). In

the human genome, about 4% of the cytosines are modified by

methylation. A key feature is the high specificity for CpG dinucleotides,

which ensures the heritability of methylation patterns through a

semiconservative maintenance mechanism (Jones, 2012). DNA methy-

lation of gene regulatory elements, such as promoters and enhancers, is

generally considered to be incompatible with activated gene expression

(Schubeler, 2015). However, promoters and enhancers represent only a

very minor part of the methylated genome, and the global correlation

between DNA methylation and gene expression patterns remains to be

fully understood.

Over the past few years, several landmark studies have shown that

mammalian development and cellular differentiation are characterized

by widespread changes of genomic DNA methylation patterns (Smith &

Meissner, 2013). This has reinforced the notion that mammalian DNA

methylation primarily functions as an epigenetic mark for cell-type

specification (Roadmap Epigenomics Consortium et al. 2015). Further-

more, DNA methylation changes are also considered to facilitate cellular

adaptation to changing environments and have repeatedly been linked

to human diseases and aging (Feinberg, 2007). While the functional role

of epigenetic mechanisms in aging remains to be fully understood,

altered DNA methylation and chromatin remodeling represent key

elements of the aging process in a large number of model systems (Fraga

& Esteller, 2007; Weidner & Wagner, 2014; Benayoun et al., 2015).

Several studies have also described age-related DNA methylation

changes in human tissues, a phenomenon that has been termed

‘epigenetic drift’ (Feil & Fraga, 2012; Teschendorff et al., 2013). While

the key features of epigenetic drift remain to be defined, several

observations have been made that characterize age-related methylation

changes across human tissues. These include the hypermethylation of

stem cell genes (Rakyan et al., 2010; Teschendorff et al., 2010), a

general linear correlation between the methylation level of certain CpGs

and the chronological age (Hannum et al., 2013; Horvath, 2013;

Weidner et al., 2014), and the hypermethylation of CpG islands (Yuan

et al., 2015). The molecular and phenotypic consequences of these

alterations remain a topic of active research.

The aging phenotype of human skin is well-documented and of

considerable medical and economical importance. The epidermis is

directly exposed to the environment and may therefore contain

particularly pronounced environmental imprints on the epigenetic level.

Skin samples can be obtained from healthy volunteers over a broad age

range by well-accepted and tolerable procedures. These samples are

characterized by a high degree of cell-type homogeneity (Gunin et al.,

2011), thus mitigating the confounding effects of age-related changes in

the cellular composition of many human tissues, such as blood

(Houseman et al., 2012; Lowe & Rakyan, 2014). The combination of

these factors establishes human skin as a particularly useful model for

the analysis of age-related epigenetic changes.

Recent technological advances support the generation of

genomewide DNA methylation profiles and greatly facilitate our

understanding of epigenetic modification patterns. This is exemplified
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by whole-genome bisulfite sequencing, a method that allows the

methylation analysis of complete genomes at single-base resolution

(Lister & Ecker, 2009). However, whole-genome bisulfite sequencing is

expensive and time-consuming and requires substantial computational

resources. Furthermore, methylation levels are often similar between

neighboring CpGs, and only a minor fraction of the mammalian genome

undergoes dynamic methylation changes (Ziller et al., 2013). This

suggests that a subset of CpG dinucleotides can be used to analyze

genomic DNA methylation patterns (Ziller et al., 2013). In this context,

the Infinium 450k array represents the most widely used platform and

allows the methylation analysis of more than 450 000 cytosine residues

in the human genome. The corresponding probes have been selected to

cover both general and specific features that are commonly linked to

epigenetic gene regulation (Bibikova et al., 2011).

Previous studies that investigated DNA methylation changes associ-

ated with human skin aging were characterized by several important

limitations. Our first study utilized an earlier version of the methylation

array that was limited to 27 000 CpG dinucleotides with a strong bias

for promoter regions (Gronniger et al., 2010). Our second study used

whole-genome bisulfite sequencing, but provided information only for

single pools of five young and old epidermis samples, respectively

(Raddatz et al., 2013). A more recent study used a combination of 450k

methylation arrays and low-coverage bisulfite sequencing, but focused

mostly on the accumulated effects of sun exposure in aged skin

(Vandiver et al., 2015). As such, the general epigenetic changes

associated with intrinsic skin aging and their relationships to age-related

epigenetic changes described in other tissues remained to be analyzed.

We have now used 450k methylation arrays to investigate the epidermal

methylation patterns of 108 donors from a wide range of age groups. A

detailed analysis of the resulting data identified key features of the age-

related epigenetic drift.

Results

General features of the aging skin methylome

Previous analyses of methylation changes associated with skin aging

were limited by low methylation coverage, low sample numbers and/or

heterogeneous donor groups. For our initial analysis, we therefore

obtained epidermis samples from 24 young (18–27 years) and 24 old

(61–78 years) volunteers (Fig. S1). To reduce the effects of confounding

factors, all samples were obtained by the same procedure (punch

biopsies), from the same location (outer forearm) and from a donor

group with a defined sex (female), ethnicity (Caucasian) and health

status (disease-free). DNA was purified from all samples in parallel and

subjected to Infinium 450k methylation profiling. All resulting datasets

passed stringent quality controls and were subsequently analyzed using

state-of-the-art statistical tools.

Principal component analysis on all 450k probes achieved a clear

separation of young and old samples (Fig. 1A). Indeed, singular value

decomposition (SVD) analysis of b values identified age as the major

source of variation in our datasets (Fig. S2). A comparison of the

methylation patterns of the young and old sample groups using minfi

(Aryee et al., 2014) revealed 58 995 probes with a statistically significant

(adjusted P < 0.01) methylation change (Figs 1B and S3). Further

analysis revealed that the large majority of differentially methylated

probes showed only minor (Db < 0.1) quantitative methylation differ-

ences (Fig. 1C). Also, average b values of the differentially methylated

probes showed only a very slight trend toward hypermethylation in old

samples (Fig. 1D), but failed to indicate any large-scale methylation

changes, such as an age-related global loss of methylation marks (Heyn

et al., 2012; Vandiver et al., 2015). Finally, we also analyzed the data

from 980 probes in non-CpG sequence context. In agreement with

recently published data (Schultz et al., 2015), we detected low, but

significant levels of non-CpG methylation in the human epidermis

(Fig. S4). Differences between young and old samples appeared minor

(Fig. S4), with only three isolated probes achieving statistical significance

(data not shown). Together, these results suggest a general stability of

the human epidermis methylome during aging and indicate the presence

of locally restricted age-related methylation differences.

Both hypomethylation and hypermethylation have previously been

implied in human tissue aging (Rakyan et al., 2010; Teschendorff et al.,

2010; Heyn et al., 2012; Vandiver et al., 2015; Yuan et al., 2015). This

includes the hypomethylation of megabase-scale blocks, which has

recently been described in aged and sun-exposed human skin (Vandiver

et al., 2015). We used the same (Vandiver et al., 2015) approaches to

identify hypomethylated blocks in our datasets. Surprisingly, however,

none of the identified blocks showed an average methylation difference

of > 0.1 in our dataset (see Fig. S5 for an example). We therefore used

an alternative approach and defined hypomethylated blocks through

their association with lamina-associated domains (LADs, Guelen et al.,

2008). However, we could not observe an age-related decrease in the

average methylation level of LAD-associated probes in our dataset

(Figs 2A and S5). These findings strongly suggest that hypomethylated

blocks are not a major feature of intrinsic skin aging.

We also used minfi to analyze methylation patterns at the level of

epigenomic substructures, such as CpG islands, shores, shelves, and

open sea regions (Irizarry et al., 2009; Sandoval et al., 2011). The results

again indicated only minor differences between the young and old

A B

C D

Fig. 1 Age-related methylation differences are characterized by relatively small

effect sizes. (A) Principal component analysis of epidermis methylomes clearly

separates young and old samples. (B) Scatter plot comparing the epidermis

methylomes of 24 young (18–27 years) and 24 old (61–78 years) volunteers. A

total of 58 995 differentially (adjusted P < 0.01) methylated CpG probes are

indicated in blue. (C) Size distribution of methylation differences. For most of the

58 995 differentially methylated probes, this difference is < 0.2. (D) Box plot

showing a slight global DNA hypermethylation in the epidermis of old volunteers.
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samples for most substructures, but revealed a robust and highly

significant (P = 2.0e-171) hypermethylation of CpG islands in the old

samples (Fig. 2B). Similarly, CpG island-associated probes were distinctly

overrepresented among hypermethylated probes and underrepresented

among hypomethylated probes (Fig. 2C). Hypermethylation of CpG

islands represents a conserved feature of aging human cells (Yuan et al.,

2015).

Gradual methylation changes associated with skin aging

To confirm and further characterize these methylation differences, we

obtained epidermis samples from an additional group of 60 healthy

female volunteers that also included intermediate ages (Fig. S1). We

generated Infinium 450k methylation profiles from all samples and

integrated the resulting data into our existing dataset. Hierarchical

clustering on the complete dataset failed to reveal any batch effects

(Fig. S6) and thus allowed the use of a merged dataset of 108 samples

for the subsequent analysis.

When we used the merged dataset (N = 108) to predict the age of

our samples using a published predictor based on a set of 353

tissue-independent probes (Horvath, 2013), we obtained a good

correlation between chronological and predicted biological age

(q = 0.91, P < 2.2e-16). However, when calculating the linear regres-

sion of the data, the regression curve showed a slope of only 0.55.

Furthermore, the average absolute prediction error was 14.5 years

(Fig. S7), clearly showing that the published predictor underestimates the

true age of epidermis samples. We therefore used a linear support vector

machine (SVM) to predict biological age based on our skin methylation

profiles. SVM training was performed with leave-one-out and also

10-fold cross-validation using the complete set of 450k probes as

independent variables, and chronological age as dependent variable. We

then compared the predicted age for each of the 108 samples with the

chronological age. This resulted in a very high correlation (q = 0.92,

P < 2.2e-16) between estimated biological and chronological age,

comparable to the published predictor, but with an average absolute

prediction error of less than 5.25 years (Fig. 3A), thus clearly confirming

gradual age-related methylation changes in the human epidermis. We

furthermore validated our calibrated predictor on the N = 18 sun-

exposed epidermis samples from the (Vandiver et al., 2015) study,

resulting in very high correlation between predicted and true age

(q = 0.96, P = 1.66e-10, R-squared = 0.93) and an average absolute

prediction error of 6.72 years (Fig. S7). On the same dataset, the

published method (Horvath, 2013) achieved slightly inferior results in

terms of correlation (q = 0.89, P = 7.6e-7, R-squared = 0.794), but

again underestimated the biological age with an average absolute

prediction error of 12.1 years (Fig. S7). Finally, we compared predictions

using methylation data with a linear SVM that had been trained similarly

on gene expression data (N = 59). As gene expression profiles were

available for only 59 samples, we also performed predictions on the

methylation data by (repeated) random subsampling of N = 59 methy-

lation profiles. While we still achieved an average absolute error of

6.48 years on the subsampled methylation data (representative run:

q = 0.938, P < 2.2e-16), the prediction accuracy on the gene expression

data was significantly worse (correlation q = 0.83, P = 5.2e-16), with an

average absolute prediction error of 9.48 years (Fig. 3B). The substan-

tially higher accuracy of methylation-based age prediction further

illustrates the importance of age-related methylation changes.

Discontinuous age-related methylation changes

To further investigate age-related methylation changes, we then focused

our analyses on the 2000 most variably methylated probes. This number

was chosen because an initial analysis of our young/old (N = 48 dataset)

revealed that 1918 probes showed an average methylation difference of

Db ≥ 0.2, which is often used to determine ‘robust’ methylation

changes (Fig. 4A). A consensus cluster analysis of these 2000 probes

identified two clearly defined clusters consisting of 25 and 23 samples,

respectively (Fig. 4B). With a single exception, these consensus clusters

A B C

Fig. 2 Age-related methylation changes are locally restricted. (A) Average b values of probes assigned to lamina-associated domains. Orange bar: young samples, purple

bar: old samples. (B) Methylation status of different epigenomic substructures in the epidermis of young and old volunteers. The box plots show a highly significant

(P = 2.0e-17) hypermethylation of CpG islands in old donors. (C) Fractions of hyper- and hypomethylated CpGs within different epigenomic substructures. The graph shows

a significant enrichment of CpG island-associated probes among the hypermethylated CpGs, and a concomitant decrease of CpG island-associated probes among the

hypomethylated CpGs.
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correctly identified the young and old sample groups (Fig. 4C). Hierar-

chical clustering of the b values from both clusters (Fig. 4C) also showed

two distinct patterns of variation among the 2000 probes: While 945

(47%) probes showed age-independent interindividual variation, 1055

(53%) probes showed consistent age-related differences (Fig. 4D),

which confirms the presence of specific age-related methylation changes

among the most variable probes.

Interestingly, a closer examination of the 2000 most variable probes in

the complete (N = 108) dataset strongly suggested that a substantial

fraction of age-related methylation changes accumulated during nar-

rowly defined windows (Fig. 4E). The corresponding time points were

subsequently identified by recursive partitioning for each of the 2000

probes. This identified step-wise hypomethylation for 256 probes and

step-wise hypermethylation for 768 probes (Figs 4F and S8).

Hypomethylation appeared evenly distributed between ages 30 and

50, while hypermethylation accumulated in two pronounced peaks

around 40 and 55 years, respectively (Figs 4F and S8). Because CpG

island hypermethylation is a conserved feature of aging human cells, we

also tested whether discontinuous methylation changes are enriched in

this genomic feature. Indeed, out of the 768 probes defining discon-

tinuous hypermethylation events, 396 (52%) were located in CpG

islands, while only 13% (32 of 256) of the discontinuously hypomethy-

lated probes were located in CpG islands (Figs 4G and S8B). Finally,

while differences in sample identity and age distribution preclude a

direct validation, overall similar changes could be observed with

published data from an independent study (Fig. S8 (Vandiver et al.,

2015)). Together, these findings identify discontinuous methylation

changes as a novel feature associated with human skin aging.

Age-related erosion of epigenetic regulation

To further characterize the global features of young and old epidermis

methylomes, we compared the within-sample methylation variance for

all 450k probes (see Experimental procedures for details). We observed a

highly significant (P = 0.0016) difference between the old and young

groups, with the young samples showing an overall higher variability in

their methylation profiles (Fig. 5A). These results indicate that the

dynamic range of skin methylomes becomes reduced with age. To

corroborate our finding, we analyzed the spatial correlation in the

methylation levels of neighboring CpGs, which has been shown to

become reduced in T cells from old human donors (Heyn et al., 2012). In

agreement with earlier findings in T cells (Heyn et al., 2012), our results

show that the spatial correlation of the methylation levels of neighbor-

ing CpGs is slightly but significantly (P = 5.4e-07) reduced in older

donors (Fig. 5B), which is again consistent with an age-related reduction

in methylation patterning. Finally, when we calculated average Pearson

correlation coefficients for probe-by-probe comparisons in our datasets,

methylation patterns appeared highly homogeneous among the young

epidermis samples (Fig. 5C). Notably, correlation coefficients became

distinctly reduced in old samples and were also reduced when old

samples were compared to other old samples (Fig. 5C). These effects

were further confirmed when the b value variances were calculated

individually for each sample and for each probe per sample group to

determine intra- and intermethylome variance, respectively (Fig. 5D).

These findings illustrate how skin methylomes erode with age and

identify a novel and important feature of the age-related epigenetic

drift.

We next addressed the question whether decreasing variability was

also observable at the level of gene expression, but could not observe a

similar global trend (data not shown). However, it has been described

that aging mouse tissues have a decreased correlation of gene

expression (Southworth et al., 2009). We therefore computed pairwise

Pearson correlation coefficients between the 30%most variable genes in

the young and old sample groups (see Experimental procedures for

details). The results showed that the number of gene pairs with no

expression correlation was distinctly increased in the old samples

(Fig. 5E). We also performed a similar correlation analysis for specific

gene networks using selected categories from the Reactome database.

Our results again showed a distinct age-related loss of correlated gene

expression in these networks (Fig. 5F), consistent with the transcrip-

tome-wide result. Together, these findings support the notion that aging

is accompanied by a reduced fidelity of epigenetic regulation in the

human epidermis.

Discussion

Epigenetic drift has been suggested to be a major hallmark of aging

human tissues (Feil & Fraga, 2012; Teschendorff et al., 2013). However,

while numerous studies have described age-related methylation

changes, the specific characteristics of this phenomenon have not

been defined yet. We have used human skin as a paradigm for tissue

aging because its well-known aging phenotype and its high degree of

cell-type homogeneity during adult age (Gunin et al., 2011), which

mitigates major confounding effects caused by age-related changes in

cell-type proportions (Houseman et al., 2012; Lowe & Rakyan, 2014). In

agreement with our previous studies that were carried out either at

lower resolution or with smaller sample sizes (Gronniger et al., 2010;

Raddatz et al., 2013), we find that age-related methylation changes

appear rather moderate and do not compromise the overall integrity of

the epidermis methylome. Nevertheless, we identified a variety of

specific age-related methylation changes. In contrast to prior work by

others (Hannum et al., 2013; Horvath et al., 2013), where whole-blood

samples and different tissues were used to develop a predictive

signature of biological age, we achieved significantly improved predic-

tion accuracy by training the prediction algorithm on epidermis

samples.

In agreement with previous analyses (Yuan et al., 2015), we

observed a significant age-related hypermethylation of CpG island-

associated probes. Interestingly, this effect was strongly enriched

during two specific age windows, at 40–45 and 50–55 years.

Considering that our samples were exclusively derived from female

A B

Fig. 3 Continuous methylation changes predict chronological age. Biological age

predicted from the methylation (left, N = 108) or gene expression (right, N = 59)

profiles is plotted over the chronological age of the samples. Predictions were

made using a support vector machine, using leave-one-out cross-validation and

using all available probes on the respective platform.
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volunteers, it seems reasonable to link the latter window to

menopause, which is also known to distinctly accelerate skin aging

(Thornton, 2013). The high temporal and spatial specificity of these

methylation changes suggests that defined signaling pathways, such

as estrogen signaling (Emmerson & Hardman, 2012), may be involved

in their establishment.

Our results also describe an age-related erosion of DNA methylation

patterns that is characterized by two distinct features: (i) While the

topology of young methylomes is characterized by sharply demarcated

regions of (almost) complete and (almost) absent methylation, old

methylomes appeared to be less clearly defined, which is reflected by the

significantly reduced variance and spatial correlation within methylomes.

(ii) While young methylomes are highly similar among each other, old

methylomes appeared to be substantially more heterogeneous. Hence,

while methylation patterning within an individual becomes more

homogeneous with age, the differences between individuals increase

(Fig. 6). These findings define important features of the epigenetic drift

associated with aging. Interestingly, methylation heterogeneity has been

observed during the long-term culture of human fibroblasts (Landan

et al., 2012) and in aging human mesenchymal stem cells (Fernandez

et al., 2015). Furthermore, increased methylation heterogeneity has also

been associated with cellular senescence in cultured human epithelial

cells (Lowe et al., 2015).

The effects of age-related methylation changes on gene expression

patterns have been analyzed in several previous studies. Somewhat

surprisingly, however, no global correlations could be established and

methylation-related expression changes generally appeared very limited

(Heyn et al., 2012; Raddatz et al., 2013; Reynolds et al., 2014; Zykovich

et al., 2014; Yuan et al., 2015). These findings support the notion that

age-related methylation changes function to stabilize pre-existing gene

expression patterns (Yuan et al., 2015). Alternatively, age-related gene

expression changes might also be too subtle to achieve statistical

significance in classical differential expression analyses. The analysis of

gene co-expression networks provides an opportunity to analyze

transcriptional deregulation at a higher level of complexity (Southworth

et al., 2009), and our findings demonstrate a reduced connectivity of

gene expression in old samples. These results are in agreement with

earlier findings in aging mice (Southworth et al., 2009) and suggest that

the age-related erosion of methylation patterns is accompanied by a

reduced fine-tuning in the transcriptional circuitry, possibly through

methylation-dependent changes in transcription factor binding (Yuan

et al., 2015).

A

E F G

B C D

Fig. 4 Discontinuous methylation changes during aging. (A) Number of differentially methylated probes in relation to their age-related (young vs. old) average methylation

difference. Approximately 2000 probes showed an average age-related methylation difference of greater than or equal to 0.2. (B) Consensus Matrix for two cluster centers

after consensus clustering of the 2000 most variable probes (young vs. old). Only consensus values of 0 (two samples never cluster together) or 1 (two samples always cluster

together) were observed, indicating optimum clustering into two groups. (C) b value heatmap of the 2000 most variable probes. b values were colored from blue (b = 0) to

red (b = 1). Colors in the bar above the matrix indicate cluster assignment. Epidermis methylomes from the old sample group are indicated by black boxes below the

heatmap. Only one sample appeared in the wrong cluster. (D) Distribution of age-dependent and age-independent b values within the 2000 most variable probes. Yellow:

age-dependent probes; Blue: age-independent probes. (E) b value heatmap of the most variable probes within the complete dataset after sorting by age. Discontinuous

methylation changes occur for a subset of probes between the ages of 40 and 60. (F) Identification of probes showing discontinuous methylation changes by recursive

partitioning. The heatmaps represent the cumulative number of probes showing a discontinuous b value change at the specified age. Hypomethylation occurred in less

probes than hypermethylation and at different ages. (G) Fraction of CpG island-associated probes (yellow) among the most variable (top), hypermethylated (middle) and

hypomethylated (bottom) probes.
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It will be particularly interesting to identify the factors that are

involved in the age-related erosion of DNA methylation patterns. For

example, it has been shown that the Dnmt3a DNA methyltransferase

plays an important role in shaping the topology of DNA methylation

patterns. When Dnmt3a was deleted in mouse hematopoietic stem cells,

DNA methylation canyons became eroded (Jeong et al., 2014), causing

reduced methylation variance and reduced spatial correlation of methy-

lation marks at specific target loci. Similar observations were made in

mouse embryonic fibroblasts that lack the Tet1 and Tet2 dioxygenases

(Wiehle et al., 2016). Interestingly, we also observed a significant

relationship between age and the normalized gene expression level of

TET1, which becomes moderately, but significantly (P < 0.05) reduced

A B

C D

E F

Fig. 5 Erosion of methylation patterns in old samples. (A) Intramethylome variance for young and old samples. (B) Spatial correlation of methylation marks. Lines indicate

smoothened medians of distance-dependent b value differences for the young (orange) and old (purple) datasets. (C) Methylation heterogeneity analysis. Pearson correlation

coefficients were calculated after performing a probe-by-probe b value comparison for all young and old samples. (D) Heatmaps of intramethylome and intermethylome

variance. For the intermethylome variance, results are shown for the 30 most variable probes. (E) Global pairwise correlation of gene expression data from young (orange)

and old (purple) samples. The plot represents the overall density distribution of the correlation coefficient of genes. (F) Correlation density plots for specific pathways from

the Reactome database. Young and old samples are shown in orange and purple, respectively.
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with age (Fig. S9). High-resolution methylation mapping of genetically

engineered cells will be required for a detailed characterization of the

mechanisms that are involved in this process.

Experimental procedures

Samples

Epidermis samples for the first (N = 48) dataset were isolated from punch

biopsies that had been obtained from the outer forearm of 24 young (18–

27 years) and 24 old (61–78 years) volunteers. Epidermis samples for the

second (N = 60) dataset were obtained as suction blister roofs from the

outer forearm of 60 volunteers aged 20–79 years (Skin Investigation And

Technology, Hamburg, Germany). All volunteers shared the same gender

(female), ethnicity (Caucasian) and health status (disease-free). All studies

were approved by the Ethics Committee of the Medical Association of

Hamburg (PV 3107, PV 4280) and by the Freiburg Ethics Commission

International (011/1973), and were performed in agreement with the

recommendations of the Declaration of Helsinki.

Analysis of Infinium 450k data

Preprocessing of raw data.idat files (read-in, quality control, SWAN) from

Infinium 450k microarrays was performed using the minfi package

(Aryee et al., 2014). Probes located on the sex chromosomes, or which

failed detection P-value testing in at least one sample, were removed

from the analysis. Likewise, probes showing cross-reactivity to at least

one distant site, and thus allowing a mismatch of one base in the probe

sequence, were eliminated. Finally, probes containing a SNP with an

allele frequency of at least 0.01, and located a maximum of five bases

away from the single-base extension (SBE) site, were also removed. b
values and M values were extracted from the remaining probes.

Prediction of batch effects was carried out by singular value decompo-

sition (SVD) using the CHAMP BIOCONDUCTOR package (Morris et al., 2014).

Identification of differentially methylated CpG probes between sample

groups was performed using a linear model fit of the M values with

subsequent empirical Bayes reduction in standard errors from the

estimated methylation differences, as described in the limma R package

(Ritchie et al., 2015). As the distribution of unadjusted P-values showed

no influence of potential confounding factors (Fig. S3), raw P-values

were adjusted using an FDR method (Benjamini–Hochberg).

Identification of large hypomethylated blocks

To identify DNA hypomethylation blocks, the blockFinder algorithm of

the minfi package was used as described previously (Aryee et al., 2014).

Block finding was performed on open sea probes using the default

parameters and a B parameter of 100. Blocks were filtered for an

adjusted P-value < 0.05 (family-wise error rate) and an overall absolute

average methylation difference > 0.1. For visualization, b values of the

probes within the identified blocks were averaged for young and old

epidermis datasets and smoothed using a locally weighted regression

approach. LAD association of Infinium 450k probes was determined

using published datasets (Guelen et al., 2008).

Consensus clustering

To identify distinct age-dependent methylation clusters, consensus

clustering was performed using the b values of the 2000 most variable

probes from the 24 old vs. 24 young epidermis dataset (i.e., the probes

with the highest standard deviations). The consensus cluster algorithm is

included in the ConsensusClusterPlus R package (Wilkerson & Hayes,

2010) and was applied using the k-means cluster algorithm, 1000

bootstraps, an item subsampling proportion of 0.8, and a feature

subsampling proportion of 1. For visualization, all samples per cluster, as

well as the 2000 probes, were further ordered by hierarchical clustering.

Identification of discontinuous methylation changes

The b values of the 2000 most variable probes were re-calculated using

the complete set of samples (N = 108). After quality control, 1982

probes were considered further. Probes were defined as age-dependent

if there were no overlaps in the average � standard deviation intervals

between both datasets. For the identification of discontinuous methy-

lation changes, b values were plotted with respect to the age and

subjected to a recursive partitioning algorithm implemented in the rpart

R package. Assuming only one age-dependent methylation change, the

maximum depth parameter was set to 1. Further analysis was restricted

to probes showing a relative error ≤ 0.75 after recursive partitioning.

Probes were subsequently assigned to one of five groups based on the

left branch value identified by recursive partitioning. The resulting probe

sets were then further stratified using the direction and the calculated

age of the methylation change.

Methylome variance analysis

The young and old datasets were tested for intermethylome and

intramethylome variance by calculating either the M value variance of all

probes within the old or the young epidermis datasets, or by calculating

the M value variance of all samples within the old and the young

epidermis datasets. For the spatial correlation analysis, all pairs of probes

present in the 450k microarray and located within a distance of

maximum 1000 bases were identified. Then, after obtaining the average

b values of all these probes in the old and young datasets, their absolute

difference (Db value) was calculated for each pair of probes. Finally, the

median of all Db values per distance was calculated, smoothened and

plotted for both young and old epidermis data.

Gene expression analysis

mRNA expression profiles (N = 59) were generated using Agilent

SurePrint G3 arrays from the same set of epidermis samples (outer

A

B

Fig. 6 Model of age-related changes in methylation patterning. Panels illustrate

standard human methylation patterns with alternating regions of highly and lowly

methylated CpGs (vertical lines). (A) Young epidermis samples display methylomes

with a high dynamic range (high intramethylome variance) and a low

intermethylome variance. (B) In contrast, old samples show methylomes with a

reduced dynamic range (resulting in a lower intramethylome variance) and a higher

intermethylome variance.
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forearm suction blister roofs) thatwere also used formethylation analyses.

To determine the correlation of gene expression patterns, we assigned

young (20–30 years,N = 12) and old (> 60 years,N = 19) samples to two

distinct groups. Due to the large number of pairwise correlations between

all genes on the array (�30 000 9 30 000 = 900 000 000 pairwise

correlation coefficients), we restricted the analysis to the top 30% genes

with the highest variability between samples and then computed pairwise

Pearson correlation coefficients between all these genes in the old sample

group and in the young sample group, respectively.

Data access

All array data have been deposited in the ArrayExpress database under

the accession numbers E-MTAB-4385 (methylation data) and E-MTAB-

4382 (expression data).
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